Application of Humate-Containing Agent for Sorbing Trace Metals in Simulated Solutions and Surface Waters from Tunnels at the ‘Degelen’ Site
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of Test Objects
2.1.1. Surface Waters
2.1.2. Simulated Solution Preparation
2.2. The Preparation of a Modified Humate-Containing Agent
2.3. Experimental Conditions
2.4. Determination of Organically Bound Carbon in Water
2.5. Determination of Elemental Composition of ICS-3A Agent
2.6. Analytical Activities
3. Results
3.1. The Characteristics of a Sorbent and Natural Waters Employed in the Experiment
3.1.1. Elemental Composition of ICS-3A Agent
3.1.2. Features of the Chemical Composition of Surface Waters from Tunnels 104, 165, 176, 504, and 511
- Tunnel 104—sulphate slightly alkaline and hard waters dominated by magnesium in the water;
- Tunnel 165—chloride slightly alkaline and hard waters dominated by magnesium in the water;
- Tunnel 176—sulphate slightly alkaline and hard waters dominated by calcium in the water;
- Tunnel 504—sulphate slightly acidic and hard waters dominated by calcium and magnesium in the water;
- Tunnel 511—sulphate neutral waters of normal hardness dominated by calcium in the water.
3.1.3. Variation Dynamics of Organically Bound Carbon in the Water
3.2. Application of Sorption Material to Purify Simulated Solutions
3.3. The Application of a Sorption Material to Purify Surface Water Stream Flows at the ‘Degelen’ Site
4. Discussion
The Application of a Sorption Material to Purify Surface Water Stream Flows at the ‘Degelen’ Site
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HA | humic acid |
TE | toxic element |
TM | trace metal |
REE | rare earth element |
RS | reference sample |
MPC | maximum permissible concentration |
References
- Nazarbayev, N.A.; Shkolnik, V.S.; Batyrbekov, E.G.; Lukashenko, S.N.; Pivovarov, S.P.; Tukhvatulin, S.T. Scientific, Technical and Engineering Work Package to Secure the Former Semipalatinsk Test Site; NNC RK: Kurchatov, Kazakhstan, 2016; p. 448. [Google Scholar]
- International Cooperation and Coordination of Activities with a View to Rehabilitate the Public and Ecology and Foster the Economic Development of the Semipalatinsk Region in Kazakhstan. 1997. No. A/RES/52/169M. Available online: https://digitallibrary.un.org/record/251071?ln=ru&v=pdf (accessed on 26 January 2025).
- Law of the Republic of Kazakhstan. On Social Protection of Citizens Who Suffered from Nuclear Testing at the Semipalatinsk Nuclear Test Site. 1992. No. 1787-XII. Available online: https://adilet.zan.kz/rus/docs/Z920003600_ (accessed on 26 January 2025).
- Government Regulation of the Republic of Kazakhstan. On the Approval of the Program on the Comprehensive Solution to Challenges of the Former Semipalatinsk Nuclear Test Site for 2005–2007. 2005. No. 927. Available online: https://adilet.zan.kz/rus/docs/P050000927_ (accessed on 26 January 2025).
- Law of the Republic of Kazakhstan. On the Semipalatinsk Nuclear Safety Zone. 2023. No. 16-VIII ЗРК. Available online: https://adilet.zan.kz/rus/docs/Z2300000016 (accessed on 26 January 2025).
- Land Code of the Republic of Kazakhstan. 2003. No. 442-II. Available online: https://adilet.zan.kz/rus/docs/K030000442_ (accessed on 26 January 2025).
- Umirbayeva, A.B. Ecological Mapping of the Semipalatinsk Test Site (STS) Based upon the Innovative Monitoring Technique. Ph.D. Thesis, Kazakh Research Technical University named after K.I. Satpayev, Almaty, Kazakhstan, 2022. PhD: 6D071100. p. 150. [Google Scholar]
- Law of the Republic of Kazakhstan. On Public Radiation Safety. 1998. No. 219. Available online: https://adilet.zan.kz/rus/docs/Z980000219_ (accessed on 26 January 2025).
- Turchenko, D.V.; Lukashenko, S.N.; Aidarkhanov, A.O. Assessment of the contamination level of the air basin at the Experimental Field test location when carrying out agricultural activities. NNC RK Bull. 2013, 4, 59–65. [Google Scholar]
- Genova, S.V.; Lukashenko, S.N.; Aidarkhanov, A.O. Research into the pattern and levels of radionuclide contamination in the Shagan river (2010 outputs). Top. Issues Radioecol. Kazakhstan: Collect. Pap.—Pavlodar 2011, 1, 165–178. [Google Scholar]
- Aktayev, M.R.; Aidarkhanov, A.O.; Lukashenko, S.N. Monitoring of radioactively contaminated waters of the Shagan river. In Abstracts to the 5th International Scientific and Practical Conference Semipalatinsk Test Site. Radiation Legacy and Development Prospects; Kurchatov: Abai Region, Russia, 2012; pp. 63–64. [Google Scholar]
- Aidarkhanov, A.O.; Lukashenko, S.N.; Genova, S.V. Radioactive contamination of the Shagan river (based upon 2011 outputs). In Topical Issues in Radioecology of Kazakhstan: Collected Papers; Ministry of Energy of the Republic of Kazakhstan: Pavlodar, Kazakhstan, 2013; Volume 1, pp. 249–256. [Google Scholar]
- Li, A.; Fei, C.; Yang, H.; Zhu, M.; Wang, C.; Hu, H.; Ye, W. Enhanced Adsorption and Biomineralization of Cadmium and Arsenic in Irrigation Water by Biological Soil Crusts: The Key Roles of Iron/Manganese and Urea. Sustainability 2025, 17, 65. [Google Scholar] [CrossRef]
- Cano, F.J.; Reyes-Vallejo, O.; Sánchez-Albores, R.M.; Sebastian, P.J.; Cruz-Salomón, A.; Hernández-Cruz, M.d.C.; Montejo-López, W.; González Reyes, M.; Serrano Ramirez, R.d.P.; Torres-Ventura, H.H. Activated Biochar from Pineapple Crown Biomass: A High-Efficiency Adsorbent for Organic Dye Removal. Sustainability 2025, 17, 99. [Google Scholar] [CrossRef]
- Perelomov, L.; Gertsen, M.; Burachevskaya, M.; Hemalatha, S.; Vijayalakshmi, A.; Perelomova, I.; Atroshchenko, Y. Organoclays Based on Bentonite and Various Types of Surfactants as Heavy Metal Remediants. Sustainability 2024, 16, 4804. [Google Scholar] [CrossRef]
- Ostrovsky, Y.V.; Zabortsev, G.M.; Tsivelyov, V.V. Utilization of carbohumic agents to contain uranium and mercury in liquid and solid process waste of SC ‘Rosatom’. Chem. Interests A Sustain. Dev. 2016, 24, 781–787. [Google Scholar]
- Dave & Co. LLP—The Trademark Registration Specialist. Available online: http://gosreestr.kazpatent.kz/Trademark/Details?docNumber=69270 (accessed on 26 January 2025).
- Shulgin, A.I. Water-Soluble Humic Acids, Method of Their Production and Method of Detoxification of Lands and Reclamation of Agricultural Soils, Carried out with the Help of These Water-Soluble Humic Acids. Patent for Invention No. 2031095, 1995. Available online: https://patents.google.com/patent/RU2031095C1/en (accessed on 26 January 2025).
- Subbotin, S.B.; Dubasov, Y.V. Radioactive Contamination of Water of the Degelen Mountain Massif. Radiokhimiya 2013, 55, 561–567. [Google Scholar] [CrossRef]
- Amirov, A.A.; Lukashenko, S.N.; Subbotin, S.B.; Kirillov, V.D.; Solodukhin, V.P.; Berdinova, N.M.; Zheltov, D.A. STS geochemical background. Trace elements in the soils of areas adjacent to the Degelen mountain range. In Topical Issues in Radioecology of Kazakhstan: Issue 2, Proceedings of the Collected Papers of the Institute of Radiation Safety and Ecology over 2007–2009/Under the Guidance of S.N. Lukashenko; Institute of Radiation Safety and Ecology: Pavlodar, Kazakhstan, 2010; pp. 451–460. [Google Scholar]
- Shakenov, Y.Z.; Dyusembayeva, M.T.; Lukashenko, S.N.; Temirzhanova, A.Y.; Yesilkanov, G.M.; Mukhamediyarov, N.Z. Spatial distribution of chemical elements in the water stream flow of tunnel 504 at the ‘Degelen’ site. Proceedings of the Tomsk Polytechnic University. Eng. Georesour. 2020, 331, 70–83. [Google Scholar]
- GOST 9517-1994; Solid Fuel. Techniques to Determine the Yield of Humic Acids. Publishing Office of Standards: Minsk, Belarus, 1996.
- GOST 11022-1995; Solid Mineral Fuel. Determination Techniques of Ash Content. Gosstandart Rossii, Publishing Office of Standards: Mocквa, Russia, 1995.
- GOST 11014-2001; Brown, Bituminous Coal, Glance-Coal and Oil Shales. A Shortcut Technique to Determine Moisture. Gosstandart Rossii, Publishing Office of Standards: Mocквa, Russia, 2001.
- Orlov, D.S.; Grishina, L.A. Hands-on Training on Humus Chemistry; MSU: Mocквa, Russia, 1981; p. 271. [Google Scholar]
- Zakis, G.F. Functional Analysis of Lignins and Their Derivatives; Zinatne: Riga, Latvia, 1987; p. 230. [Google Scholar]
- Subodh, K. Spectroscopy of Organic Compounds; Guru Nanak Dev University: Amritsar, India, 2006; p. 36. [Google Scholar]
- Shaks, I.A.; Faizullina, Y.M. Infrared Spectra of a Fossil Organic Matter; Nedra: Mocквa, Russia, 1974; p. 131. [Google Scholar]
- GOST 31859-2012; A Technique to Determine a Chemical Oxygen Demand. Federal Agency for Technical Regulation and Metrology: Mocквa, Russia, 2014; p. 11.
- Determination of the content of toxic elements in foodstuffs and food raw materials. In Autoclave Sample Preparation Procedure: Guidelines 4.1.985-00; Minzdrav Rossii: Mocквa, Russia, 2000; p. 19.
- Sample preparation for the elemental analysis by autoclave digestion. In Operating Instructions–RI 03-02-03 (A); Center for Radioecological Research, branch office ‘IRSE’ of NNC RK: Kurchatov, Kazakhstan, 2014; p. 12.
- Environmental sample and biological substrate preparation for the elemental analysis. In Operating Instructions–RI 03-02-08 (A); branch office ‘Institute of Radiation Safety and Ecology’ RSE National Nuclear Center: Kurchatov, Kazakhstan, 2015; p. 15.
- ISO 17294-2: 2003 (E); Water Quality. Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) P. 2: Determination of 62 Elements. ISO: Geneva, Switzerland, 2003; p. 30. Available online: https://www.iso.org/standard/36127.html (accessed on 26 January 2025).
- Spark, K.M.; Wells, J.D.; Johnson, B.B. The interaction of a humic acid with heavy metals. Aust. J. Soil Res. 1997, 35, 89–102. [Google Scholar] [CrossRef]
- Kerndorff, H.; Schnitzer, M. Sorption of metals on humic acid. Geochim. Et Cosmochim. Acta 1980, 44, 1701–1708. [Google Scholar] [CrossRef]
- Genç-Fuhrman, H.; Mikkelsen, P.S.; Ledin, A. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater using high-efficiency industrial sorbents: Effect of pH, contact time and humic acid. Sci. Total Environ. 2016, 566–567, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Nurgalieva, G.O.; Jusipbekov, U.J.; Bayakhmetova, Z.K. Application of humic substances for purification of liquid media from heavy metal ions and radioactive elements. Collection of articles. In Proceedings of the International Scientific-Practical Conference “Ecological, Industrial and Energy Security–2023”, Sevastopol, Russia, 18–22 September 2023; pp. 208–213. [Google Scholar]
- Kuznetsova, I.A.; Larionov, N.S.; Bogolitsyn, K.G. Research into sorption properties of terrestrial peat relative to heavy metal ions under static and dynamic conditions. In Physicochemistry of Plant Polymers: Proceedings of V International Conference, St. Petersburg, Russia, 8–11 July 2013; RAS, Ural Division, Institute of Ecological Problems of the North: Arkhangelsk, Russia, 2013; pp. 126–130. [Google Scholar]
- Orlov, D.S.; Demin, V.V.; Zavarzina, A.G. Vzaimodeystvie guminovykh kislot s tyazhelymi metallami [Interaction of humic acids with heavy metals]. Dokl. Akad. Nauk. [Rep. Acad. Sci.] 1998, 3, 402–403. [Google Scholar]
- Dmitrieva, E.D.; Sjundjukova, K.V.; Leont’eva, M.M.; Glebov, N.N. Vliyanie pH sredy na svyazyvanie ionov tyazhelykh metallov guminovymi veshhestvami i gimatomelanovymi kislotami torfov [The effect of the pH of the medium on the binding of heavy metal ions by humic substances and himatomelanic acids of peat]. Uchenye Zap. Kazan. Univ. Seriya Estestv. Nauk. [Sci. Notes Kazan Univ. Nat. Sci. Ser.] 2017, 159, 575–588. [Google Scholar]
Elements | Mass Fraction, % |
---|---|
C | 42.00 |
H | 3.00 |
O | 31.00 |
N | 1.30 |
Al | 0.062 |
Fe | 0.36 |
Zn | 0.0021 |
Sr | 0.001 |
Mo | 0.003 |
Cd | 0.000007 |
Cs | 0.0000044 |
∑ REE 1 | 0.00019 |
Pb | 0.00093 |
U | 0.0057 |
HAdaf | 82.0 |
Wa | 10.0 |
Aa | 18.0 |
COOH (mmole/g) | 1.18 |
ONfen (mmole/g) | 1.69 |
Tunnel | Hardness (mmole/dm3) | pH | Content of Cations | Content of Anions | Salinity | ||||
---|---|---|---|---|---|---|---|---|---|
Na++ + K++ | Ca2++ | Mg2++ | Cl− | HCO3− | SO42− | ||||
104 | 4.5 | 7.8 | 3 | 40 | 30 | 25 | 55 | 145 | 265 |
165 | 4.7 | 8.0 | 6 | 40 | 30 | 95 | 50 | 70 | 265 |
176 | 2.3 | 7.7 | 2 | 30 | 9 | 25 | 45 | 45 | 130 |
504 | 7.5 | 5.6 | 30 | 80 | 40 | 10 | 75 | 350 | 540 |
511 | 3.0 | 6.8 | 15 | 50 | 10 | 10 | 50 | 125 | 225 |
No. | Tunnel | Carbon Content, mg/dm3 |
---|---|---|
Dynamic conditions | ||
1 | 104 | 6.3 |
2 | 165 | 5 |
3 | 176 | 7 |
4 | 504 | 1.3 |
5 | 511 | 6.3 |
Cd, mg/dm3 | Cu, mg/dm3 | Pb, mg/dm3 | Zn, mg/dm3 | |
---|---|---|---|---|
Simulated solution | 23 ± 2 | 25 ± 2 | 25 ± 2 | 25 ± 2 |
Following ICS-3A application | 30 ± 3 | 27 ± 3 | 29 ± 3 | 33 ± 3 |
Elements | Tunnel 104 | Tunnel 165 | Tunnel 176 | Tunnel 504 | Tunnel 511 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH = 7.8 | pH = 8.0 | pH = 7.7 | pH = 5.6 | pH = 6.8 | |||||||||||
C1 | C2 | % of Sorption | C1 | C2 | % of Sorption | C1 | C2 | % of Sorption | C1 | C2 | % of Sorption | C1 | C2 | % of Sorption | |
Be | 2.9 ± 0.3 | 0.32 ± 0.09 | 89 | 0.8 ± 0.1 | 0.17 ± 0.05 | 78 | 0.7 ± 0.1 | 0.10 ± 0.03 | 86 | 250 ± 2 | 250 ± 2 | - | 81 ± 1 | 3.8 ± 0.3 | 95 |
Al | 30 ± 3 | 4600 ± 28 | −96 | 27 ± 4 | 4200 ± 37 | −99 | 69 ± 4 | 6900 ± 47 | −99 | - | - | 778 ± 13 | 5600 ± 72 | −86 | |
Zn | 5 ± 1 | 120 ± 2 | −96 | 65 ± 1 | 195 ± 2 | −67 | 41 ± 1 | 194 ± 3 | −79 | 8300 ± 300 | 1700 ± 19 | 79 | 3160 ± 44 | 210 ± 4 | 93 |
Sr | 500 ± 9 | 54 ± 1 | 89 | 310 ± 5 | 51 ± 1 | 83 | 176 ± 2 | 40 ± 1 | 77 | 422 ± 18 | 110 ± 3 | 74 | 340 ± 7 | 59 ± 1 | 83 |
Mo | 1180 ± 26 | 58 ± 1 | 95 | 70 ± 1 | 70 ± 1 | - | 220 ± 2 | 80 ± 1 | 64 | <0.01 | 25 ± 1 | - | 1.4 ± 0.1 | 59 ± 2 | −98 |
Cd | 1.1 ± 0.1 | 0.14 ± 0.05 | 88 | <0.01 | 0.20 ± 0.08 | - | 0.5 ± 0.1 | 0.17 ± 0.03 | 62 | 19 ± 1 | 0.30 ± 0.03 | 98 | 9.2 ± 0.5 | 0.20 ± 0.07 | 98 |
Cs | 2.3 ± 0.1 | 0.15 ± 0.01 | 93 | 1.25 ± 0.02 | 0.13 ± 0.01 | 89 | 0.68 ± 0.03 | 0.11 ± 0.01 | 83 | 3.7 ± 0.1 | 0.75 ± 0.03 | 80 | 3.5 ± 0.2 | 0.20 ± 0.01 | 95 |
Pb | <0.01 | 1.5 ± 0.02 | - | <0.01 | 7.5 ± 0.2 | - | <0.01 | 11 ± 1 | - | 13 ± 1 | 6.7 ± 0.1 | 47 | 1.8 ± 0.1 | 7.3 ± 0.3 | −75 |
U | 1300 ± 28 | 200 ± 3 | 84 | 585 ± 8 | 180 ± 2 | 69 | 350 ± 6 | 173 ± 2 | 51 | 202 ± 8 | 157 ± 3 | 23 | 200 ± 4 | 200 ± 4 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dyussembayeva, M.; Shakenov, Y.; Kolbin, V.; Tashekova, A.; Aidarkhanov, A.; Dzhusipbekov, U.; Nurgalieva, G.; Bayakhmetova, Z.; Duisenbay, D.; Aksakalova, U. Application of Humate-Containing Agent for Sorbing Trace Metals in Simulated Solutions and Surface Waters from Tunnels at the ‘Degelen’ Site. Sustainability 2025, 17, 6921. https://doi.org/10.3390/su17156921
Dyussembayeva M, Shakenov Y, Kolbin V, Tashekova A, Aidarkhanov A, Dzhusipbekov U, Nurgalieva G, Bayakhmetova Z, Duisenbay D, Aksakalova U. Application of Humate-Containing Agent for Sorbing Trace Metals in Simulated Solutions and Surface Waters from Tunnels at the ‘Degelen’ Site. Sustainability. 2025; 17(15):6921. https://doi.org/10.3390/su17156921
Chicago/Turabian StyleDyussembayeva, Madina, Yerbol Shakenov, Vladimir Kolbin, Azhar Tashekova, Assan Aidarkhanov, Umirzak Dzhusipbekov, Gulzipa Nurgalieva, Zamira Bayakhmetova, Dulat Duisenbay, and Ulzhan Aksakalova. 2025. "Application of Humate-Containing Agent for Sorbing Trace Metals in Simulated Solutions and Surface Waters from Tunnels at the ‘Degelen’ Site" Sustainability 17, no. 15: 6921. https://doi.org/10.3390/su17156921
APA StyleDyussembayeva, M., Shakenov, Y., Kolbin, V., Tashekova, A., Aidarkhanov, A., Dzhusipbekov, U., Nurgalieva, G., Bayakhmetova, Z., Duisenbay, D., & Aksakalova, U. (2025). Application of Humate-Containing Agent for Sorbing Trace Metals in Simulated Solutions and Surface Waters from Tunnels at the ‘Degelen’ Site. Sustainability, 17(15), 6921. https://doi.org/10.3390/su17156921