Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (270)

Search Parameters:
Keywords = effects of skincare

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2582 KB  
Article
Personalized Dermato-Cosmetology: A Case Study on Biometric Skin Improvements After 28 Days of Bespoke Cosmetic
by Magdalena Bîrsan, Ana-Caterina Cristofor, Alin-Viorel Focșa, Cătălin-Dragoș Ghica, Șadiye-Ioana Scripcariu, Carmen-Valerica Ripa, Robert-Alexandru Vlad, Paula Antonoaea, Cezara Pintea, Andrada Pintea, Nicoleta Todoran, Emőke-Margit Rédai, Amalia-Adina Cojocariu and Adriana Ciurba
Cosmetics 2026, 13(1), 27; https://doi.org/10.3390/cosmetics13010027 - 26 Jan 2026
Abstract
Objective: This study aimed to design and clinically evaluate a bespoke cosmetic formulation tailored to individual skin characteristics and user preferences, focusing on hydration and barrier recovery in mature, therapy-affected skin. In addition, this study aimed to explore the feasibility and short-term outcomes [...] Read more.
Objective: This study aimed to design and clinically evaluate a bespoke cosmetic formulation tailored to individual skin characteristics and user preferences, focusing on hydration and barrier recovery in mature, therapy-affected skin. In addition, this study aimed to explore the feasibility and short-term outcomes of a structured, biometry-driven personalization approach applied within a single-subject case study design. Materials and Methods: A personalized dermato-cosmetic formulation incorporating melatonin, astaxanthin, low-molecular-weight hyaluronic acid, allantoin, yarrow oil (Achillea millefolium), lecithin, cholesterol, and arginine was developed based on objective biophysical assessment of the skin. A clinical case evaluation was conducted in a male subject over 55 years of age (Fitzpatrick phototype III) presenting persistent xerosis and dehydration following completed oncologic therapy. Quantitative skin biometry was performed at baseline and after 28 days of daily application, assessing hydration at six anatomical sites, sebum secretion, pigmentation and erythema indices, elasticity, and stratum corneum turnover and scaling. Results: After 28 days, sebum secretion increased by more than 100%, indicating partial restoration of the lipid barrier. Hyperpigmented areas decreased from 7.2% to 2.3%, while skin elasticity improved from 25% to 44%. A reduction of 8% in the erythema index suggested decreased vascular reactivity. Hydration levels improved consistently across all evaluated sites, and epidermal renewal was enhanced, as evidenced by reduced scaling and smoother skin surface. The melanin index remained stable throughout the study period. Conclusions: This pilot evaluation shows that bespoke cosmetic formulations, customized to individual skin biometry and preferences, can yield measurable improvements in hydration, barrier repair, elasticity, pigmentation uniformity, and epidermal renewal within 28 days, even in skin compromised by previous oncologic therapy. Given the single-subject nature of this pilot evaluation, these findings cannot be generalized to broader populations but rather highlight the importance of personalization and objective skin assessment in guiding individualized dermato-cosmetic formulation strategies. Personalized dermato-cosmetology using objective biophysical assessment may be a promising future strategy for effective, consumer-centered skincare. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

16 pages, 2466 KB  
Article
Regenerative and Dermal Wound Healing Activities of Bioactive Octapeptide
by Shan Lakmal Edirisinghe, Chamilani Nikapitiya and Mahanama De Zoysa
Cosmetics 2026, 13(1), 16; https://doi.org/10.3390/cosmetics13010016 - 13 Jan 2026
Viewed by 271
Abstract
Cosmeceutical peptides (CPs), which modulate various biological activities, including skin regeneration and wound healing, have emerged as promising agents in skincare. In this study, we investigated the regenerative and wound healing potential of a short peptide, CP-02 (sequence CDARSDAR), using human dermal fibroblast [...] Read more.
Cosmeceutical peptides (CPs), which modulate various biological activities, including skin regeneration and wound healing, have emerged as promising agents in skincare. In this study, we investigated the regenerative and wound healing potential of a short peptide, CP-02 (sequence CDARSDAR), using human dermal fibroblast cells (HDFs) in vitro and a zebrafish model in vivo. In HDFs, CP-02 treatment at concentrations of 50, 100, and 200 µg/mL significantly accelerated wound closure in a dose-dependent manner (p < 0.05) and upregulated the mRNA expression of CCND1, MYC, FGF2, EFG, and IL-8 at 12 h post-treatment. In amputated zebrafish larvae, exposure to CP-02 (5 µg/mL) for 72 h significantly increased fin regeneration, with a fin area of 3.5 mm2 and fin-fold length of 0.2 mm, compared with those in controls (2 mm2 and 0.07 mm, respectively). Intramuscular administration of CP-02 significantly improved the healing rates in wounded adult zebrafish to 58% and 76% on 12 and 16 days post wounding (dpw), respectively, compared with the vehicle (35% and 44%, respectively). Histological analysis (H&E staining) revealed reduced inflammatory cell infiltration, complete granulation, and re-epithelialization in the CP-02-treated tissues at 12 dpw. Furthermore, mRNA expression levels of tnf-α, il-1β, tgfb1, mmp9, mmp13, and timp2b were elevated in the CP-02 group at 4 dpw, whereas those of pro-fibrotic mediators, including acta2, ctgfb, cdh1, and col9a3 reduced in muscle tissue on 12 dpw. Collectively these findings demonstrate that CP-02 promotes effective, scar-reducing regeneration and wound healing, highlighting its strong potential as a therapeutic peptide for future skincare and cosmeceutical applications. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

13 pages, 959 KB  
Article
Potential Cosmetic Applications of Dihydroartemisinin
by Yifan Zhao, Mo Chen, Ying Zheng, Le Zhu, Cui Wu, Yue Ma, Ya Zhao, Dong Zhang, Haidong Jia and Lan Yang
Molecules 2026, 31(2), 228; https://doi.org/10.3390/molecules31020228 - 9 Jan 2026
Viewed by 239
Abstract
In recent years, active monomers derived from Chinese herbal medicine and their derivatives have attracted significant attention in the field of skincare product development. Artemisinin and its derivatives, including dihydroartemisinin (DHA), exhibit diverse pharmacological activities such as anti-inflammatory, antibacterial, immunomodulatory, and antitumor effects, [...] Read more.
In recent years, active monomers derived from Chinese herbal medicine and their derivatives have attracted significant attention in the field of skincare product development. Artemisinin and its derivatives, including dihydroartemisinin (DHA), exhibit diverse pharmacological activities such as anti-inflammatory, antibacterial, immunomodulatory, and antitumor effects, showing promising therapeutic potential in skin-related diseases. However, systematic studies on artemisinins in cosmetics are lacking. This study aimed to evaluate the cosmetic potential of DHA by investigating its anti-aging, anti-hair loss, antibacterial, whitening, and anti-glycation activities. Results showed that DHA exhibits multiple biological activities: DHA exhibits anti-aging activity by promoting collagen I synthesis in HDF cell, exhibits anti-hair loss effect by modulating VEGF and DKK1 expression in DPC cell, exhibits antibacterial activity against Malassezia furfur, exhibits whitening activity by suppressing melanin synthesis, and exhibits anti-glycation activity by suppressing glycation reactions. Overall, with the broad biological activities, we believe that DHA holds encouraging promise in the cosmetics industry. Full article
(This article belongs to the Special Issue Bioactive Compounds in Cosmetic Applications)
Show Figures

Figure 1

18 pages, 315 KB  
Review
Advances in Nanotechnology-Based Topical Delivery Systems for Skincare Applications
by Ziwei Yan, Sunxin Zhang, Guyuan Wu, Yunxiang Kang, Cong Fu, Zihan Wang, Guoqi Wang, Lu Tang and Wei Wang
Pharmaceutics 2026, 18(1), 63; https://doi.org/10.3390/pharmaceutics18010063 - 3 Jan 2026
Viewed by 592
Abstract
The growing demand for effective skincare products that can effectively target specific dermatological concerns has accelerated the development of advanced delivery technologies. Among them, nanocarrier-based topical delivery systems have gained significant attention for their ability to enhance the performance of skincare formulations. Acting [...] Read more.
The growing demand for effective skincare products that can effectively target specific dermatological concerns has accelerated the development of advanced delivery technologies. Among them, nanocarrier-based topical delivery systems have gained significant attention for their ability to enhance the performance of skincare formulations. Acting as versatile delivery tools, nanocarriers not only stabilize and protect sensitive cosmetic ingredients but also improve their penetration through the skin barrier and enable controlled, sustained, or targeted release. Therefore, this review focuses on the recent achievements of nanocarrier-based topical delivery technology for skincare applications, which systematically summarizes the design principles, mechanisms and functional characteristics of diverse nano-based delivery platforms, including vesicular nanocarriers, lipid-based nanocarriers, emulsion-based nanocarriers, polymeric nanocarriers, inorganic nanoparticles, and inclusion complexes. Meanwhile, these nanocarriers are discussed according to their relevance to the pathogenesis of prevalent skin disorders, highlighting how tailored nanocarriers can address specific therapeutic or cosmetic needs. Overall, this review emphasizes the emerging trends and future perspectives of nanotechnology-based topical delivery systems in modern cosmetology, offering more opportunities for precise, effective and science-driven cosmetic solutions. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

21 pages, 4065 KB  
Article
Preparation and Whitening Activity of Sialoglycopeptide of Chalaza from Liquid Egg Process
by Yanzhao Ma, Ziyi Jiang, Xinyi Jin, Jianrong Wu and Minjie Gao
Molecules 2026, 31(1), 59; https://doi.org/10.3390/molecules31010059 - 23 Dec 2025
Viewed by 309
Abstract
The liquid egg processing industry generates a significant amount of solid byproduct known as chalaza (CHA), which is rich in sialic acid and exhibits notable biological activity. In this study, the preparation process, N-glycan profile, and skin-whitening activity of CHA-derived glycopeptides (CHAH) were [...] Read more.
The liquid egg processing industry generates a significant amount of solid byproduct known as chalaza (CHA), which is rich in sialic acid and exhibits notable biological activity. In this study, the preparation process, N-glycan profile, and skin-whitening activity of CHA-derived glycopeptides (CHAH) were investigated. By comparing the hydrolysis efficiency of trypsin, alcalase, and papain, a dual-enzyme hydrolysis strategy was developed: initial hydrolysis with 1.5% trypsin for 3 h, followed by treatment with 1% papain for 2 h. The resulting CHAH exhibited both a high hydrolysis yield and strong antioxidant activity. The sialic acid content in CHAH reached 1.96% (w/w), and 14 distinct N-glycan chain structures were identified. The whitening effect of CHAH was assessed using a combined approach involving an in vitro B16 cell model and an in vivo zebrafish model. CHAH was found to inhibit tyrosinase activity and reduce melanin production in a concentration-dependent manner. Mechanistic studies revealed that CHAH acts by significantly downregulating the expression of key genes involved in melanin synthesis, including MITF, TYR, TYRP1, and TYRP2. This study establishes an efficient preparation method for CHAH, elucidates its skin-whitening efficacy and underlying mechanism, and provides experimental support for the potential industrial application of CHAH as an active ingredient in skincare products. Full article
(This article belongs to the Special Issue Bioactive Compounds in Cosmetic Applications)
Show Figures

Graphical abstract

14 pages, 1769 KB  
Article
Chlorogenic Acid from Peucedanum japonicum Attenuates TNF-α-Induced Oxidative Stress and Inflammatory Damage in Human Dermal Fibroblasts
by Neil Patrick Uy, Minseo Kang, Jang Hoon Kim, Young Ho Hoon, Sanghyun Lee and Sullim Lee
Life 2025, 15(12), 1934; https://doi.org/10.3390/life15121934 - 18 Dec 2025
Viewed by 393
Abstract
Intrinsic aging and external stimuli such as UV exposure contribute to heightened MMP-1 expression, leading to collagen deterioration and weakening of the skin’s structural framework, hallmarks of aging tissue. Peucedanum japonicum, a plant consumed in East Asia, contains antioxidant and anti-inflammatory compounds, [...] Read more.
Intrinsic aging and external stimuli such as UV exposure contribute to heightened MMP-1 expression, leading to collagen deterioration and weakening of the skin’s structural framework, hallmarks of aging tissue. Peucedanum japonicum, a plant consumed in East Asia, contains antioxidant and anti-inflammatory compounds, but its effects on skin aging remain unclear. This study profiled six major bioactive compounds in P. japonicum leaves and roots and evaluated their protective effects in TNF-α-stimulated human dermal fibroblasts (NHDFs). Phytochemical profiles were determined, and biological activity was evaluated by measuring intracellular ROS, MMP-1 secretion, and COL1A1 expression. Both leaf and root extracts exhibited antioxidant and anti-inflammatory activity, with leaves generally showing stronger effects. Among the six compounds, chlorogenic acid (1) demonstrated the most potent activity. It markedly decreased intracellular ROS, suppressed MMP-1 secretion, and enhanced COL1A1 expression in TNF-α-stimulated NHDFs, indicating protection against inflammation-induced collagen degradation. These findings suggest that P. japonicum, particularly its chlorogenic acid (1) content, may be a promising natural resource for anti-aging skincare and therapies targeting inflammation-associated skin damage. Full article
(This article belongs to the Special Issue Innovative Approaches in Dermatological Therapies and Diagnostics)
Show Figures

Figure 1

18 pages, 15382 KB  
Article
Optimization of Natural Deep Eutectic Solvent-Assisted Extraction of Rosmarinic Acid from Thunbergia laurifolia Lindl. and Evaluation of Antioxidant Activity
by Krittima Kriengsaksri, Wisuwat Thongphichai, Tamonwan Uttarawichien, Jasadakorn Khoochonthara, Pasarapa Towiwat and Suchada Sukrong
Molecules 2025, 30(24), 4795; https://doi.org/10.3390/molecules30244795 - 16 Dec 2025
Viewed by 435
Abstract
Thunbergia laurifolia Lindl. is a plant known for its promising biological activity, including antioxidant and anti-inflammatory activities, and a rich source of rosmarinic acid (RA). The extraction of T. laurifolia for cosmetic and skincare products using conventional solvents has encountered difficulties, including safety [...] Read more.
Thunbergia laurifolia Lindl. is a plant known for its promising biological activity, including antioxidant and anti-inflammatory activities, and a rich source of rosmarinic acid (RA). The extraction of T. laurifolia for cosmetic and skincare products using conventional solvents has encountered difficulties, including safety concerns, skin irritation, undesirable odors, and inefficient extraction. In this work, 14 types of natural deep eutectic solvents (NaDESs) with varying compositions and ratios were investigated to compare their efficiency in extracting RA from T. laurifolia by HPLC analysis. The NaDES with the highest extraction efficiency was further utilized in ultrasonic-assisted extraction (UAE), and the extraction parameters were optimized using response surface methodology. The optimized RA content and DPPH scavenging activity were predicted by response surfaces methodology to be 7.52 mg/g DW and 37.6 mg TE/g DW, respectively. The optimal extraction condition was achieved using a propylene glycol-lactic acid NaDES (at an 8:1 molar ratio) with 37% (w/w) H2O, a 30 mL/g liquid-to-solid ratio, an 80 °C extraction temperature, and a 32 min extraction time. The optimized extract was proved to suppress ROS in H2O2-induced keratinocytes. The extract demonstrated robust stability against basic, oxidative, and photolytic stresses, and maintained long-term chemical stability up to 90 days. This study introduces a new green solvent for the effective extraction of T. laurifolia, thereby improving the safety and quality of the extracts for skincare and cosmetic products. Full article
Show Figures

Figure 1

19 pages, 2533 KB  
Article
Lyophilized Cell-Free Supernatants of Lacticaseibacillus paracasei T0901 Isolated from Fermented Palm Sap Exhibit Antiacne and Antimelanogenic Activities in B16F10 Melanoma Cells
by Phoomjai Sornsenee, Nateelak Kooltheat, Nawanwat C. Pattaranggoon, Komwit Surachat, Arnaud Monteil and Chonticha Romyasamit
Life 2025, 15(12), 1866; https://doi.org/10.3390/life15121866 - 5 Dec 2025
Viewed by 515
Abstract
Acne vulgaris is a common chronic inflammatory skin condition. Conventional acne treatments are often limited by adverse effects, driving interest in alternative therapies. This study explored the multifunctional bioactivities of a lyophilized cell-free supernatant (LCFS) derived from Lacticaseibacillus paracasei T0901, isolated from fermented [...] Read more.
Acne vulgaris is a common chronic inflammatory skin condition. Conventional acne treatments are often limited by adverse effects, driving interest in alternative therapies. This study explored the multifunctional bioactivities of a lyophilized cell-free supernatant (LCFS) derived from Lacticaseibacillus paracasei T0901, isolated from fermented palm sap, with a focus on its antimicrobial, antibiofilm, and antimelanogenic potential for dermatological applications. Antimicrobial activity was evaluated using agar well diffusion and broth microdilution assays against acne-associated pathogens, while antibiofilm effects were quantified via crystal violet staining. Antimelanogenic activity was assessed in α-melanocyte-stimulating hormone (α-MSH)-stimulated B16F10 melanoma cells by measuring melanin content and tyrosinase activity. Whole-genome sequencing was performed to identify genes linked to observed bioactivities, and molecular docking was used to predict metabolite–protein interactions. The LCFS exhibited strong inhibitory activity against acne-associated bacteria, with inhibition zones of C. acnes (10.67 ± 0.58 mm), S. epidermidis (21.00 ± 0.00 mm), and S. aureus (20.00 ± 0.00 mm), and a minimum inhibitory concentration of 25 mg/mL. Biofilm formation was significantly reduced by 62.98 ± 3.54%. In α-MSH-stimulated B16F10 cells, LCFS treatment (10 mg/mL) significantly decreased melanin content (73.23 ± 2.36%) and intracellular tyrosinase activity (68.19 ± 6.29%) relative to control. Genomic analysis revealed antioxidant-related genes (sodA, trxB, nox), pigmentation regulators (mco, fcbD), and buk (butyrate kinase), supporting the observed bioactivities. Molecular docking further demonstrated strong binding affinities of LCFS-derived metabolites to tyrosinase and MITF, suggesting modulation of melanogenic pathways. Collectively, these results indicate that L. paracasei T0901 produces safe postbiotic compounds with potent antimicrobial, antibiofilm, and antimelanogenic activities, highlighting its promise as a multifunctional ingredient in probiotic-based skincare formulations. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

19 pages, 2179 KB  
Article
Unveiling the Skin Anti-Aging Potential of the Novel Spirulina platensis Extract Elixspir®
by Chiara Donati, Giulia Nerina Nardone, Vera Mason, Emanuela Di Gregorio, Irene Ragusa, Emanuele Amadio, Eleonora Zampieri, Rebecca Bassetto, Valentina Gandin and Samuele Zanatta
Int. J. Mol. Sci. 2025, 26(23), 11372; https://doi.org/10.3390/ijms262311372 - 25 Nov 2025
Viewed by 1001
Abstract
Arthrospira platensis (commonly known as Spirulina platensis) is a blue-green microalga increasingly used in skincare due to its antioxidant and dermo-protective properties, primarily attributed to components such as phycocyanin and carotenoids. However, the intense blue color of phycocyanin can limit its cosmetic appeal. [...] Read more.
Arthrospira platensis (commonly known as Spirulina platensis) is a blue-green microalga increasingly used in skincare due to its antioxidant and dermo-protective properties, primarily attributed to components such as phycocyanin and carotenoids. However, the intense blue color of phycocyanin can limit its cosmetic appeal. In this study, we investigated the antioxidant, anti-inflammatory, skin lightening and photoprotective activity of Elixspir®, a novel light-colored aqueous extract of Spirulina, using both 2D and 3D skin cell models. We demonstrated that Elixspir® exerts strong antioxidant and cytoprotective effects by reducing intracellular ROS levels and modulating cellular thiol redox state. Its anti-pigmentation potential was supported by tyrosinase inhibition, while anti-inflammatory activity was principally due to ability to reduce PGE2 levels. Finally, we demonstrated an unprecedented photoprotective effect of Elixspir®, highlighting its potential as a novel active ingredient for skin defense against environmental stressors. Overall, these results provide a molecular-level understanding of Elixspir® multifunctional bioactivity and support its application as a skin-lightening, anti-inflammatory, antioxidant, and photoprotective ingredient in the formulation of innovative skin anti-aging treatments. Full article
(This article belongs to the Special Issue Advanced Research in Antioxidant Activity)
Show Figures

Figure 1

18 pages, 3038 KB  
Article
Anti-Skin Aging Potential of Methoxyflavones from Kaempferia parviflora Against TNF-α-Induced Oxidative Stress and Photoaging in Normal Human Dermal Fibroblasts
by Si-young Ahn, Se Yun Jeong, Bum Soo Lee, Yun Seok Joh, Hamed Hamishehkar, Sullim Lee and Ki Hyun Kim
Foods 2025, 14(23), 4012; https://doi.org/10.3390/foods14234012 - 23 Nov 2025
Viewed by 1110
Abstract
Reactive oxygen species (ROS) generated by ultraviolet (UV) radiation accelerate skin aging by activating matrix metalloproteinase-1 (MMP-1) and mitogen-activated protein kinase (MAPK) signaling pathways. Therefore, antioxidants that can suppress ROS generation and downstream signaling cascades are considered promising anti-aging agents. In this study, [...] Read more.
Reactive oxygen species (ROS) generated by ultraviolet (UV) radiation accelerate skin aging by activating matrix metalloproteinase-1 (MMP-1) and mitogen-activated protein kinase (MAPK) signaling pathways. Therefore, antioxidants that can suppress ROS generation and downstream signaling cascades are considered promising anti-aging agents. In this study, five methoxyflavones were isolated from Kaempferia parviflora (black ginger) rhizomes—5,7,3′,4′-tetramethoxyflavone (1), 3,5,7,4′-tetramethoxyflavone (2), 5,7,4′-trimethoxyflavone (3), 3,5,7,3′,4′-pentamethoxyflavone (4), and 5,7-dimethoxyflavone (5)—using LC–MS-guided fractionation and identified via NMR and LC–MS analysis. Their biological activities were evaluated in tumor necrosis factor-α (TNF-α)-stimulated normal human dermal fibroblasts (NHDFs). All methoxyflavones, except compound 3, significantly suppressed TNF-α-induced ROS generation, while compounds 35 markedly reduced MMP-1 secretion. Among them, compounds 4 and 5 exerted the strongest protective effects by modulating distinct MAPK pathways: compound 4 selectively inhibited p38 phosphorylation, whereas compound 5 selectively suppressed ERK phosphorylation. Both compounds attenuated ECM degradation and enhanced antioxidant defenses in a concentration-dependent manner. Collectively, these findings highlight the mechanistic significance of methoxyflavones 4 and 5 as dual-acting antioxidant and ECM-protective agents that counteract skin aging through selective regulation of MAPK signaling. Their potential as natural anti-photoaging ingredients warrants further validation in in vivo models and clinical studies for future skincare applications. Full article
Show Figures

Graphical abstract

25 pages, 2132 KB  
Review
Extremophile-Derived Bioactives in Cosmeceuticals: Bridging Nutraceuticals and Skincare for Holistic Wellness
by Emanuela Maresca, Micaela Carbone, Giovanni Gallo, Salvatore Fusco and Martina Aulitto
Life 2025, 15(12), 1787; https://doi.org/10.3390/life15121787 - 21 Nov 2025
Viewed by 1045
Abstract
The integration of extremophile-derived bioactives into cosmeceuticals and nutricosmetics offers a novel strategy to enhance skin health through both topical and systemic approaches. Extremophile microorganisms, adapted to extreme conditions, produce unique compounds such as ectoine, extremozymes, carotenoids, exopolysaccharides (EPSs), and mycosporine-like amino [...] Read more.
The integration of extremophile-derived bioactives into cosmeceuticals and nutricosmetics offers a novel strategy to enhance skin health through both topical and systemic approaches. Extremophile microorganisms, adapted to extreme conditions, produce unique compounds such as ectoine, extremozymes, carotenoids, exopolysaccharides (EPSs), and mycosporine-like amino acids (MAAs). These molecules exhibit antioxidant, anti-inflammatory, photoprotective, and regenerative properties. This review analyzes the molecular adaptations that enable extremophiles to synthesize these compounds, and explores their cosmetic applications, including enzymatic exfoliation, UV protection, hydration, and anti-pollution effects. This paper examines their nutraceutical potential, highlighting systemic benefits such as improved skin elasticity, reduced photoaging, and modulation of the gut–skin axis via prebiotic EPSs. Industrial strategies for sustainable production, such as microbial fermentation, synthetic biology, and green extraction, are discussed. Examples of commercial ingredients like PlusXanthin™, Antarctic-G, and Desertica. Extremophile-derived ingredients combine biological efficacy with environmental sustainability, positioning them as key assets for next-generation skincare. Future directions include clinical validation, regulatory harmonization, and the development of personalized, microbiome-friendly formulations. Full article
Show Figures

Graphical abstract

23 pages, 1410 KB  
Review
Overview of Hydrogels and the Use of Hyaluronic Acid-Based Hydrogels in Pharmaceutical Transdermal Delivery Systems and Topical Cosmetic Skin Applications
by Fatimah Rashid, Paul Carter and Stephen Childs
Cosmetics 2025, 12(6), 265; https://doi.org/10.3390/cosmetics12060265 - 20 Nov 2025
Cited by 1 | Viewed by 2853
Abstract
Hydrogels have gained significant attention as effective vehicles for transdermal applications offering significant advantages in pharmaceutical and cosmetic applications. Their unique polymeric network structure enables efficient encapsulation and controlled release of active ingredients, making them ideal for therapeutic drug delivery systems (TDDs) and [...] Read more.
Hydrogels have gained significant attention as effective vehicles for transdermal applications offering significant advantages in pharmaceutical and cosmetic applications. Their unique polymeric network structure enables efficient encapsulation and controlled release of active ingredients, making them ideal for therapeutic drug delivery systems (TDDs) and topical skincare formulations. In pharmaceutical approaches, hydrogels facilitate the transdermal transport of therapeutic agents into systemic circulation, improving bioavailability and patient compliance. In cosmetics, they enhance skin hydration and support the delivery of bioactive compounds, contributing to improved product performance and user satisfaction. Among various hydrogel-forming polymers, Hyaluronic Acid (HA) stands out as the most often used polymer in this field due to its biocompatibility, moisture-retention properties, and ability to penetrate the skin. This review explores the dual role of HA-based hydrogels in pharmaceutical and cosmetic application, detailing their structural characteristics, preparation methods, and mechanisms of active ingredient loading and release. Furthermore, the review presents the details on hydrogels and how they are used as TDDs. Special attention is given to hyaluronic acid (HA) in this field, and this review discusses the properties, preparation methods, and applications of HA-based hydrogels as a delivery system, including methods of loading the actives and the releasing of these actives from them. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

31 pages, 2984 KB  
Review
Recent Advances in Biosynthesis and Bioactivity of Plant Caffeoylquinic Acids
by Hanqin Chen, Bo Pan, Shilong Zhang, Xin Li, Yuyao Zhang, Kang Gao, Dongliang Chen, Lili Wang, Tianhua Jiang, Chang Luo and Conglin Huang
Curr. Issues Mol. Biol. 2025, 47(11), 942; https://doi.org/10.3390/cimb47110942 - 13 Nov 2025
Cited by 1 | Viewed by 1353
Abstract
Caffeoylquinic acids (CQAs), a class of phenolic acid metabolites widely distributed in plants, encompass 15 positional isomers from mono- to tetra-esters, with 5-O-caffeoylquinic acid (5-CQA) as the predominant form. The biosynthesis of 5-CQA from phenylalanine proceeds through five primary pathways, which are finely [...] Read more.
Caffeoylquinic acids (CQAs), a class of phenolic acid metabolites widely distributed in plants, encompass 15 positional isomers from mono- to tetra-esters, with 5-O-caffeoylquinic acid (5-CQA) as the predominant form. The biosynthesis of 5-CQA from phenylalanine proceeds through five primary pathways, which are finely regulated by environmental, hormonal, and transcription factors from families such as MYB, WRKY, and bHLH. These regulators control 5-CQA synthesis by binding specifically to the promoter regions of key structural genes, including PAL, 4CL and HCT/HQT. Subsequently, 5-CQA serves as a central precursor for the biosynthesis of other CQAs. In terms of bioactivity, CQAs possess remarkable pharmacological activities, encompassing antioxidant, antimicrobial, anti-diabetic, anti-inflammatory and anti-tumor properties. For instance, anti-inflammatory effects are demonstrated by the ability of 5-CQA to reduce key pro-inflammatory cytokines (e.g., TNF-α and IL-1β) and downregulate the TLR4/NF-κB pathway. The synergistic action of 5-CQA with ultraviolet-A reduced succinate-coenzyme Q reductase activity by approximately 72%, highlighting its potential to disrupt bacterial metabolism and combat antibiotic resistance. Furthermore, 3,4,5-triCQA exhibits potent anti-influenza virus activity, potentially through a mechanism distinct from existing neuraminidase inhibitors. Beyond medicine, CQAs show promise in light industry. They serve as antibiotic alternatives in livestock feed to enhance gut health, extend food shelf life through their antioxidant activity, and function as active ingredients in UV-protective skincare formulations. CQAs also enhance plant stress tolerance to cold, arsenic, and pests by mechanisms such as scavenging reactive oxygen species and inhibiting pest mobility. While this review consolidates progress in the biosynthesis and bioactivity of CQAs specifically with caffeoyl substituents, future efforts should leverage modern biotechnological tools and interdisciplinary approaches to bridge critical knowledge gaps in their biosynthesis, transport, and clinical translation. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Biology 2025)
Show Figures

Figure 1

20 pages, 6266 KB  
Article
Microbial Fermentation Potentiates the Multifunctional Skin-Care Activities of Polianthes tuberosa L. Flower Extract: Antioxidant, Anti-Glycation, and Anti-Melanogenic Effects
by Qiaozhen Li, Hui Zhu, Rubiao Hou, Teng Jiang, Jinhua Li, Xiaodong Yan and Jing Wang
Cosmetics 2025, 12(6), 243; https://doi.org/10.3390/cosmetics12060243 - 5 Nov 2025
Cited by 1 | Viewed by 950
Abstract
Polianthes tuberosa L. (PT) flower extracts exhibit considerable bioactivities, yet their application is often constrained by limited bioavailability and efficacy. In this study, fermentation of PT (FPT) using Rhodosporidium toruloides significantly enhanced its phytochemical profile, doubling the total phenol content (697.22 ± 7.51 [...] Read more.
Polianthes tuberosa L. (PT) flower extracts exhibit considerable bioactivities, yet their application is often constrained by limited bioavailability and efficacy. In this study, fermentation of PT (FPT) using Rhodosporidium toruloides significantly enhanced its phytochemical profile, doubling the total phenol content (697.22 ± 7.51 μg/mL in FPT versus (vs.) 347.61 ± 5.89 μg/mL in non-fermented extract (NF)) and increasing flavonoids by onefold relative to NF (381.44 ± 6.50 μg/mL in FPT vs. 190.25 ± 4.75 μg/mL in NF), resulting in a substantial improvement in radical scavenging capacity (DPPH: 47.59 ± 1.55%; ABTS: 89.87 ± 1.39%). In UVB-irradiated the human keratinocyte cell line, FPT demonstrated superior efficacy over NF by effectively reducing reactive oxygen species and malondialdehyde levels (1.29 ± 0.08 ng/mL at 0.4 mg/mL FPT vs. 1.5 ± 0.1 ng/mL with NF), while concurrently elevating the activity of key antioxidant enzymes. Using human dermal fibroblasts, FPT was further shown to possess notable anti-glycation and anti-carbonylation properties, significantly inhibiting carboxymethyl lysine formation (90.6 ± 3.6% reduction) and protein carbonylation (86.5 ± 2.2% reduction). It also suppressed senescence-associated β-galactosidase activity (67.9 ± 3.0% inhibition), downregulated matrix metalloproteinase-1 expression (62.5 ± 5.1% reduction), and stimulated type I collagen synthesis (166.5 ± 4.2% recovery). Additionally, FPT markedly inhibited UVB-induced melanogenesis in B16F10 melanoma cells by reducing melanin content (36.0 ± 5.3%) and tyrosinase activity (45.7 ± 1.2%), through the downregulation of critical melanogenic genes, including melanocortin 1 receptor, microphthalmia-associated transcription factor, and tyrosinase. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

18 pages, 2106 KB  
Article
Insights into Thai and Foreign Hemp Seed Oil and Extracts’ GC/MS Data Re-Analysis Through Learning Algorithms and Anti-Aging Properties
by Suthinee Sangkanu, Thanet Pitakbut, Sathianpong Phoopha, Jiraporn Khanansuk, Kasemsiri Chandarajoti and Sukanya Dej-adisai
Foods 2025, 14(21), 3739; https://doi.org/10.3390/foods14213739 - 31 Oct 2025
Cited by 1 | Viewed by 833
Abstract
This study successfully established a novel discriminative model that distinguishes between Thai and foreign hemp seed extracts based on gas chromatography/mass spectrometry (GC/MS) metabolic profiling combined with machine learning algorithms such as hierarchy clustering analysis (HCA), principal component analysis (PCA), and partial least [...] Read more.
This study successfully established a novel discriminative model that distinguishes between Thai and foreign hemp seed extracts based on gas chromatography/mass spectrometry (GC/MS) metabolic profiling combined with machine learning algorithms such as hierarchy clustering analysis (HCA), principal component analysis (PCA), and partial least square-discriminant analysis (PLS-DA). The findings highlighted significant metabolic features, such as vitamin E, clionasterol, and linoleic acid, related with anti-aging properties via elastase inhibition. Our biological validation experiment revealed that the individual compound at 2 mg/mL exhibited a moderate elastase inhibitory activity, 40.97 ± 1.80% inhibition (n = 3). However, a binary combination among these metabolites at 1 mg/mL of each compound demonstrated a synergistic effect against elastase activities up to 89.76 ± 1.20% inhibition (n = 3), showing 119% improvement. Molecular docking experiments aligned with biological results, showing strong binding affinities and enhanced inhibitory effects in all combinations. This integrated approach provided insights into the bioactive compounds responsible for anti-aging effects and established a dependable framework for quality control and standardization of hemp seed-based skincare products. Additionally, the developed models enable effective discrimination between Thai and foreign strains, which is valuable for sourcing and product consistency. Overall, this research advances our understanding of hemp seed phytochemicals and their functional potential, paving the way for optimized natural anti-aging formulations and targeted functional foods. Full article
Show Figures

Graphical abstract

Back to TopTop