Enhanced Ammonium Removal from Wastewater Using FAU-Type and BEA-Type Zeolites and Potential Application on Seedling Growth: Towards Closing the Waste-to-Resource Cycle
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Zeolites
2.2. Characterization
2.3. Adsorption Experiments
2.4. Plant Cultivation in a Medium Enriched with NH4+-Loaded Zeolites
2.5. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Zeolites
3.1.1. X-Ray Diffraction and X-Ray Fluorescence (XRF) Analysis
3.1.2. Textural Analysis
3.1.3. Short-Range Binding and Sample Morphology
3.2. Adsorption Tests
3.2.1. Effect of Adsorbent Dosage, Adsorption Isotherms, and Kinetic Studies
3.2.2. Comparison with Literature Results and Proposed Adsorption Mechanism
3.3. Plant Cultivation in a Medium Enriched with NH4+-Loaded Zeolites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BEA-type | β-zeolite |
EDS | energy dispersive X-ray spectroscopy |
Fau-type | faujasite zeolite |
PFO | pseudo-first order |
PSO | pseudo-second order |
SBET | specific surface area |
SEM | Scanning electron microscopy |
SDA | structure direct agent |
NMR | nuclear magnetic resonance |
Vmeso | mesopore volume |
Vmicro | micropore volume |
Vtotal | total pore volume |
XRD | X-ray diffraction |
XRF | X-ray fluorescence |
References
- Adam, M.R.; Othman, M.H.D.; Hubadillah, S.K.; Abd Aziz, M.H.; Jamalludin, M.R. Application of Natural Zeolite Clinoptilolite for the Removal of Ammonia in Wastewater. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Li, M.; Zhu, X.; Zhu, F.; Ren, G.; Cao, G.; Song, L. Application of Modified Zeolite for Ammonium Removal from Drinking Water. Desalination 2011, 271, 295–300. [Google Scholar] [CrossRef]
- Yadav, V.; Kumar, L.; Saini, N.; Yadav, M.; Singh, N.; Murugasen, V.; Varathan, E. Effective Removal of Ammonia from Water Using Pre-Treated Clinoptilolite Zeolite-A Detailed Study. Water Air Soil. Pollut. 2023, 234, 435. [Google Scholar] [CrossRef]
- Pereyra, N.; Kamran, U.; Aguilar-Mamani, W.; Akhtar, F. Conversion of Glass Waste into Zeolite A Adsorbent for Efficient Ammonium Ion Adsorption from Aqueous Solution: Kinetic and Isotherm Studies. Processes 2025, 13, 678. [Google Scholar] [CrossRef]
- Su, Y.; Li, X.; Wang, J.; Du, R.; Xue, X.; Peng, Y. Pilot-Scale Partial Nitrification and Anaerobic Ammonium Oxidation System for Nitrogen Removal from Municipal Wastewater. Commun. Eng. 2025, 4, 36. [Google Scholar] [CrossRef]
- Eljamal, O.; Eljamal, R.; Maamoun, I.; Khalil, A.M.E.; Shubair, T.; Falyouna, O.; Sugihara, Y. Efficient Treatment of Ammonia-Nitrogen Contaminated Waters by Nano Zero-Valent Iron/Zeolite Composite. Chemosphere 2022, 287, 131990. [Google Scholar] [CrossRef]
- Hoang-Minh, T.; Hai, N.T.; Hieu, D.T.; Hoai, T.T.; Van Dong, B.; Dung, L.V.; Ha, N.T.H. Removal of Ammonium from Water by a KOH-Treated Bentonite Biochar Composite. Colloid. Polym. Sci. 2025, 303, 81–94. [Google Scholar] [CrossRef]
- Li, L.; Lollar, B.S.; Li, H.; Wortmann, U.G.; Lacrampe-Couloume, G. Ammonium Stability and Nitrogen Isotope Fractionations for –NH3(Aq)–NH3(Gas) Systems at 20–70 °C and PH of 2–13: Applications to Habitability and Nitrogen Cycling in Low-Temperature Hydrothermal Systems. Geochim. Cosmochim. Acta 2012, 84, 280–296. [Google Scholar] [CrossRef]
- Zanol, M.B.; Lima, J.P.P.; Assemany, P.; Aguiar, A. Assessment of Characteristics and Treatment Processes of Wastewater from Slaughterhouses in the State of Minas Gerais, Brazil. J. Environ. Manag. 2024, 358, 120862. [Google Scholar] [CrossRef] [PubMed]
- Taher, T.; Melati, E.K.A.; Febrina, M.; Maulana, S.; Asagabaldan, M.A.; Rianjanu, A.; Lesbani, A.; Mukti, R.R. Effect of Desilication on Indonesian Natural Zeolite for the Enhancement of Ammonium Ion Removal from Aqueous Solutions. Silicon 2024, 16, 1309–1319. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, M.; Zeng, H.; Min, R.; Wang, J.; Zhang, G. Application of Physicochemical Techniques to the Removal of Ammonia Nitrogen from Water: A Systematic Review. Environ. Geochem. Health 2024, 46, 344. [Google Scholar] [CrossRef]
- Phetrungnapha, A.; Wiengnak, N.; Maikrang, K. A Low-Cost Water Hyacinth-Based Adsorbent for Free Fatty Acids Removal from Waste Cooking Oil: Kinetic, Isotherm, and Thermodynamic Studies. Braz. J. Chem. Eng. 2024, 42, 727–740. [Google Scholar] [CrossRef]
- Feng, L.; Qiu, T.; Yan, H.; Liu, C.; Chen, Y.; Zhou, X.; Qiu, S. Removal of Ammonia Nitrogen from Aqueous Media with Low-Cost Adsorbents: A Review. Water Air Soil. Pollut. 2023, 234, 280. [Google Scholar] [CrossRef]
- Kurniawan, T.; Bahri, S.; Diyanah, A.; Milenia, N.D.; Nuryoto, N.; Faungnawakij, K.; Thongratkaew, S.; Roil Bilad, M.; Huda, N. Improving Ammonium Sorption of Bayah Natural Zeolites by Hydrothermal Method. Processes 2020, 8, 1569. [Google Scholar] [CrossRef]
- de Magalhães, L.F.; da Silva, G.R.; Peres, A.E.C. Zeolite Application in Wastewater Treatment. Adsorpt. Sci. Technol. 2022, 2022, 4544104. [Google Scholar] [CrossRef]
- Arenhardt, W.D.; Ketzer, F.; Wancura, J.H.C.; Seraglio, J.; Carasek, F.L.; Zin, G.; Calisto, J.F.F.; Rodrigues, C.A.; de Meneses, A.C.; Oliveira, J.V.; et al. Fe3+ and Mn2+ Removal from Water Solutions by Clinoptilolite Zeolites as a Potential Treatment for Groundwater Wells. Processes 2025, 13, 1060. [Google Scholar] [CrossRef]
- Mohammadi, P.; Mirghaffari, N.; Razavi, Z.; Soleimani, M. Synthesis and Characterization of Zeolite X from Granite Stone Sludge. Next Mater. 2025, 6, 100466. [Google Scholar] [CrossRef]
- Das, D.; Sengupta, S. Alkaline Hydrothermal Treatment of Chabazite to Enhance Its Ammonium Removal and Recovery Capabilities through Recrystallization. Processes 2023, 12, 85. [Google Scholar] [CrossRef]
- Yadav, V.; Rani, M.; Kumar, L.; Singh, N.; Ezhilselvi, V. Effect of Surface Modification of Natural Zeolite on Ammonium Ion Removal from Water Using Batch Study: An Overview. Water Air Soil. Pollut. 2022, 233, 465. [Google Scholar] [CrossRef]
- Ellersdorfer, M.; Pesendorfer, S.; Stocker, K. Nitrogen Recovery from Swine Manure Using a Zeolite-Based Process. Processes 2020, 8, 1515. [Google Scholar] [CrossRef]
- Pratti, L.M.; Reis, G.M.; dos Santos, F.S.; Gonçalves, G.R.; Freitas, J.C.C.; de Pietre, M.K. Effects of Textural and Chemical Properties of β-Zeolites on Their Performance as Adsorbents for Heavy Metals Removal. Environ. Earth Sci. 2019, 78, 553. [Google Scholar] [CrossRef]
- Teixeira, R.S.; Schmidt, D.V.C.; dos Santos, F.S.; Cipriano, D.F.; Faria, D.N.; Freitas, J.C.C.; Pietre, M.K. Nanostructured Faujasites with Different Structural and Textural Properties for Adsorption of Cobalt and Nickel. Braz. J. Chem. Eng. 2023, 41, 1271–1283. [Google Scholar] [CrossRef]
- Chaves, T.F.; Pastore, H.O.; Cardoso, D. A Simple Synthesis Procedure to Prepare Nanosized Faujasite Crystals. Microporous Mesoporous Mater. 2012, 161, 67–75. [Google Scholar] [CrossRef]
- Cataldo, E.; Salvi, L.; Paoli, F.; Fucile, M.; Masciandaro, G.; Manzi, D.; Masini, C.M.; Mattii, G.B. Application of Zeolites in Agriculture and Other Potential Uses: A Review. Agronomy 2021, 11, 1547. [Google Scholar] [CrossRef]
- Campisi, T.; Abbondanzi, F.; Faccini, B.; Di Giuseppe, D.; Malferrari, D.; Coltorti, M.; Laurora, A.; Passaglia, E. Ammonium-Charged Zeolitite Effects on Crop Growth and Nutrient Leaching: Greenhouse Experiments on Maize (Zea mays). Catena 2016, 140, 66–76. [Google Scholar] [CrossRef]
- Ferreira, E.B.; Cavalcanti, P.P.; Nogueira, D.A. ExpDes: An R Package for ANOVA and Experimental Designs. Appl. Math. 2014, 05, 2952–2958. [Google Scholar] [CrossRef]
- Wu, R.; Lv, P.; He, X.; Bai, Y.; Wang, J.; Wei, J.; Su, W.; Song, X.; Yu, G. Tandem Catalytic Upgrading of Cow Manure Pyrolysis Vapors by Beta Zeolite and Nitrogen-Doped Activated Carbon Dual Catalysts Prepared from Coal Gasification Fine Slag to Produce Light Aromatic Hydrocarbons. J. Environ. Chem. Eng. 2025, 13, 115508. [Google Scholar] [CrossRef]
- Reinoso, D.; Adrover, M.; Pedernera, M. Green Synthesis of Nanocrystalline Faujasite Zeolite. Ultrason. Sonochem 2018, 42, 303–309. [Google Scholar] [CrossRef]
- Bacariza, C.; Karam, L.; El Hassan, N.; Lopes, J.M.; Henriques, C. Carbon Dioxide Reforming of Methane over Nickel-Supported Zeolites: A Screening Study. Processes 2022, 10, 1331. [Google Scholar] [CrossRef]
- Sobuś, N.; Czekaj, I. Catalytic Transformation of Biomass-Derived Glucose by One-Pot Method into Levulinic Acid over Na-BEA Zeolite. Processes 2022, 10, 223. [Google Scholar] [CrossRef]
- Moraes, C.S.; Carneiro, P.A.; Faria, D.N.; Cipriano, D.F.; Freitas, J.C.C.; Amorim, R.G.; da Silva, R.S.; Pietre, M.K. High Efficiency of Myclobutanil Adsorption by CTAB-Zeolite Structures: Experimental Evidence Meets Theoretical Investigation. Silicon 2024, 16, 3737–3753. [Google Scholar] [CrossRef]
- Profeta, D.O.; da Silva, M.A.; Faria, D.N.; Cipriano, D.F.; Freitas, J.C.C.; dos Santos, F.S.; Lima, T.M.; Vasconcelos, S.C.; Pietre, M.K. Zeolite/Calcium Carbonate Composite for a Synergistic Adsorption of Cadmium in Aqueous Solution. Next Mater. 2025, 6, 100493. [Google Scholar] [CrossRef]
- Belviso, C.; Guerra, G.; Abdolrahimi, M.; Peddis, D.; Maraschi, F.; Cavalcante, F.; Ferretti, M.; Martucci, A.; Sturini, M. Efficiency in Ofloxacin Antibiotic Water Remediation by Magnetic Zeolites Formed Combining Pure Sources and Wastes. Processes 2021, 9, 2137. [Google Scholar] [CrossRef]
- Wang, Y.; Kuchena, S.F. Recent Progress in Aqueous Ammonium-Ion Batteries. ACS Omega 2022, 7, 33732–33748. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, M.B.; Schmidt, D.V.C.; dos Santos, F.S.; Cipriano, D.F.; Gonçalves, G.R.; Freitas, J.C.C.; de Pietre, M.K. Nanostructured Faujasite Zeolite as Metal Ion Adsorbent: Kinetics, Equilibrium Adsorption and Metal Recovery Studies. Water Sci. Technol. 2021, 83, 358–371. [Google Scholar] [CrossRef]
- Brouwer, D.H.; Brouwer, C.C.; Mesa, S.; Semelhago, C.A.; Steckley, E.E.; Sun, M.P.Y.; Mikolajewski, J.G.; Baerlocher, C. Solid-State 29Si NMR Spectra of Pure Silica Zeolites for the International Zeolite Association Database of Zeolite Structures. Microporous Mesoporous Mater. 2020, 297, 110000. [Google Scholar] [CrossRef]
- Mansuri, B.; Lodhi, A.; Parmar, H.; Dalai, A.; Maheria, K. Synthesis, Characterization and Catalytic Assessment of Novel Hierarchical Zeolite Hβ for the Synthesis of Biologically Active Amido Alkyl Naphthols. Res. Chem. Intermed. 2025, 51, 1187–1212. [Google Scholar] [CrossRef]
- Jang, Y.; Kim, S.S.; Nguyen, D.D. Ultrasonic-Assisted Dealumination of Y Zeolite for Improving VOCs Adsorption and Moisture Resistance. Water Air Soil. Pollut. 2025, 236, 533. [Google Scholar] [CrossRef]
- Toyama, N.; Nagashima, T.; Wada, K.; Deguchi, K.; Ohki, S.; Mogami, Y.; Tansho, M.; Goto, A.; Furukawa, S. Synthesis of Mesoporous SiO2–Al2O3 Hollow Spheres Using Ultrasonic Irradiation and Their Activity for Hydrolysis of Ammonia Borane. Next Mater. 2025, 8, 100777. [Google Scholar] [CrossRef]
- Zhang, J.; Chu, Y.; Deng, F.; Feng, Z.; Meng, X.; Xiao, F.-S. Evolution of D6R Units in the Interzeolite Transformation from FAU, MFI or *BEA into AEI: Transfer or Reassembly? Inorg. Chem. Front. 2020, 7, 2204–2211. [Google Scholar] [CrossRef]
- Widiastuti, N.; Wu, H.; Ang, H.M.; Zhang, D. Removal of Ammonium from Greywater Using Natural Zeolite. Desalination 2011, 277, 15–23. [Google Scholar] [CrossRef]
- Lei, L.; Li, X.; Zhang, X. Ammonium Removal from Aqueous Solutions Using Microwave-Treated Natural Chinese Zeolite. Sep. Purif. Technol. 2008, 58, 359–366. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, H.; Xu, D.; Han, L.; Niu, D.; Tian, B.; Zhang, J.; Zhang, L.; Wu, W. Removal of Ammonium from Aqueous Solutions Using Zeolite Synthesized from Fly Ash by a Fusion Method. Desalination 2011, 271, 111–121. [Google Scholar] [CrossRef]
- Fu, H.; Li, Y.; Yu, Z.; Shen, J.; Li, J.; Zhang, M.; Ding, T.; Xu, L.; Lee, S.S. Ammonium Removal Using a Calcined Natural Zeolite Modified with Sodium Nitrate. J. Hazard. Mater. 2020, 393, 122481. [Google Scholar] [CrossRef]
- Gagliano, E.; Sgroi, M.; Falciglia, P.P.; Belviso, C.; Cavalcante, F.; Lettino, A.; Vagliasindi, F.G.A.; Roccaro, P. Removal of Ammonium from Wastewater by Zeolite Synthetized from Volcanic Ash: Batch and Column Tests. J. Environ. Chem. Eng. 2022, 10, 107539. [Google Scholar] [CrossRef]
- Watanabe, Y.; Yamada, H.; Tanaka, J.; Komatsu, Y.; Moriyoshi, Y. Ammonium Ion Exchange of Synthetic Zeolites: The Effect of Their Open-Window Sizes, Pore Structures, and Cation Exchange Capacities. Sep. Sci. Technol. 2005, 39, 2091–2104. [Google Scholar] [CrossRef]
- Qin, C.; Yi, K.; Wu, P. Ammonium Affects Cell Viability to Inhibit Root Growth in Arabidopsis. J. Zhejiang Univ. Sci. B 2011, 12, 477–484. [Google Scholar] [CrossRef]
- Xie, L.-B.; Sun, L.-N.; Zhang, Z.-W.; Chen, Y.-E.; Yuan, M.; Yuan, S. Phenotype Assessment and Putative Mechanisms of Ammonium Toxicity to Plants. Int. J. Mol. Sci. 2025, 26, 2606. [Google Scholar] [CrossRef] [PubMed]
- Shilpha, J.; Song, J.; Jeong, B.R. Ammonium Phytotoxicity and Tolerance: An Insight into Ammonium Nutrition to Improve Crop Productivity. Agronomy 2023, 13, 1487. [Google Scholar] [CrossRef]
- Souri, M.K.; Römheld, V. Split Daily Applications of Ammonium Can Not Ameliorate Ammonium Toxicity in Tomato Plants. Hortic. Environ. Biotechnol. 2009, 50, 384–391. [Google Scholar]
- Silva, G.; Prado, R.; Ferreira, R. Absorption of Nutrients, Growth and Nutritional Disorders Resulting from Ammonium Toxicity in Rice and Spinach Plants. Emir. J. Food Agric. 2016, 28, 882. [Google Scholar] [CrossRef]
- Roosta, H.R.; Schjoerring, J.K. Effects of Ammonium Toxicity on Nitrogen Metabolism and Elemental Profile of Cucumber Plants. J. Plant Nutr. 2007, 30, 1933–1951. [Google Scholar] [CrossRef]
- Muscarella, S.M.; Badalucco, L.; Cano, B.; Laudicina, V.A.; Mannina, G. Ammonium Adsorption, Desorption and Recovery by Acid and Alkaline Treated Zeolite. Bioresour. Technol. 2021, 341, 125812. [Google Scholar] [CrossRef] [PubMed]
Sample | Si/Al (gel) | Si/Al (XRF) | Si/Al (EDS) | Average Crystallite Size (nm) (XRD) |
---|---|---|---|---|
FAU | 17.6 | 1.9 | 1.7 | 8.3 |
BEA_S | 40.0 | 6.9 | 5.0 | 14.5 |
BEA_C | - | 14.3 | - | 16.4 |
Sample | SBET (m2·g−1) a | Vmicro (cm3·g−1) b | Vmeso (cm3·g−1) b | Vtotal (cm3·g−1) b |
---|---|---|---|---|
FAU | 687 | 0.23 | 0.28 | 0.51 |
BEA_S | 574 | 0.13 | 0.37 | 0.51 |
BEA_C | 509 | 0.12 | 0.35 | 0.47 |
Model | Parameter | Fau | BEA_S | BEA_C |
---|---|---|---|---|
Langmuir | qmax (mg·g−1) | 23.87 ± 1.20 | 12.62 ± 0.31 | 6.50 ± 0.59 |
KL (L·mg−1) | 0.197 | 0.965 | 0.01 | |
R2 | 0.990 | 0.993 | 0.999 | |
Freundlich | KF (mg·g−1) | 4.86 ± 0.61 | 5.59 ± 0.70 | 0.09 ± 0.01 |
1/n | 0.446 | 0.264 | 0.826 | |
R2 | 0.977 | 0.842 | 0.998 |
Sample | Pseudo-First Order | Pseudo-Second Order | ||||
---|---|---|---|---|---|---|
qe (mg·g−1) | K1 (min−1) | R2 | qe (mg·g−1) | K1 (min−1) | R2 | |
FAU | 9.11 ± 0.16 | 0.38 | 0.982 | 9.11 ± 0.16 | 0.38 | 0.994 |
BEA_S | 8.49 ± 0.09 | 0.43 | 0.993 | 8.49 ± 0.09 | 0.43 | 0.998 |
BEA_C | 3.01 ± 0.09 | 0.93 | 0.984 | 3.01 ± 0.09 | 0.93 | 0.987 |
Sample | Target | qmax (mg·g−1) a | Reference |
---|---|---|---|
Natural zeolite | Removal of ammonium from greywater | 6.30 | [41] |
Microwave-treated zeolite | Ammonium removal from aqueous solutions | 13.74 | [42] |
Zeolite synthesized from fly ash by a fusion method | Removal of ammonium from aqueous solutions | 37.45 | [43] |
Natural zeolite modified with sodium nitrate | Synthetic ammonium solution | 16.96 | [44] |
Zeolite synthetized from volcanic ash | Removal of ammonium from wastewater | 18.35 | [45] |
Faujasite | Ammonium removal from aqueous solutions | 57.73 | [46] |
BEA_C, BEA_S, and FAU | Removal of ammonium from wastewater | 6.50; 12.62 and 23.87 | This work |
Treatments | Nitrogen (wt %) | Nitrogen Content (mg) |
---|---|---|
Control | 4.38 a | 2.03 b |
FAU_NH4 | 4.81 a | 3.05 a |
BEA_C_NH4 | 3.54 b | 2.13 b |
BEA_S_NH4 | 4.58 a | 2.95 a |
CV (%) | 5.18 | 7.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaral, M.S.C.; da Silva, M.A.; Cidade, G.d.S.; Faria, D.N.; Cipriano, D.F.; Freitas, J.C.C.; dos Santos, F.S.; Pietre, M.K.; dos Santos, A.M. Enhanced Ammonium Removal from Wastewater Using FAU-Type and BEA-Type Zeolites and Potential Application on Seedling Growth: Towards Closing the Waste-to-Resource Cycle. Processes 2025, 13, 2426. https://doi.org/10.3390/pr13082426
Amaral MSC, da Silva MA, Cidade GdS, Faria DN, Cipriano DF, Freitas JCC, dos Santos FS, Pietre MK, dos Santos AM. Enhanced Ammonium Removal from Wastewater Using FAU-Type and BEA-Type Zeolites and Potential Application on Seedling Growth: Towards Closing the Waste-to-Resource Cycle. Processes. 2025; 13(8):2426. https://doi.org/10.3390/pr13082426
Chicago/Turabian StyleAmaral, Matiara S. C., Marcella A. da Silva, Giovanna da S. Cidade, Diêgo N. Faria, Daniel F. Cipriano, Jair C. C. Freitas, Fabiana Soares dos Santos, Mendelssolm K. Pietre, and André M. dos Santos. 2025. "Enhanced Ammonium Removal from Wastewater Using FAU-Type and BEA-Type Zeolites and Potential Application on Seedling Growth: Towards Closing the Waste-to-Resource Cycle" Processes 13, no. 8: 2426. https://doi.org/10.3390/pr13082426
APA StyleAmaral, M. S. C., da Silva, M. A., Cidade, G. d. S., Faria, D. N., Cipriano, D. F., Freitas, J. C. C., dos Santos, F. S., Pietre, M. K., & dos Santos, A. M. (2025). Enhanced Ammonium Removal from Wastewater Using FAU-Type and BEA-Type Zeolites and Potential Application on Seedling Growth: Towards Closing the Waste-to-Resource Cycle. Processes, 13(8), 2426. https://doi.org/10.3390/pr13082426