Innovative Valorization of Wood Panel Waste into Activated Biochar for Efficient Phenol Adsorption
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Biochar and Activated Biochar
2.2. Physical and Chemical Characterization of Biochar and Activated Biochar
2.3. Phenol Quantification by GC-MS
2.4. Adsorption Kinetics and Isotherm Experiments
2.5. Metal and Heavy Metal Leaching Analysis
3. Results and Discussion
3.1. Characterization of Reconstituted Wood Panels, Biochar, and Activated Biochar
3.2. Kinetics and Isotherms of Phenol Adsorption
3.3. Analysis of Metal and Heavy Metal Leaching Behavior
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Government of Canada. Opportunities for Circularity of Wood in Construction, Renovation and Demolition in Canada. Available online: https://www.canada.ca/en/services/environment/conservation/sustainability/circular-economy/workshop-report-opportunities-circularity-wood-construction-renovation-demolition.html (accessed on 21 February 2025).
- Fazeli, M.; Mukherjee, S.; Baniasadi, H.; Abidnejad, R.; Mujtaba, M.; Lipponen, J.; Seppälä, J.; Rojas, O.J. Lignin beyond the Status Quo: Recent and Emerging Composite Applications. Green Chem. 2024, 26, 593–630. [Google Scholar] [CrossRef]
- Odubo, T.C.; Kosoe, E.A. Sources of Air Pollutants: Impacts and Solutions. In Air Pollutants in the Context of One Health: Fundamentals, Sources, and Impacts; Izah, S.C., Ogwu, M.C., Shahsavani, A., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 75–121. ISBN 978-3-031-74165-4. [Google Scholar]
- Protano, C.; Buomprisco, G.; Cammalleri, V.; Pocino, R.N.; Marotta, D.; Simonazzi, S.; Cardoni, F.; Petyx, M.; Iavicoli, S.; Vitali, M. The Carcinogenic Effects of Formaldehyde Occupational Exposure: A Systematic Review. Cancers 2021, 14, 165. [Google Scholar] [CrossRef] [PubMed]
- Weldeslassie, T.; Naz, H.; Singh, B.; Oves, M. Chemical Contaminants for Soil, Air and Aquatic Ecosystem. In Modern Age Environmental Problems and Their Remediation; Oves, M., Zain Khan, M., M.I. Ismail, I., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–22. ISBN 978-3-319-64501-8. [Google Scholar]
- Zhong, W.; Wang, D.; Xu, X. Phenol Removal Efficiencies of Sewage Treatment Processes and Ecological Risks Associated with Phenols in Effluents. J. Hazard. Mater. 2012, 217–218, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Agency for Toxic Substances and Disease Registry (ATSDR). Health Effects. In Toxicological Profile for Phenol; Agency for Toxic Substances and Disease Registry (US): Atlanta, GA, USA, 2008. [Google Scholar]
- Mhlongo, N.L.; Akharame, M.O.; Pereao, O.; Human, I.S.; Opeolu, B.O. Phenolic Compounds Occurrence and Human Health Risk Assessment in Potable and Treated Waters in Western Cape, South Africa. Front. Toxicol. 2024, 5, 1269601. [Google Scholar] [CrossRef]
- Canada, H. Guidelines for Canadian Drinking Water Quality-Summary Tables. Available online: https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table.html (accessed on 24 February 2025).
- MDDELCC. Modèle de Règlement Relatif aux Rejets Dans les Réseaux D’égout des Municipalités du Québec; MDDELCC: Quebec City, QC, Canada, 2015. [Google Scholar]
- Al-Defiery, M.E.J.; Reddy, G. Lag Phase and Biomass Determination of Rhodococcus Pyridinivorans GM3 for Degradation of Phenol. J. Phys. Conf. Ser. 2018, 1003, 12007. [Google Scholar] [CrossRef]
- Szilveszter, S.; Fikó, D.-R.; Máthé, I.; Felföldi, T.; Ráduly, B. Kinetic Characterization of a New Phenol Degrading Acinetobacter Towneri Strain Isolated from Landfill Leachate Treating Bioreactor. World J. Microbiol. Biotechnol. 2023, 39, 79. [Google Scholar] [CrossRef] [PubMed]
- Azizah, A.N.; Widiasa, I.N. Advanced Oxidation Processes (AOPs) for Refinery Wastewater Treatment Contains High Phenol Concentration. MATEC Web Conf. 2018, 156, 3012. [Google Scholar] [CrossRef]
- Mei, H.; Gao, Z.; Zhao, K.; Li, M.; Ashokkumar, M.; Song, A.; Cui, J.; Caruso, F.; Hao, J. Sono-Fenton Chemistry Converts Phenol and Phenyl Derivatives into Polyphenols for Engineering Surface Coatings. Angew. Chem. Int. Ed. Engl. 2021, 60, 21529–21535. [Google Scholar] [CrossRef]
- Kafle, S.R.; Adhikari, S.; Shrestha, R.; Ban, S.; Khatiwada, G.; Gaire, P.; Tuladhar, N.; Jiang, G.; Tiwari, A. Advancement of Membrane Separation Technology for Organic Pollutant Removal. Water Sci. Technol. 2024, 89, 2290–2310. [Google Scholar] [CrossRef]
- Hameed, B.H.; Rahman, A.A. Removal of Phenol from Aqueous Solutions by Adsorption onto Activated Carbon Prepared from Biomass Material. J. Hazard. Mater. 2008, 160, 576–581. [Google Scholar] [CrossRef]
- Nabais, J.M.V.; Laguinhas, C.E.; Román, S. Biomass Novel Adsorbents for Phenol and Mercury Removal. Molecules 2022, 27, 7345. [Google Scholar] [CrossRef]
- Mehmanravesh, S.; Farhadi, K.; Torabian, A.; Hasani, A. Graphitic Solid Core Carbon Nanorods Grown on Silica Sands Using Electron Cyclotron Resonance Chemical Vapor Deposition as a Highly Efficient and Green Sorbent for Removal of Phenol Derivatives from Water Sources. J. Chin. Chem. Soc. 2020, 67, 576–584. [Google Scholar] [CrossRef]
- Beljin, J.; Đukanović, N.; Anojčić, J.; Simetić, T.; Apostolović, T.; Mutić, S.; Maletić, S. Biochar in the Remediation of Organic Pollutants in Water: A Review of Polycyclic Aromatic Hydrocarbon and Pesticide Removal. Nanomaterials 2025, 15, 26. [Google Scholar] [CrossRef]
- Komnitsas, K.A.; Zaharaki, D. Morphology of Modified Biochar and Its Potential for Phenol Removal from Aqueous Solutions. Front. Environ. Sci. 2016, 4, 26. [Google Scholar] [CrossRef]
- Han, M.; Liu, Z.; Huang, S.; Zhang, H.; Yang, H.; Liu, Y.; Zhang, K.; Zeng, Y. Application of Biochar-Based Materials for Effective Pollutant Removal in Wastewater Treatment. Nanomaterials 2024, 14, 1933. [Google Scholar] [CrossRef] [PubMed]
- Pei, T.; Shi, F.; Hou, D.; Yang, F.; Lu, Y.; Liu, C.; Lin, X.; Lu, Y.; Zheng, Z.; Zheng, Y. Enhanced Adsorption of Phenol from Aqueous Solution by KOH Combined Fe-Zn Bimetallic Oxide Co-Pyrolysis Biochar: Fabrication, Performance, and Mechanism. Bioresour. Technol. 2023, 388, 129746. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, X.; Deng, J.; Li, C.; Sun, K.; Luo, X.; Yuan, S. Adsorption and Mechanism Study for Phenol Removal by 10% CO2 Activated Bio-Char after Acid or Alkali Pretreatment. J. Environ. Manag. 2023, 348, 119317. [Google Scholar] [CrossRef] [PubMed]
- Pei, T.; Shi, F.; Liu, C.; Lu, Y.; Lin, X.; Hou, D.; Yang, S.; Li, J.; Zheng, Z.; Zheng, Y. Bamboo-Derived Nitrogen-Doping Magnetic Porous Hydrochar Coactivated by K2FeO4 and CaCO3 for Phenol Removal: Governing Factors and Mechanisms. Environ. Pollut. 2023, 331, 121871. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, D.; Wang, X.; Wu, J.; Song, S. Enhanced Adsorption of Phenol Using EDTA-4Na- and KOH-Modified Almond Shell Biochar. Sustain. Environ. Res. 2025, 35, 4. [Google Scholar] [CrossRef]
- Foong, S.Y.; Chan, Y.H.; Chin, B.L.F.; Lock, S.S.M.; Yee, C.Y.; Yiin, C.L.; Peng, W.; Lam, S.S. Production of Biochar from Rice Straw and Its Application for Wastewater Remediation—An Overview. Bioresour. Technol. 2022, 360, 127588. [Google Scholar] [CrossRef]
- Seow, Y.X.; Tan, Y.H.; Mubarak, N.M.; Kansedo, J.; Khalid, M.; Ibrahim, M.L.; Ghasemi, M. A Review on Biochar Production from Different Biomass Wastes by Recent Carbonization Technologies and Its Sustainable Applications. J. Environ. Chem. Eng. 2022, 10, 107017. [Google Scholar] [CrossRef]
- Neitzel, N.; Hosseinpourpia, R.; Walther, T.; Adamopoulos, S. Alternative Materials from Agro-Industry for Wood Panel Manufacturing—A Review. Materials 2022, 15, 4542. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.C.; Tomkinson, J.; Ma, P.L.; Liang, S.F. Comparative Study of Hemicelluloses from Rice Straw by Alkali and Hydrogen Peroxide Treatments. Carbohydr. Polym. 2000, 42, 111–122. [Google Scholar] [CrossRef]
- Binod, P.; Satyanagalakshmi, K.; Sindhu, R.; Janu, K.U.; Sukumaran, R.K.; Pandey, A. Short Duration Microwave Assisted Pretreatment Enhances the Enzymatic Saccharification and Fermentable Sugar Yield from Sugarcane Bagasse. Renew. Energy 2012, 37, 109–116. [Google Scholar] [CrossRef]
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure, Reactions; Walter de Gruyter: Berlin, Germany; New York, NY, USA, 2011; ISBN 3-11-083965-2. [Google Scholar]
- Government of Québec, Ministry of Energy and Natural Resources. Quebec Strategy, 2030 Québec Green Hydrogen and Bioenergy Strategy: Decarbonize, Innovate, Shine; Government of Québec, Ministry of Energy and Natural Resources: Québec City, QC, Canada, 2022; ISBN 978-2-550-91935-3. [Google Scholar]
- Girods, P.; Rogaume, Y.; Dufour, A.; Rogaume, C.; Zoulalian, A. Low-Temperature Pyrolysis of Wood Waste Containing Urea–Formaldehyde Resin. Renew. Energy 2008, 33, 648–654. [Google Scholar] [CrossRef]
- Braghiroli, F.L.; Bouafif, H.; Hamza, N.; Bouslimi, B.; Neculita, C.M.; Koubaa, A. The Influence of Pilot-Scale Pyro-Gasification and Activation Conditions on Porosity Development in Activated Biochars. Biomass Bioenergy 2018, 118, 105–114. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Dubinin, M.M. Fundamentals of the Theory of Adsorption in Micropores of Carbon Adsorbents: Characteristics of Their Adsorption Properties and Microporous Structures. Carbon 1989, 27, 457–467. [Google Scholar] [CrossRef]
- Sj, G.; Sing, K. Adsorption, Surface Area and Porosity; Academic Press: Cambridge, MA, USA; New York, NY, USA, 1982. [Google Scholar]
- Centre d’expertise en analyse environnementale du Québec (CEAEQ) Ministère du Développement durable, de l’Environnement, de la Faune et des Parcs du Québec. Détermination des Composes Phenoliques: Dosage par Chromatographie en Phase Gazeuse Couplée à un Spectromètre de Masse Après Dérivation Avec L’anhydride Acétique; Centre d’expertise en analyse environnementale du Québec (CEAEQ) Ministère du Développement durable, de l’Environnement, de la Faune et des Parcs du Québec: Quebec City, QC, Canada, 2013; 20p. [Google Scholar]
- Lagergren, S. About the Theory of So-Called Adsorption of Soluble Substances. K. Sven. Vetenskapsakademiens Handl. 1898, 4, 1–39. [Google Scholar]
- Aharoni, C.; Tompkins, F.C. Kinetics of Adsorption and Desorption and the Elovich Equation. In Advances in Catalysis; Eley, D.D., Pines, H., Weisz, P.B., Eds.; Academic Press: Cambridge, MA, USA, 1970; Volume 21, pp. 1–49. [Google Scholar]
- Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 1100–1107. [Google Scholar]
- Temkin, M.J.; Pyzhev, V. Recent Modifications to Langmuir Isotherms. Acta Physicochim USSR 1940, 12, 217–222. [Google Scholar]
- Centre d’Expertise en Analyse Environnementale du Québec. Détermination Des Métaux: Méthode Par Spectrométrie de Masse à Source Ionisante Au Plasma Argon; Ministère du Développement Durable, de l’Environnement et de la Lutte contre les Changements Climatiques (MDDELCC) du Québec: Québec, QC, Canada, 2014; p. 36. [Google Scholar]
- USEPA. Method 1311: Toxicity Characteristic Leaching Procedure; USEPA: Washington, WA, USA, 2003. [Google Scholar]
- Hachicha, H.; Dia, M.; Bouafif, H.; Koubaa, A.; Khlif, M.; Braghiroli, F. Naturally Nitrogen-Doped Biochar Made from End-of-Life Wood Panels for SO2 Gas Depollution. J. Renew. Mater. 2023, 11, 3807–3829. [Google Scholar] [CrossRef]
- Qin, C.; Wang, H.; Yuan, X.; Xiong, T.; Zhang, J.; Zhang, J. Understanding Structure-Performance Correlation of Biochar Materials in Environmental Remediation and Electrochemical Devices. Chem. Eng. J. 2020, 382, 122977. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z. Application of Biochar for the Removal of Pollutants from Aqueous Solutions. Chemosphere 2015, 125, 70–85. [Google Scholar] [CrossRef]
- Molina-Sabio, M.; Rodríguez-Reinoso, F. Role of Chemical Activation in the Development of Carbon Porosity. Colloids Surf. Physicochem. Eng. Asp. 2004, 241, 15–25. [Google Scholar] [CrossRef]
- Wang, G.; Yong, X.; Luo, L.; Yan, S.; Wong, J.W.C.; Zhou, J. Structure-Performance Correlation of High Surface Area and Hierarchical Porous Biochars as Chloramphenicol Adsorbents. Sep. Purif. Technol. 2022, 296, 121374. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Loh, M.M.; Aziz, J.A. Preparation and Characterization of Activated Carbon from Oil Palm Wood and Its Evaluation on Methylene Blue Adsorption. Dyes Pigment. 2007, 75, 263–272. [Google Scholar] [CrossRef]
- Li, Y.; Wang, B.; Shang, H.; Cao, Y.; Yang, C.; Hu, W.; Feng, Y.; Yu, Y. Influence of Adsorption Sites of Biochar on Its Adsorption Performance for Sulfamethoxazole. Chemosphere 2023, 326, 138408. [Google Scholar] [CrossRef] [PubMed]
- Petersen, H.I.; Lassen, L.; Rudra, A.; Nguyen, L.X.; Do, P.T.M.; Sanei, H. Carbon Stability and Morphotype Composition of Biochars from Feedstocks in the Mekong Delta, Vietnam. Int. J. Coal Geol. 2023, 271, 104233. [Google Scholar] [CrossRef]
- Hameed, B.H.; Din, A.T.M.; Ahmad, A.L. Adsorption of Methylene Blue onto Bamboo-Based Activated Carbon: Kinetics and Equilibrium Studies. J. Hazard. Mater. 2007, 141, 819–825. [Google Scholar] [CrossRef]
- Afshar, M.; Mofatteh, S. Biochar for a Sustainable Future: Environmentally Friendly Production and Diverse Applications. Results Eng. 2024, 23, 102433. [Google Scholar] [CrossRef]
- Jagadeesh, N.; Sundaram, B. Adsorption of Pollutants from Wastewater by Biochar: A Review. J. Hazard. Mater. Adv. 2023, 9, 100226. [Google Scholar] [CrossRef]
- Radwan, A.; Mohamed, S.O.; Khalil, M.M.H.; El-Sewify, I.M. Effective Adsorption of Fluorescent Congo Red Azo Dye from Aqueous Solution by Green Synthesized Nanosphere ZnO/CuO Composite Using Propolis as Bee Byproduct Extract. Sci. Rep. 2024, 14, 9061. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Hu, S.-C.; Sun, G.-T.; Geng, Z.-C.; Zhu, M.-Q. The Effect of Pyrolysis Temperature on the Characteristics of Biochar, Pyroligneous Acids, and Gas Prepared from Cotton Stalk through a Polygeneration Process. Ind. Crops Prod. 2021, 170, 113690. [Google Scholar] [CrossRef]
- Barszcz, W.; Łożyńska, M.; Molenda, J. Impact of Pyrolysis Process Conditions on the Structure of Biochar Obtained from Apple Waste. Sci. Rep. 2024, 14, 10501. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, R.; Sajjadi, B.; Chen, W.-Y.; Mattern, D.L.; Hammer, N.; Raman, V.; Dorris, A. Effect of Pyrolysis Temperature on PhysicoChemical Properties and Acoustic-Based Amination of Biochar for Efficient CO2 Adsorption. Front. Energy Res. 2020, 8, 85. [Google Scholar] [CrossRef]
- Lee, C.-G.; Hong, S.-H.; Hong, S.-G.; Choi, J.-W.; Park, S.-J. Production of Biochar from Food Waste and Its Application for Phenol Removal from Aqueous Solution. Water. Air. Soil Pollut. 2019, 230, 70. [Google Scholar] [CrossRef]
- Mojoudi, N.; Mirghaffari, N.; Soleimani, M.; Shariatmadari, H.; Belver, C.; Bedia, J. Phenol Adsorption on High Microporous Activated Carbons Prepared from Oily Sludge: Equilibrium, Kinetic and Thermodynamic Studies. Sci. Rep. 2019, 9, 19352. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, H.; Xu, Z.; Wang, C.; Chen, W.; Ni, J.; Wei, R. Biochar-Mediated Reduction of m-Nitrotoluene: Interaction between Reduction of m-Nitrotoluene and Sequestration of Contaminants. Sci. Total Environ. 2021, 773, 145662. [Google Scholar] [CrossRef]
- Lütke, S.F.; Igansi, A.V.; Pegoraro, L.; Dotto, G.L.; Pinto, L.A.A.; Cadaval, T.R.S. Preparation of Activated Carbon from Black Wattle Bark Waste and Its Application for Phenol Adsorption. J. Environ. Chem. Eng. 2019, 7, 103396. [Google Scholar] [CrossRef]
- El-Bery, H.M.; Saleh, M.; El-Gendy, R.A.; Saleh, M.R.; Thabet, S.M. High Adsorption Capacity of Phenol and Methylene Blue Using Activated Carbon Derived from Lignocellulosic Agriculture Wastes. Sci. Rep. 2022, 12, 5499. [Google Scholar] [CrossRef]
- Lingamdinne, L.P.; Angaru, G.K.R.; Pal, C.A.; Koduru, J.R.; Karri, R.R.; Mubarak, N.M.; Chang, Y.-Y. Insights into Kinetics, Thermodynamics, and Mechanisms of Chemically Activated Sunflower Stem Biochar for Removal of Phenol and Bisphenol-A from Wastewater. Sci. Rep. 2024, 14, 4267. [Google Scholar] [CrossRef]
- Lv, S.; Li, C.; Mi, J.; Meng, H. A Functional Activated Carbon for Efficient Adsorption of Phenol Derived from Pyrolysis of Rice Husk, KOH-Activation and EDTA-4Na-Modification. Appl. Surf. Sci. 2020, 510, 145425. [Google Scholar] [CrossRef]
- Lai, H.T.; Tran, C.V.; Tran, N.T.; Ho, P.H.; Luu, V.H.; Nguyen, H.M.; Nguyen, H.P.T.; Nguyen, D.D.; La, D.D. Sustainable Removal of Phenol from Aqueous Media by Activated Carbon Valorized from Polyethyleneterephthalate (PET) Plastic Waste. Sustainability 2025, 17, 548. [Google Scholar] [CrossRef]
- Qu, Y.; Qin, L.; Liu, X.; Yang, Y. Magnetic Fe3O4/ZIF-8 Composite as an Effective and Recyclable Adsorbent for Phenol Adsorption from Wastewater. Sep. Purif. Technol. 2022, 294, 121169. [Google Scholar] [CrossRef]
- Dias Júnior, A.F.; Arthuso, H.; Lana, A.Q.; Andrade, C.R.; Brito, J.O.; Bortoletto Júnior, G. Addition of Eucalyptus sp Wood to Urban Wood Waste as a Strategy for Energetic Use. Sci. For. 2021, 49, e3230. [Google Scholar] [CrossRef]
- Moreno, A.I.; Font, R.; Conesa, J.A. Physical and Chemical Evaluation of Furniture Waste Briquettes. Waste Manag. 2016, 49, 245–252. [Google Scholar] [CrossRef]
- Moreno, A.I.; Font, R. Pyrolysis of Furniture Wood Waste: Decomposition and Gases Evolved. J. Anal. Appl. Pyrolysis 2015, 113, 464–473. [Google Scholar] [CrossRef]
- Humar, M. Inorganic Pollutants in Recovered Wood from Slovenia and Boards Made of Disintegrated Wood. Open Environ. Eng. J. 2010, 3, 49–54. [Google Scholar] [CrossRef]
- Yuan, C.; Gao, B.; Peng, Y.; Gao, X.; Fan, B.; Chen, Q. A Meta-Analysis of Heavy Metal Bioavailability Response to Biochar Aging: Importance of Soil and Biochar Properties. Sci. Total Environ. 2021, 756, 144058. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Bai, T.; Yan, Y.; Ma, K. Influence of Sodium Hydroxide Addition on Characteristics and Environmental Risk of Heavy Metals in Biochars Derived from Swine Manure. Waste Manag. 2020, 105, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-Y.; Oh, S.; Park, Y.-K. Overview of Biochar Production from Preservative-Treated Wood with Detailed Analysis of Biochar Characteristics, Heavy Metals Behaviors, and Their Ecotoxicity. J. Hazard. Mater. 2020, 384, 121356. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Chapter Seven of the SW-846 Compendium: Introductory and Regulatory Definitions Pertaining to Hazardous Waste Characteristics (Revision 5); USEPA: Washington, DC, USA, 2020. [Google Scholar]
- Branch, L.S. Consolidated Federal Laws of Canada, Export and Import of Hazardous Waste and Hazardous Recyclable Material Regulations. Available online: https://laws.justice.gc.ca/eng/Regulations/SOR-2005-149/20060322/P1TT3xt3.html (accessed on 25 May 2025).
Model | Type | Equation | Description | ||
Pseudo-first-order | Kinetic | (2) | A first-order rate equation for adsorption describing rapid adsorption processes. Its linearized form is as follows: | ||
(3) | |||||
Pseudo-second-order | Kinetic | (4) | A second-order rate equation indicating a chemical or homogeneous adsorption mechanism. Its linearized form is as follows: | ||
(5) | |||||
Langmuir | Isotherm | (6) | A monolayer adsorption model that assumes localized adsorption without interaction between adsorbate molecules. | ||
Freundlich | Isotherm | (7) | A model for heterogeneous adsorbent surfaces where Kf and n are coefficients describing the intensity and nonlinearity of adsorption. | ||
Elovich | Kinetic/chemical mechanism | (8) | An equation that describes chemical adsorption, suitable for systems with heterogeneous surfaces. | ||
Temkin | Isotherm | (9) | A linear model in which the heat of adsorption decreases with molecular interactions, where k1 is related to the heat of adsorption. |
Biochar | Pseudo-First-Order | Pseudo-Second-Order | Elovich’s Equation | ||||||
---|---|---|---|---|---|---|---|---|---|
qe mg/g | K1 h−1 | R2 | qe mg/g | K2 mg/(gh) | R2 | α mg/(gh) | β | R2 | |
BWP750 | 27.63 | 0.581 | 0.67 | 49.751 | 4.63 × 10−5 | 0.80 | 7.275 × 103 | 0.282 | 0.17 |
BWP850 | 35.34 | −0.071 | 0.67 | 142.86 | 1.16 × 10−6 | 0.99 | 5.742 × 105 | 0.105 | 0.98 |
BWP950 | 34.27 | −0.071 | 0.99 | 172.41 | 1.55 × 10−7 | 1 | 3.836 × 107 | 0.112 | 0.94 |
Biochar | Freundlich | Langmuir | Temkin | ||||||
---|---|---|---|---|---|---|---|---|---|
Kf | n | R2 | Qmax (mg/g) | RL | R2 | K1 L/mg | K2 | R2 | |
BWP750 | 40.28 | 2.28 | 0.89 | 178.57 | 5.94 × 10−5 | 0.99 | 4.78 | 14.77 | 0.68 |
BWP850 | 33.83 | 0.03 | 0.88 | 144.93 | 8.21 × 10−5 | 0.99 | 16.89 | 46.52 | 0.98 |
BWP950 | 40.28 | 2.28 | 0.88 | 178.57 | 5.94 × 10−5 | 0.99 | 21.58 | 38.89 | 0.94 |
Material (Precursor, Activation) | SBET (m2/g) | Qmax (mg/g) | Conditions | Reference |
---|---|---|---|---|
Magnetic Fe–Zn biochar activated with KOH (co-pyrolysis) | 1122 | 458.9 | pH 6, 25 °C, 480 min, 0.5 g/L, 100 mg/L | [22] |
Wheat straw biochar (HF wash + 10% CO2 activation at 900 °C) | 492.6 | 471.2 | pH 7, 25 °C, 240 min, 1 g/L, 2500 mg/L | [23] |
Bamboo-derived nitrogen-doping magnetic porous hydrochar coactivated by K2FeO4 and CaCO3 | 610.5 | 211.7 | pH 6, 25 °C, 480 min, 0.5 g/L, 200 mg/L | [24] |
Almond shell-activated biochar (chemical activation with EDTA-4Na/KOH at 750 °C) | 1050 | 161.0 | pH 7, 25 °C, 60 min, 1 g/L, 400 mg/L | [25] |
Black wattle bark-activated carbon (black wattle bark, ZnCl2-activated, pyrolysis) | 414.1 | 98.6 | pH 6.5, 55 °C, 120 min, 1 g/L, 500 mg/L | [64] |
Sawdust-activated carbon (physical activation via steam at 900 °C) | 1053 | 158.9 | pH 4, 25 °C, 10 min, 0.5 g/L, 100 mg/L | [65] |
Sunflower stalk-activated biochar (chemical activation with KOH) | 452 | 333.0 | pH 6, 25 °C, 30 min, 0.5 g/L, 100 mg/L | [66] |
Rice husk biochar activated with KOH and modified by EDTA-4Na (M-AC) | 1368 | 215.3 | pH 5, 25 °C, 10 min, 0.5 g/L, 500 mg/L | [67] |
Activated carbon (PET plastic, H3PO4-activated) | 655.6 | 114.9 | pH 7, 25 °C, 120 min, 0.4 g/L, 100 mg/L | [68] |
Magnetic Fe3O4/ZIF-8 MOF composite (magnetic ZIF-8 adsorbent) | 1120.7 | 129.8 | pH 7, 25 °C, 20 min, 0.4 g/L, 70 mg/L | [69] |
WPW-activated biochar at 950 °C (BWP950) (without adding a chemical) | 866 | 171.9 | pH 6, 25 °C, 48 h, 1 g/L, 200 mg/L | This study |
Concentration (mg/kg) | |||||||
---|---|---|---|---|---|---|---|
Solid Wood [71] | Furniture Wood Waste [72] | WPW | BWP | BWP750 | BWP850 | BWP950 | |
Al | 30 ± 20 | 480 ± 10 | 199 ± 5.3 | 612 ± 39 | 1000 ± 44 | 1667 ± 129 | 2257 ± 127 |
As | 0.01 ± 0.004 | 0.4 ± 0.03 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Ca | 260 ± 5 | 1590 ± 240 | 2513 ± 147.4 | 14,000 ± 1153 | 14,233 ± 2316 | 21,233 ± 1021 | 32,733 ± 896 |
Cd | 0.1 ± 0.02 | 1 ± 0.1 | <5 | <5 | <5 | <5 | <5 |
Co | 0.05 ±0.004 | 1.1 ± 0.1 | <1 | 24 ± 4 | 87 ± 67 | 77 ± 3 | 110 ± 17 |
Cr | 2 ± 1.3 | 6.7 ± 1.4 | 7 ± 2.2 | 64 ± 22 | 160 ± 67 | 229 ± 17 | 80 ± 18 |
Cu | 1.4 ± 1.4 | 6.4 ± 0.7 | <5 | 11 ± 2 | 18 ± 6 | 42 ± 1 | 44 ± 6 |
Fe | 25 ± 4 | 280 ± 30 | 319 ± 4.2 | 4520 ± 321 | 9960 ± 750 | 13,233 ± 451 | 22,500 ± 3081 |
Hg | 0.01 ± 0.003 | 0.03 ± 0.04 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
K | 160 ± 90 | 340 ± 150 | 811 ± 24.5 | 3810 ± 226 | 5473 ± 136 | 7063 ± 75 | 9733 ± 206 |
Mg | 100 ± 30 | 320 ± 80 | 261 ± 2.9 | 2593 ± 704 | 2183 ±361 | 3440 ± 240 | 5640 ± 344 |
Mn | 46.8 ± 7.1 | 40 ± 3.6 | 130 ± 5 | 419 ± 18 | 348 ± 31 | 683 ± 30 | 965 ± 30 |
Mo | 0.02 ± 0.02 | 0.3 ± 0.03 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Na | 20 ± 10 | 300 ± 120 | 684 ± 16.9 | 1957 ± 129 | 2237 ± 103 | 2743 ± 67 | 3393 ±70 |
P | 20 ± 10 | 100 ± 20 | <15 | <15 | <15 | <15 | <15 |
Pb | 0.04 ± 0.06 | 6.3 ± 3.6 | <1 | <1 | <1 | <1 | <1 |
Sb | 0.01 ± 0.01 | 2 ± 0.4 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Si | 109 ± 3 | 2150 ± 140 | <1 | <1 | <1 | <1 | <1 |
Ti | 2.1 ± 0.8 | 1600 ± 200 | <1 | <1 | < 1 | <1 | <1 |
V | 1 ± 0.002 | 0.9 ± 0.04 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Zn | 7.7 ± 0.9 | 69.4 ± 2 | 19 ± 0.7 | 101 ± 12 | 25 ± 1 | 17 ± 1 | 7 ± 1 |
Concentration (mg/kg) | |||||||
---|---|---|---|---|---|---|---|
WPW | BWP | BWP750 | BWP850 | BWP950 | Regulatory Limit (EPA) | Regulatory Limit (CEPA) | |
Ag | <0.00009 | <0.00009 | <0.00009 | <0.00009 | <0.00009 | 5 | 0.14 |
As | 0.0047 ± 0.0001 | 0.0047 ± 0.0001 | 0.0182 ± 0.0006 | 0.0324 ± 0.0008 | 0.0025 ± 0.0002 | 5 | 2.5 |
Ba | 0.5423 ± 0.0090 | 0.343 ± 0.007 | 0.407 ± 0.0123 | 0.1823 ± 0.0025 | 0.383 ± 0.0062 | 100 | 100 |
Cd | 0.0044 ± 0.0003 | 0.0009 ±0.00002 | 0.0003 ± 0.00005 | <0.00009 | <0.00009 | 1 | 0.5 |
Cr | 0.0060 ± 0.0003 | 0.0137 ± 0.0003 | 0.0013 ± 0.00005 | 0.0004 ± 0.0001 | 0.0005 ± 0.0001 | 5 | 5 |
Cu | 0.0103 ± 0.0004 | 0.003 ± 0.0001 | 0.0002 ± 0.0001 | <0.00007 | <0.00007 | 5 | 5 |
Mn | 5.1500 ± 0.0458 | 5.4367 ± 0.1069 | 9.1367 ± 0.3156 | 21.3667 ± 0.4726 | 34.900 ± 0 | - | - |
Pb | 0.0069 ± 0.0003 | 0.0001 ± 0.00001 | <0.00008 | <0.00008 | <0.00008 | 5 | - |
Se | <0.00044 | 0.0015 ± 0.0002 | <0.00044 | 0.0022 ± 0.0002 | 0.0107 ± 0.0007 | 1 | 1 |
Zn | 0.556 ± 0.0074 | 0.5037 ± 0.0115 | 0.292 ± 0.01 | 0.0179 ± 0.0011 | 0.0361 ± 0.0004 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bentis, A.; Ceron Daza, L.D.; Dia, M.; Koubaa, A.; Braghiroli, F.L. Innovative Valorization of Wood Panel Waste into Activated Biochar for Efficient Phenol Adsorption. Appl. Sci. 2025, 15, 8518. https://doi.org/10.3390/app15158518
Bentis A, Ceron Daza LD, Dia M, Koubaa A, Braghiroli FL. Innovative Valorization of Wood Panel Waste into Activated Biochar for Efficient Phenol Adsorption. Applied Sciences. 2025; 15(15):8518. https://doi.org/10.3390/app15158518
Chicago/Turabian StyleBentis, Aziz, Laura Daniela Ceron Daza, Mamadou Dia, Ahmed Koubaa, and Flavia Lega Braghiroli. 2025. "Innovative Valorization of Wood Panel Waste into Activated Biochar for Efficient Phenol Adsorption" Applied Sciences 15, no. 15: 8518. https://doi.org/10.3390/app15158518
APA StyleBentis, A., Ceron Daza, L. D., Dia, M., Koubaa, A., & Braghiroli, F. L. (2025). Innovative Valorization of Wood Panel Waste into Activated Biochar for Efficient Phenol Adsorption. Applied Sciences, 15(15), 8518. https://doi.org/10.3390/app15158518