Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,461)

Search Parameters:
Keywords = efficient adsorbents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1504 KiB  
Article
Production of Bioadsorbents via Low-Temperature Pyrolysis of Exhausted Olive Pomace for the Removal of Methylene Blue from Aqueous Media
by Safae Chafi, Manuel Cuevas-Aranda, Mª Lourdes Martínez-Cartas and Sebastián Sánchez
Molecules 2025, 30(15), 3254; https://doi.org/10.3390/molecules30153254 (registering DOI) - 3 Aug 2025
Abstract
In this work, biochars were produced by pyrolysis of exhausted olive pomace and evaluated as low-cost adsorbents for the removal of methylene blue (MB) from aqueous solutions. The biochar obtained at 400 °C for 1 h, which exhibited the best adsorption performance, was [...] Read more.
In this work, biochars were produced by pyrolysis of exhausted olive pomace and evaluated as low-cost adsorbents for the removal of methylene blue (MB) from aqueous solutions. The biochar obtained at 400 °C for 1 h, which exhibited the best adsorption performance, was characterized by FTIR, N2 adsorption–desorption isotherms, SEM-EDX, and proximate analysis, revealing a mesoporous structure with a relatively low specific surface area but enriched in surface functional groups, likely due to the partial degradation of lignocellulosic components. Adsorption experiments were conducted to optimize operational parameters such as solid particle size (2–3 mm), agitation speed (75 rpm), and bioadsorbent dosage (1 g per 0.05 L of MB solution), which allowed for dye removal efficiencies close to 100%. Kinetic studies showed that MB adsorption followed a pseudo-second-order model, while equilibrium data at 30 °C were best described by the Langmuir isotherm (R2 = 0.999; SE = 4.25%), suggesting monolayer coverage and strong adsorbate–adsorbent affinity. Desorption trials using water, ethanol, and their mixtures resulted in low MB recovery, whereas the addition of 10% acetic acid significantly improved desorption performance. Under optimal conditions, up to 52% of the retained dye was recovered. Full article
(This article belongs to the Special Issue Advances in Biomass Chemicals: Transformation and Valorization)
21 pages, 2600 KiB  
Article
Bamboo Biochar and Sodium Silicate Alleviate Oxybenzone-Induced Phytotoxicity via Distinct Mechanisms for Sustainable Plant Protection
by Chuantong Cui, Wenhai Yang, Weiru Dang, Ruiya Chen, Pedro García-Caparrós, Guoqun Yang, Jianhua Huang and Li-Jun Huang
Plants 2025, 14(15), 2382; https://doi.org/10.3390/plants14152382 (registering DOI) - 2 Aug 2025
Abstract
Oxybenzone (OBZ), an organic ultraviolet filter, is an emerging contaminant posing severe threats to ecosystem health. Using tobacco (Nicotiana tabacum) as a model plant, this study investigated the alleviation mechanisms of exogenous silicon (Na2SiO3, Si) and bamboo-based [...] Read more.
Oxybenzone (OBZ), an organic ultraviolet filter, is an emerging contaminant posing severe threats to ecosystem health. Using tobacco (Nicotiana tabacum) as a model plant, this study investigated the alleviation mechanisms of exogenous silicon (Na2SiO3, Si) and bamboo-based biochar (Bc) under OBZ stress. We systematically analyzed physiological and biochemical responses, including phenotypic parameters, reactive oxygen species metabolism, photosynthetic function, chlorophyll synthesis, and endogenous hormone levels. Results reveal that OBZ significantly inhibited tobacco growth and triggered a reactive oxygen species (ROS) burst. Additionally, OBZ disrupted antioxidant enzyme activities and hormonal balance. Exogenous Bc mitigated OBZ toxicity by adsorbing OBZ, directly scavenging ROS, and restoring the ascorbate-glutathione (AsA-GSH) cycle, thereby enhancing photosynthetic efficiency, while Si alleviated stress via cell wall silicification, preferential regulation of root development and hormonal signaling, and repair of chlorophyll biosynthesis precursor metabolism and PSII function. The mechanisms of the two stress mitigators were complementary, Bc primarily relied on physical adsorption and ROS scavenging, whereas Si emphasized metabolic regulation and structural reinforcement. These findings provide practical strategies for simultaneously mitigating organic UV filter pollution and enhancing plant resilience in contaminated soils. Full article
Show Figures

Figure 1

19 pages, 1681 KiB  
Article
Decolorization of Corn Fiber Arabinoxylan Extract with (MN102) Resin: Adsorption Performance and Film-Forming Capacity
by Verónica Weng, Diana Gago, Carla Brazinha, Vítor D. Alves and Isabel M. Coelhoso
Polymers 2025, 17(15), 2128; https://doi.org/10.3390/polym17152128 (registering DOI) - 1 Aug 2025
Viewed by 24
Abstract
Arabinoxylan is a polysaccharide with film-forming properties, present in corn fiber, and a low-value by-product. The extract has a deep brown color, producing films of the same shade, which may not be appealing. This study addresses, for the first time, the adsorption of [...] Read more.
Arabinoxylan is a polysaccharide with film-forming properties, present in corn fiber, and a low-value by-product. The extract has a deep brown color, producing films of the same shade, which may not be appealing. This study addresses, for the first time, the adsorption of colored compounds present in an arabinoxylan extract using resin MN102. The resin successfully adsorbed the colored compounds from the arabinoxylan extract. After four consecutive adsorption/desorption cycles, the efficiency of the resin was similar, only decreasing from 63.3% to 52.9%. Langmuir and Freundlich models were fitted to the results of adsorption isotherm experiments, with the Freundlich model demonstrating the best fit to the experimental results. A fixed-bed column loaded with the resin was used for the removal of the colored compounds from the arabinoxylan extract, and the effect of the volumetric flow rate was investigated. The Yan and log-Gompertz models showed the best fit to the experimental breakthrough curves. This study systematically evaluated the adsorption conditions, providing a comprehensive analysis of the performance of the resin in the removal of the colored compounds. Additionally, the ability of the extract to maintain its film-forming properties after decolorization was evaluated, and some of the film’s key characteristics were evaluated, namely its color, solubility in water and mechanical properties. Full article
Show Figures

Figure 1

10 pages, 1555 KiB  
Article
Lithium-Decorated C26 Fullerene in DFT Investigation: Tuning Electronic Structures for Enhanced Hydrogen Storage
by Jiangang Yu, Lili Liu, Quansheng Li, Zhidong Xu, Yujia Shi and Cheng Lei
Molecules 2025, 30(15), 3223; https://doi.org/10.3390/molecules30153223 (registering DOI) - 31 Jul 2025
Viewed by 161
Abstract
Hydrogen energy holds immense potential to address the global energy crisis and environmental challenges. However, its large-scale application is severely hindered by the lack of efficient hydrogen storage materials. This study systematically investigates the H2 adsorption properties of intrinsic C26 fullerene [...] Read more.
Hydrogen energy holds immense potential to address the global energy crisis and environmental challenges. However, its large-scale application is severely hindered by the lack of efficient hydrogen storage materials. This study systematically investigates the H2 adsorption properties of intrinsic C26 fullerene and Li-decorated C26 fullerene using density functional theory (DFT) calculations. The results reveal that Li atoms preferentially bind to the H5-5 site of C26, driven by significant electron transfer (0.90 |e|) from Li to C26. This electron redistribution modulates the electronic structure of C26, as evidenced by projected density of states (PDOS) analysis, where the p orbitals of C atoms near the Fermi level undergo hybridization with Li orbitals, enhancing the electrostatic environment for H2 adsorption. For Li-decorated C26, the average adsorption energy and consecutive adsorption energy decrease as more H2 molecules are adsorbed, indicating a gradual weakening of adsorption strength and signifying a saturation limit of three H2 molecules. Charge density difference and PDOS analyses further demonstrate that H2 adsorption induces synergistic electron transfer from both Li (0.89 |e| loss) and H2 (0.01 |e| loss) to C26 (0.90 |e| gain), with orbital hybridization between H s orbitals, C p orbitals, and Li orbitals stabilizing the adsorbed system. This study aimed to provide a comprehensive understanding of the microscopic mechanism underlying Li-enhanced H2 adsorption on C26 fullerene and offer insights into the rational design of metal-decorated fullerene-based systems for efficient hydrogen storage. Full article
Show Figures

Graphical abstract

16 pages, 1981 KiB  
Article
Computational Design of Mineral-Based Materials: Iron Oxide Nanoparticle-Functionalized Polymeric Films for Enhanced Public Water Purification
by Iustina Popescu, Alina Ruxandra Caramitu, Adriana Mariana Borș, Mihaela-Amalia Diminescu and Liliana Irina Stoian
Polymers 2025, 17(15), 2106; https://doi.org/10.3390/polym17152106 - 31 Jul 2025
Viewed by 196
Abstract
Heavy metal contamination in natural waters and soils poses a significant environmental challenge, necessitating efficient and sustainable water treatment solutions. This study presents the computational design of low-density polyethylene (LDPE) films functionalized with iron oxide (Fe3O4) nanoparticles (NPs) for [...] Read more.
Heavy metal contamination in natural waters and soils poses a significant environmental challenge, necessitating efficient and sustainable water treatment solutions. This study presents the computational design of low-density polyethylene (LDPE) films functionalized with iron oxide (Fe3O4) nanoparticles (NPs) for enhanced water purification applications. Composite materials containing 5%, 10%, and 15% were synthesized and characterized in terms of adsorption efficiency, surface morphology, and reusability. Advanced molecular modeling using BIOVIA Pipeline was employed to investigate charge distribution, functional group behaviour, and atomic-scale interactions between polymer chains and metal ions. The computational results revealed structure–property relationships crucial for optimizing adsorption performance and understanding geochemically driven interaction mechanisms. The LDPE/Fe3O4 composites demonstrated significant removal efficiency of Cu2+ and Ni2+ ions, along with favourable mechanical properties and regeneration potential. These findings highlight the synergistic role of mineral–polymer interfaces in water remediation, presenting a scalable approach to designing multifunctional polymeric materials for environmental applications. This study contributes to the growing field of polymer-based adsorbents, reinforcing their value in sustainable water treatment technologies and environmental protection efforts. Full article
(This article belongs to the Special Issue Polymer-Based Coatings: Principles, Development and Applications)
Show Figures

Figure 1

17 pages, 1261 KiB  
Article
Innovative Valorization of Wood Panel Waste into Activated Biochar for Efficient Phenol Adsorption
by Aziz Bentis, Laura Daniela Ceron Daza, Mamadou Dia, Ahmed Koubaa and Flavia Lega Braghiroli
Appl. Sci. 2025, 15(15), 8518; https://doi.org/10.3390/app15158518 (registering DOI) - 31 Jul 2025
Viewed by 103
Abstract
Construction and demolition byproducts include substantial amounts of wood panel waste (WPW) that pose environmental challenges. They also create opportunities for sustainable resource recovery. This study investigates the potential of WPW-derived biochar as an efficient adsorbent for phenol removal from aqueous solutions. Biochar [...] Read more.
Construction and demolition byproducts include substantial amounts of wood panel waste (WPW) that pose environmental challenges. They also create opportunities for sustainable resource recovery. This study investigates the potential of WPW-derived biochar as an efficient adsorbent for phenol removal from aqueous solutions. Biochar was produced via pyrolysis at 450 °C and subsequent activation at 750, 850, and 950 °C. The biochar’s physicochemical properties, including surface area, pore volume, and elemental composition, were characterized using advanced methods, including BET analysis, elemental analysis, and adsorption isotherm analysis. Activated biochar demonstrated up to nine times higher adsorption capacity than raw biochar, with a maximum of 171.9 mg/g at 950 °C under optimal conditions: pH of 6 at 25 °C, initial phenol concentration of 200 mg/L, and biochar dosage of 1 g/L of solution for 48 h. Kinetic and isotherm studies revealed that phenol adsorption followed a pseudo-second-order model and fit the Langmuir isotherm, indicating chemisorption and monolayer adsorption mechanisms. Leaching tests confirmed the biochar’s environmental safety, with heavy metal concentrations well below regulatory limits. Based on these findings, WPW biochar offers a promising, eco-friendly solution for wastewater treatment in line with circular economy and green chemistry principles. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

20 pages, 2360 KiB  
Article
Enhanced Ammonium Removal from Wastewater Using FAU-Type and BEA-Type Zeolites and Potential Application on Seedling Growth: Towards Closing the Waste-to-Resource Cycle
by Matiara S. C. Amaral, Marcella A. da Silva, Giovanna da S. Cidade, Diêgo N. Faria, Daniel F. Cipriano, Jair C. C. Freitas, Fabiana Soares dos Santos, Mendelssolm K. Pietre and André M. dos Santos
Processes 2025, 13(8), 2426; https://doi.org/10.3390/pr13082426 - 31 Jul 2025
Viewed by 198
Abstract
This work focuses on the effectiveness of removing ammonium from real municipal wastewater using synthetic faujasite (FAU-type) and β (BEA-type) zeolites and a commercial β (BEA-type) sample. The results demonstrated that synthetic samples presented enhanced performance on ammonium removal in comparison with commercial [...] Read more.
This work focuses on the effectiveness of removing ammonium from real municipal wastewater using synthetic faujasite (FAU-type) and β (BEA-type) zeolites and a commercial β (BEA-type) sample. The results demonstrated that synthetic samples presented enhanced performance on ammonium removal in comparison with commercial zeolite due to higher Al content and larger specific surface area, promoting better accessibility to active adsorption sites of the adsorbents. Synthetic FAU-type and BEA-type zeolites achieved a maximum adsorption capacity of 28.87 and 12.62 mg·g−1, respectively, outperforming commercial BEA-type zeolite (6.50 mg·g−1). Adsorption assays, associated with kinetic studies and adsorption isotherms, were better fitted using the pseudo-second order model and the Langmuir model, respectively, suggesting that chemisorption, involving ion exchange, and monolayer formation at the zeolite surface, was the main mechanism involved in the NH4+ adsorption process. After ammonium adsorption, the NH4+-loaded zeolite samples were used to stimulate the growth of tomato seedlings; the results revealed a change in the biomass production for seedlings grown in vitro, especially when the BEA_C_NH4 sample was employed, leading to a 15% increase in the fresh mass in comparison with the control sample. In contrast, the excess of ammonium adsorbed over the BEA_S_NH4 and FAU_NH4 samples probably caused a toxic effect on seedling growth. The elemental analysis results supported the hypothesis that the presence of NH4+-loaded zeolite into the culture medium was important for the release of nitrogen. The obtained results show then that the investigated zeolites are promising both as efficient adsorbents to mitigate the environmental impact of ammonium-contaminated water bodies and as nitrogen-rich fertilizers. Full article
(This article belongs to the Special Issue Novel Applications of Zeolites in Adsorption Processes)
Show Figures

Figure 1

13 pages, 1866 KiB  
Article
Application of Humate-Containing Agent for Sorbing Trace Metals in Simulated Solutions and Surface Waters from Tunnels at the ‘Degelen’ Site
by Madina Dyussembayeva, Yerbol Shakenov, Vladimir Kolbin, Azhar Tashekova, Assan Aidarkhanov, Umirzak Dzhusipbekov, Gulzipa Nurgalieva, Zamira Bayakhmetova, Dulat Duisenbay and Ulzhan Aksakalova
Sustainability 2025, 17(15), 6921; https://doi.org/10.3390/su17156921 - 30 Jul 2025
Viewed by 147
Abstract
This article presents the potential use of a humic agent called ‘Superhumate’, obtained from weathered coal from the Shubarkol deposit in Kazakhstan. The experiment was conducted using model solutions and surface mine water samples from the “Degelen” site at the Semipalatinsk Test Site. [...] Read more.
This article presents the potential use of a humic agent called ‘Superhumate’, obtained from weathered coal from the Shubarkol deposit in Kazakhstan. The experiment was conducted using model solutions and surface mine water samples from the “Degelen” site at the Semipalatinsk Test Site. The adsorption of heavy metals and toxic elements using the “Superhumate” agent was carried out under dynamic conditions using a chromatographic column. Tests were conducted at a natural pH range of 5–8 (mine waters) and with a model solution at pH 1.7. Assessing the sorption efficiency of this preparation revealed that at pH 1.7, the agent does not adsorb elements such as Cd, Cu, Pb, and Zn. Under dynamic experimental conditions, using the preparation for mine waters at natural pH levels (pH 5–8), elements such as Be, Sr, Mo, Cd, Cs, Zn, and U were efficiently adsorbed at levels of 60–95%. The sorption efficiency of Pb ions was found to be almost independent of pH. The experimental results obtained with mine water samples indicate that alkaline solutions have the highest sorption efficiency, with pH ≥ 7, which is attributed to the solubility of the agent. Full article
Show Figures

Figure 1

16 pages, 2131 KiB  
Article
A Comparative Study on ZrO2- and MgO-Based Sulfonic Acid Materials for the Reactive Adsorption of o-Xylene
by Hongmei Wang, Xiaoxu Zhang, Ziqi Shen and Zichuan Ma
Molecules 2025, 30(15), 3171; https://doi.org/10.3390/molecules30153171 - 29 Jul 2025
Viewed by 179
Abstract
The recovery and abatement of volatile organic compounds (VOCs) have received increasing attention due to their significant environmental and health impacts. Supported sulfonic acid materials have shown great potential in converting aromatic VOCs into their non-volatile derivatives through reactive adsorption. However, the anchoring [...] Read more.
The recovery and abatement of volatile organic compounds (VOCs) have received increasing attention due to their significant environmental and health impacts. Supported sulfonic acid materials have shown great potential in converting aromatic VOCs into their non-volatile derivatives through reactive adsorption. However, the anchoring state of sulfonic acid groups, which is closely related to the properties of the support, greatly affects their performance. In this study, two supported sulfonic acid materials, SZO and SMO, were prepared by treating ZrO2 and MgO with chlorosulfonic acid, respectively, to investigate the influence of the support properties on the anchoring state of sulfonic acid groups and their reactive adsorption performance for o-xylene. The supports, adsorbents, and adsorption products were extensively characterized, and the reactivity of SZO and SMO towards o-xylene was systematically compared. The results showed that sulfonic acid groups are anchored on the ZrO2 surface through covalent bonding, forming positively charged sulfonic acid sites ([O1.5Zr-O]δ−-SO3Hδ+) with a loading of 3.6 mmol/g. As a result, SZO exhibited excellent removal efficiency (≥91.3%) and high breakthrough adsorption capacity (ranging from 38.59 to 82.07 mg/g) for o-xylene in the temperature range of 130 –150 °C. In contrast, sulfonic acid groups are anchored on the MgO surface via ion-paired bonding, leading to the formation of negatively charged sulfonic acid sites ([O0.5Mg]+:OSO3H), which prevents their participation in the electrophilic sulfonation reaction with o-xylene molecules. This work provides new insights into tuning and enhancing the performance of supported sulfonic acid materials for the resource-oriented treatment of aromatic VOCs. Full article
(This article belongs to the Special Issue Applied Chemistry in Asia)
Show Figures

Graphical abstract

36 pages, 4084 KiB  
Review
Exploring Activated Carbons for Sustainable Biogas Upgrading: A Comprehensive Review
by Deneb Peredo-Mancilla, Alfredo Bermúdez, Cécile Hort and David Bessières
Energies 2025, 18(15), 4010; https://doi.org/10.3390/en18154010 - 28 Jul 2025
Viewed by 219
Abstract
Global energy supply remains, to this day, mainly dominated by fossil fuels, aggravating climate change. To increase and diversify the share of renewable energy sources, there is an urgent need to expand the use of biofuels that could help in decarbonizing the energy [...] Read more.
Global energy supply remains, to this day, mainly dominated by fossil fuels, aggravating climate change. To increase and diversify the share of renewable energy sources, there is an urgent need to expand the use of biofuels that could help in decarbonizing the energy mix. Biomethane, obtained by upgrading biogas, simultaneously allows the local production of clean energy, waste valorization, and greenhouse gas emissions mitigation. Among various upgrading technologies, the use of activated carbons in adsorption-based separation systems has attracted significant attention due to their versatility, cost-effectiveness, and sustainability potential. The present review offers a comprehensive analysis of the factors that influence the efficiency of activated carbons on carbon dioxide adsorption and separation for biogas upgrading. The influence of activation methods, activation conditions, and precursors on the biogas adsorption performance of activated carbons is revised. Additionally, the role of adsorbent textural and chemical properties on gas adsorption behavior is highlighted. By synthesizing current knowledge and perspectives, this work provides guidance for future research that could help in developing more efficient, cost-effective, and sustainable adsorbents for biogas upgrading. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

17 pages, 2022 KiB  
Article
Determination of the Mechanisms of Terbium(III) Biosorption by Bacillus Strains with Adsorption Selectivity for Heavy Rare Earth Elements
by Huihong Huang, Kang Pan, Wenchao Jian, Yuwen She, Comfort O. Esumeh and Wei Dong
Microorganisms 2025, 13(8), 1753; https://doi.org/10.3390/microorganisms13081753 - 27 Jul 2025
Viewed by 270
Abstract
Bacillus species have shown the potential to recover rare earth elements (REEs), but strains with adsorption selectivity for terbium(III) remain understudied. In this study, six Bacillus strains with the capability for efficient adsorption of Tb(III) were screened from an ionic rare earth mine [...] Read more.
Bacillus species have shown the potential to recover rare earth elements (REEs), but strains with adsorption selectivity for terbium(III) remain understudied. In this study, six Bacillus strains with the capability for efficient adsorption of Tb(III) were screened from an ionic rare earth mine and were identified based on 16S rRNA gene sequencing. Adsorption experiments showed that Bacillus sp. DW011 exhibited exceptional Tb(III) adsorption efficiency, with an adsorption rate of 90.45% and adsorption selectivity for heavy rare earth elements. Notably, strain DW011 was also found to be tolerant against Tb(III) with the 24 h 50% lethal concentration (LC50) of 2.62 mM. The biosorption mechanisms of DW011 were investigated using adsorption kinetics, SEM-EDS, and FTIR. The results indicated that the adsorption of strain DW011 conforms to the second-order kinetic model, and the teichoic acid–peptidoglycan network (phosphate-dominated) serves as the primary site for heavy REE adsorption, while carboxyl/amino groups in the biomembrane matrix provide secondary sites for LREEs. This study provides new information that Bacillus strains isolated from ionic rare earth mine deposits have potential as green adsorbents and have high selectivity for the adsorption of heavy REEs, providing a sustainable strategy for REE recovery from wastewaters. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

15 pages, 2927 KiB  
Article
Schiff Base-Functionalized Melamine Sponge with Hierarchical Porous Architecture for High-Efficiency Removal of Organic Dyes in Wastewater
by Xiaoyu Du, Hailiang Nie, Yanqing Qu, Jingyu Xu, Hongge Jia, Yong Zhang, Wenhui Ma and Boyu Du
Nanomaterials 2025, 15(15), 1157; https://doi.org/10.3390/nano15151157 - 26 Jul 2025
Viewed by 274
Abstract
Melamine sponges have demonstrated significant application potential in the field of adsorption materials due to their unique three-dimensional porous network structure, excellent chemical/mechanical stability, and abundant amino active sites on the surface. However, the development of modified melamine sponges with efficient Congo red [...] Read more.
Melamine sponges have demonstrated significant application potential in the field of adsorption materials due to their unique three-dimensional porous network structure, excellent chemical/mechanical stability, and abundant amino active sites on the surface. However, the development of modified melamine sponges with efficient Congo red dye removal capabilities remains a substantial challenge. In this study, a stable linear polymer network structure was constructed on the surface of melamine sponges via an in situ polymerization strategy based on the Schiff base reaction mechanism. Characterization analyses reveal that the modified sponge not only retained the original porous skeleton structure but also significantly enhanced the density of surface active sites. Experimental data demonstrate that the modified sponge exhibited excellent adsorption performance for Congo red dye, with the adsorption process conforming to the pseudo-second-order kinetic model and achieving a practical maximum adsorption capacity of 380.4 mg/g. Notably, the material also displayed favorable cyclic stability. This study provides an efficient adsorbent for Congo red dye-contaminated wastewater treatment through the development of a novel surface-functionalized sponge material while also offering new solutions for advancing the practical applications of melamine-based porous materials and environmental remediation technologies. Full article
Show Figures

Figure 1

25 pages, 3454 KiB  
Article
Dynamic Temperature–Vacuum Swing Adsorption for Sustainable Direct Air Capture: Parametric Optimisation for High-Purity CO2 Removal
by Maryam Nasiri Ghiri, Hamid Reza Nasriani, Leila Khajenoori, Samira Mohammadkhani and Karl S. Williams
Sustainability 2025, 17(15), 6796; https://doi.org/10.3390/su17156796 - 25 Jul 2025
Viewed by 512
Abstract
Direct air capture (DAC), as a complementary strategy to carbon capture and storage (CCS), offers a scalable and sustainable pathway to remove CO2 directly from the ambient air. This study presents a detailed evaluation of the amine-functionalised metal-organic framework (MOF) sorbent, mmen-Mg [...] Read more.
Direct air capture (DAC), as a complementary strategy to carbon capture and storage (CCS), offers a scalable and sustainable pathway to remove CO2 directly from the ambient air. This study presents a detailed evaluation of the amine-functionalised metal-organic framework (MOF) sorbent, mmen-Mg2(dobpdc), for DAC using a temperature–vacuum swing adsorption (TVSA) process. While this sorbent has demonstrated promising performance in point-source CO2 capture, this is the first dynamic simulation-based study to rigorously assess its effectiveness for low-concentration atmospheric CO2 removal. A transient one-dimensional TVSA model was developed in Aspen Adsorption and validated against experimental breakthrough data to ensure accuracy in capturing both the sharp and gradual adsorption kinetics. To enhance process efficiency and sustainability, this work provides a comprehensive parametric analysis of key operational factors, including air flow rate, temperature, adsorption/desorption durations, vacuum pressure, and heat exchanger temperature, on process performance, including CO2 purity, recovery, productivity, and specific energy consumption. Under optimal conditions for this sorbent (vacuum pressure lower than 0.15 bar and feed temperature below 15 °C), the TVSA process achieved ~98% CO2 purity, recovery over 70%, and specific energy consumption of about 3.5 MJ/KgCO2. These findings demonstrate that mmen-Mg2(dobpdc) can achieve performance comparable to benchmark DAC sorbents in terms of CO2 purity and recovery, underscoring its potential for scalable DAC applications. This work advances the development of energy-efficient carbon removal technologies and highlights the value of step-shape isotherm adsorbents in supporting global carbon-neutrality goals. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

23 pages, 1784 KiB  
Article
Study on the Adsorption Characteristics of Spirulina Dry Powder Biomass for Rare Earth Element Praseodymium(III): Adsorption Isotherms, Kinetics, and Thermodynamics Analysis
by Zhenxiang Hu, Caixia Zhang and Qing Shu
Separations 2025, 12(8), 195; https://doi.org/10.3390/separations12080195 - 25 Jul 2025
Viewed by 316
Abstract
Aimed at developing an economical and efficient biosorbent for the adsorption and separation of rare earth ions, this study employed Spirulina dry powder biomass as a biosorbent to investigate its removal performance for Pr3+ in aqueous solutions. Experimental results demonstrated that under [...] Read more.
Aimed at developing an economical and efficient biosorbent for the adsorption and separation of rare earth ions, this study employed Spirulina dry powder biomass as a biosorbent to investigate its removal performance for Pr3+ in aqueous solutions. Experimental results demonstrated that under optimized conditions (pH = 5, adsorbent dosage = 2.0 g/L, initial Pr3+ concentration = 100 mg/L, and adsorption time = 60 min), the removal efficiency of Pr3+ reached 79.0%. FT-IR and XPS characterization confirmed the participation of various functional groups on the Spirulina surface in the adsorption process. When 0.1 mol/L HNO3 was used as the desorption agent, the desorption rate of Pr3+ from Spirulina reached 91.7%, demonstrating excellent regeneration performance. At different temperatures (298–318 K), the adsorption data were fitted using Langmuir, Freundlich, Dubinin–Radushkevich, and Redlich–Peterson models. Among them, the Langmuir model (R2 ranged from 0.993 to 0.999) provided the best fit, and the adsorption capacity of Spirulina for Pr3+ was in the range of 51.10 to 55.31 mg/g. Kinetic studies revealed that the pseudo-second-order model (R2 = 0.999) best described the adsorption process, with a rate constant of 0.054 g/(mg·min) (R2 was 0.999) at an initial Pr3+ concentration of 300 mg/L, indicating chemisorption-controlled behavior. Thermodynamic parameter analysis showed that within the experimental temperature range, ΔG0 < 0 and ΔS0 > 0, confirming that the adsorption process was spontaneous and endothermic. This study provides a novel technical approach for the green recovery of rare earth elements and highlights the potential of Spirulina biomass in rare earth resource recycling. Full article
Show Figures

Graphical abstract

13 pages, 4712 KiB  
Article
Adsorptive Removal Behavior of Two Activated Carbons for Bis(2-ethylhexyl) Phosphate Dissolved in Water
by Lifeng Chen, Jing Tang, Zhuo Wang, Hongling Wang, Wannian Feng, Junjie Chen, Qingqing Yan, Shunyan Ning, Wenlong Li, Yuezhou Wei and Di Wu
Toxics 2025, 13(8), 624; https://doi.org/10.3390/toxics13080624 - 25 Jul 2025
Viewed by 278
Abstract
Bis(2-ethylhexyl) phosphate (P204) is widely used in extraction processes in the nuclear and rare earth industries. However, its high solubility in water results in high levels of total organic carbon and phosphorus in aqueous environments, and may also lead to radioactive contamination when [...] Read more.
Bis(2-ethylhexyl) phosphate (P204) is widely used in extraction processes in the nuclear and rare earth industries. However, its high solubility in water results in high levels of total organic carbon and phosphorus in aqueous environments, and may also lead to radioactive contamination when it is used to combine with radionuclides. In this paper, we characterized a coconut shell activated carbon (CSAC) and a coal-based activated carbon (CBAC) for the adsorption of P204 and then evaluated their adsorption performance through batch and column experiments. The results found that, except for the main carbon matrix, CSAC and CBAC carried rich oxygen-containing functional groups and a small amount of inorganic substances. Both adsorbents had porous structures with pore diameters less than 4 nm. CSAC and CBAC showed good removal performance for P204 under low pH conditions, with removal efficiencies significantly higher than those of commonly used adsorption resins (XAD-4 and IRA900). The adsorption kinetics of P204 conformed to the pseudo-second-order kinetic model, and the adsorption isotherms conformed to the Langmuir model, indicating a monolayer chemical reaction mechanism. Both adsorbents exhibited strong anti-interference capabilities; their adsorption performance for P204 did not change greatly with the ambient temperature or the concentrations of common interfering ions. Column experiments demonstrated that CSAC could effectively fix dissolved P204 with a removal efficiency exceeding 90%. The fixed P204 could be desorbed with acetone. The findings provide an effective method for the recovery of P204 and the regeneration of spent activated carbon, which shows promise for practical applications in the future. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

Back to TopTop