Insights into Thai and Foreign Hemp Seed Oil and Extracts’ GC/MS Data Re-Analysis Through Learning Algorithms and Anti-Aging Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Data Preparation, Visualization, and Learning Algorithms
2.2.1. Data Preparation and Visualization
2.2.2. Statistical Analysis and Learning Algorithms
2.3. Anti-Elastase Assay
2.4. Anti-Tyrosinase Activity
2.5. Assay of Nitric Oxide (NO) Production
2.5.1. Cell Culture
2.5.2. Cellular Viability Test
2.5.3. Nitric Oxide Assay
2.6. Statistics
2.7. Molecular Docking Simulation
3. Results
3.1. Gas Chromatography/Mass Spectrometry (GC/MS) Data Visualization and Learning Algorithms
3.2. Elastase Inhibitory
3.3. Anti-Tyrosinase Assay
3.4. Biological Evaluation and Docking Simulation of the Top Three Metabolic Features
3.4.1. Biological Validation
3.4.2. Docking Simulation
3.5. Nitric Oxide Inhibitory Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rehman, M.; Fahad, S.; Du, G.; Cheng, X.; Yang, Y.; Tang, K.; Liu, L.; Liu, F.H.; Deng, G. Evaluation of hemp (Cannabis sativa L.) as an industrial crop: A review. Environ. Sci. Pollut. Res. Int. 2021, 28, 52832–52843. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.F.; Islam, M.Z.; Mahmud, M.S.; Sarker, M.E.; Islam, M.R. Hemp as a potential raw material toward a sustainable world: A review. Heliyon 2022, 8, e08753. [Google Scholar] [CrossRef]
- Cerino, P.; Buonerba, C.; Cannazza, G.; D’Auria, J.; Ottoni, E.; Fulgione, A.; Di Stasio, A.; Pierri, B.; Gallo, A. A review of hemp as food and nutritional supplement. Cannabis Cannabinoid Res. 2021, 6, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Babiker, E.E.; Uslu, N.; Al Juhaimi, F.; Ahmed, I.A.M.; Ghafoor, K.; Özcan, M.M.; Almusallam, I.A. Effect of roasting on antioxidative properties, polyphenol profile and fatty acids composition of hemp (Cannabis sativa L.) seeds. LWT 2021, 139, 110537. [Google Scholar] [CrossRef]
- Tănase Apetroaei, V.; Pricop, E.M.; Istrati, D.I.; Vizireanu, C. Hemp Seeds (Cannabis sativa L.) as a valuable source of natural ingredients for functional foods—A Review. Molecules 2024, 29, 2097. [Google Scholar] [CrossRef]
- Žugić, A.; Martinović, M.; Tadić, V.; Rajković, M.; Racić, G.; Nešić, I.; Koren, A. Comprehensive insight into cutaneous application of hemp. Pharmaceutics 2024, 16, 748. [Google Scholar] [CrossRef]
- Gerasymchuk, M.; Robinson, G.I.; Groves, A.; Haselhorst, L.; Nandakumar, S.; Stahl, C.; Kovalchuk, O.; Kovalchuk, I. Phytocannabinoids stimulate rejuvenation and prevent cellular senescence in human dermal fibroblasts. Cells 2022, 11, 3939. [Google Scholar] [CrossRef]
- Gęgotek, A.; Atalay, S.; Domingues, P.; Skrzydlewska, E. The differences in the proteome profile of cannabidiol-treated skin fibroblasts following UVA or UVB irradiation in 2D and 3D cell cultures. Cells 2019, 8, 995. [Google Scholar] [CrossRef]
- Moore, E.M.; Wagner, C.; Komarnytsky, S. The enigma of bioactivity and toxicity of botanical oils for skin care. Front. Pharmacol. 2020, 11, 785. [Google Scholar] [CrossRef]
- Metwally, S.; Ura, D.P.; Krysiak, Z.J.; Kaniuk, Ł.; Szewczyk, P.K.; Stachewicz, U. Electrospun PCL patches with controlled fiber morphology and mechanical performance for skin moisturization via long-term release of hemp oil for atopic dermatitis. Membranes 2020, 11, 26. [Google Scholar] [CrossRef] [PubMed]
- Michailidis, D.; Angelis, A.; Nikolaou, P.E.; Mitakou, S.; Skaltsounis, A.L. Exploitation of Vitis vinifera, Foeniculum vulgare, Cannabis sativa and Punica granatum by-product seeds as dermo-cosmetic agents. Molecules 2021, 26, 731. [Google Scholar] [CrossRef]
- Rupasinghe, H.V.; Davis, A.; Kumar, S.K.; Murray, B.; Zheljazkov, V.D. Industrial hemp (Cannabis sativa subsp. sativa) as an emerging source for value-added functional food ingredients and nutraceuticals. Molecules 2020, 25, 4078. [Google Scholar] [CrossRef]
- Ren, G.; Zhang, X.; Li, Y.; Ridout, K.; Serrano-Serrano, M.L.; Yang, Y.; Liu, A.; Ravikanth, G.; Nawaz, M.A.; Mumtaz, A.S.; et al. Large-scale whole-genome resequencing unravels the domestication history of Cannabis sativa. Sci. Adv. 2021, 7, eabg2286. [Google Scholar] [CrossRef]
- Rashid, A.; Ali, V.; Khajuria, M.; Faiz, S.; Gairola, S.; Vyas, D. GC–MS based metabolomic approach to understand nutraceutical potential of Cannabis seeds from two different environments. Food Chem. 2021, 339, 128076. [Google Scholar] [CrossRef] [PubMed]
- Sangkanu, S.; Pitakbut, T.; Phoopha, S.; Khanansuk, J.; Chandarajoti, K.; Dej-adisai, S. A comparative study of chemical profiling and bioactivities between Thai and foreign hemp seed species (Cannabis sativa L.) plus an in-silico investigation. Foods 2024, 13, 55. [Google Scholar] [CrossRef] [PubMed]
- Pavlou, E.; Kourkoumelis, N. Preprocessing and analyzing Raman spectra using python. Eng. Proc. 2023, 56, 28. [Google Scholar] [CrossRef]
- Kim, Y.; Uyama, H.; Kobayashi, S. Inhibition effects of (+)-catechinaldehyde polycondensates on proteinases causing proteolytic degradation of extracellular matrix. Biochem. Biophys. Res. Commun. 2004, 320, 256–261. [Google Scholar] [PubMed]
- Dej-adisai, S.; Parndaeng, K.; Wattanapiromsakul, C.; Hwang, J.S. Three new isoprenylated flavones from Artocarpus chama stem and their bioactivities. Molecules 2022, 27, 3. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, X.; Broderick, M.; Fein, H. Measurement of nitric oxide production in biological systems by using griess reaction assay. Sensors 2003, 3, 276–284. [Google Scholar] [CrossRef]
- Sangkanu, S.; Heemman, A.; Phoopha, S.; Pitakbut, T.; Udomuksorn, W.; Dej-Adisai, S. Antidiabetic potential of Senna siamea: α-glucosidase inhibition, postprandial blood glucose reduction, toxicity evaluation, and molecular docking. Scientifica 2025, 2025, 6650349. [Google Scholar] [CrossRef]
- Hughes, D.L.; Sieker, L.C.; Bieth, J.; Dimicoli, J.L. Crystallographic study of the binding of a trifluoroacetyl dipeptide anilide inhibitor with elastase. J. Mol. Biol. 1982, 162, 645–658. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open babel: An open chemical toolbox. J. Cheminform 2011, 3, 33. [Google Scholar] [CrossRef]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
- Santajit, S.; Thavorasak, T.; Horpet, D.; Kong-Ngoen, T.; Permpoon, U.; Kim, C.Y.; Nam, T.G.; Indrawattana, N. Phytochemical inhibition of quorum sensing and biofilm formation by Paederia foetida Linn. against multidrug-resistant Acinetobacter baumannii: An integrated in vitro and in silico investigation. Vet. World 2025, 18, 2181–2193. [Google Scholar] [CrossRef]
- Cheriyadat, A.; Bruce, L.M. Why principal component analysis is not an appropriate feature extraction method for hyperspectral data. In IGARSS 2003, Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium, Proceedings (IEEE Cat. No. 03CH37477), Toulouse, France, 21–25 July 2003; IEEE: New York, NY, USA, 2004; Volume 6, pp. 3420–3422. [Google Scholar]
- Cai, H.; Yang, X.; Yang, Y.; Feng, Y.; Wen, A.; Yang, Y.; Wen, M.; Ou, D. Untargeted metabolomics of the intestinal tract of DEV-infected ducks. Virol. J. 2023, 20, 305. [Google Scholar] [CrossRef] [PubMed]
- Sławińska, N.; Olas, B. Selected seeds as sources of bioactive compounds with diverse biological activities. Nutrients 2023, 15, 187. [Google Scholar] [CrossRef]
- Pei, L.; Luo, Y.; Gu, X.; Wang, J. Formation, stability and properties of hemp seed oil emulsions for application in the cosmetics industry. Tenside Surfactants Det. 2020, 57, 451–459. [Google Scholar] [CrossRef]
- Chiocchio, I.; Mandrone, M.; Sanna, C.; Maxia, A.; Tacchini, M.; Poli, F.J.I.C. Screening of a hundred plant extracts as tyrosinase and elastase inhibitors, two enzymatic targets of cosmetic interest. Ind. Crops Prod. 2018, 122, 498–505. [Google Scholar] [CrossRef]
- Cantor, J. Elastin peptides as a potential disease vector in the pathogenesis of pulmonary pmphysema: An investigation of this hypothesis. Life 2025, 15, 356. [Google Scholar] [CrossRef]
- Panwar, P.; Hedtke, T.; Heinz, A.; Andrault, P.M.; Hoehenwarter, W.; Granville, D.J.; Schmelzer, C.E.H.; Brömme, D. Expression of elastolytic cathepsins in human skin and their involvement in age-dependent elastin degradation. Biochim. Biophys. Acta Gen. Subj. 2020, 1864, 129544. [Google Scholar] [CrossRef]
- Zagórska-Dziok, M.; Bujak, T.; Ziemlewska, A.; Nizioł-Łukaszewska, Z. Positive ffect of Cannabis sativa L. herb extracts on skin cells and assessment of cannabinoid-based hydrogels properties. Molecules 2021, 26, 802. [Google Scholar] [CrossRef]
- Saleepochn, T.; Tharamak, S.; Charanja, S.; Pimsawang, L.; Wisarutwanit, T.; Chaisan, T.; Songoen, W.; Pluempanupat, W. Comparative fatty acid profiling of seed lines of hemp (Cannabis sativa L.) and inhibition of tyrosinase, α-glucosidase and acetylcholinesterase. Agric. Nat. Resour. 2024, 58, 547–554. [Google Scholar] [CrossRef]
- Kim, J.K.; Heo, H.Y.; Park, S.; Kim, H.; Oh, J.J.; Sohn, E.H.; Jung, S.H.; Lee, K. Characterization of phenethyl cinnamamide compounds from hemp seed and determination of their melanogenesis inhibitory activity. ACS Omega 2021, 6, 31945–31954. [Google Scholar] [CrossRef]
- Chaiyana, W.; Jiamphun, S.; Bezuidenhout, S.; Yeerong, K.; Krueathanasing, N.; Thammasorn, P.; Jittasai, P.; Tanakitvanicharoen, S.; Tima, S.; Anuchapreeda, S. Enhanced cosmeceutical potentials of the oil from Gryllus bimaculatus de Geer by nanoemulsions. Int. J. Nanomed. 2023, 18, 2955–2972. [Google Scholar] [CrossRef]
- Mercola, J.; D’Adamo, C.R. Linoleic acid: A narrative review of the effects of increased intake in the standard american diet and associations with chronic disease. Nutrients 2023, 15, 3129. [Google Scholar] [CrossRef]
- Rennert, B.; Melzig, M.F. Free fatty acids inhibit the activity of Clostridium histolyticum collagenase and human neutrophil elastase. Planta Medica 2002, 68, 767–769. [Google Scholar] [CrossRef]
- Ramsden, C.E.; Domenichiello, A.F.; Yuan, Z.X.; Sapio, M.R.; Keyes, G.S.; Mishra, S.K.; Gross, J.R.; Majchrzak-Hong, S.; Zamora, D.; Horowitz, M.S.; et al. A systems approach for discovering linoleic acid derivatives that potentially mediate pain and itch. Sci. Signal. 2017, 10, eaal5241. [Google Scholar] [CrossRef]
- Doering, T.; Holtkötter, O.; Schlotmann, K.; Jassoy, C.; Petersohn, D.; Wadle, A.; Waldmann-Laue, M. Cutaneous restructuration by apple seed phytosterols: From DNA chip analysis to morphological alterations. Int. J. Cosmet. Sci. 2005, 27, 142. [Google Scholar] [CrossRef]
- Poljšak, N.; Glavač, N.K. Tilia sp. seed oil—Composition, antioxidant activity and potential use. Appl. Sci. 2021, 11, 4932. [Google Scholar] [CrossRef]
- Joshi, M.; Hiremath, P.; John, J.; Ranadive, N.; Nandakumar, K.; Mudgal, J. Modulatory role of vitamins A, B3, C, D, and E on skin health, immunity, microbiome, and diseases. Pharmacol. Rep. 2023, 75, 1096–1114. [Google Scholar] [CrossRef]
- Rychter, A.M.; Hryhorowicz, S.; Słomski, R.; Dobrowolska, A.; Krela-Kaźmierczak, I. Antioxidant effects of vitamin E and risk of cardiovascular disease in women with obesity—A narrative review. Clin. Nutr. 2022, 41, 1557–1565. [Google Scholar] [CrossRef]
- Hourfane, S.; Mechqoq, H.; Bekkali, A.Y.; Rocha, J.M.; El Aouad, N. A comprehensive review on Cannabis sativa ethnobotany, phytochemistry, molecular docking and biological activities. Plants 2023, 12, 1245. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Q.; Liu, F.; Gao, Z.; Kong, D.; Hu, X.; Shi, D.; Bao, Z.; Yu, Z. The anti-inflam-aging and hepatoprotective effects of huperzine A in D-galactose-treated rats. Mech. Ageing Dev. 2013, 134, 89–97. [Google Scholar] [CrossRef] [PubMed]





| Extract | % Elastase Inhibition (2 mg/mL) | % of Total | ||
|---|---|---|---|---|
| Linoleic Acid | Vitamin E | Clionasterol | ||
| HS-TH-1-O | 89.48 ± 1.26 | 20.09 * | 12.63 | 15.35 |
| HS-TH-1-M-H | 91.63 ± 2.05 | 22.93 * | - | 6.66 |
| HS-TH-1-M-E | 86.18 ± 3.06 | 35.13 * | - | 2.75 |
| HS-TH-2-O | 84.02 ± 2.07 | 86.53 * | - | 1.53 |
| HS-TH-2-M-H | 93.17 ± 1.44 | 66.24 * | - | 1.44 |
| HS-TH-2-M-E | 87.44 ± 0.39 | 34.08 * | - | 1.55 |
| HS-FS-1-O | 92.62 ± 2.55 | - | 14.60 | 29.07 * |
| HS-FS-1-M-H | 89.87 ± 3.50 | 17.63 * | - | 5.67 |
| HS-FS-1-M-E | 85.00 ± 0.49 | 15.04 | - | 3.80 |
| HS-FS-2-O | 97.15 ± 0.89 | - | 15.10 | 22.32 * |
| HS-FS-2-M-H | 93.05 ± 1.39 | - | 1.09 | 13.42 * |
| HS-FS-2-M-E | 64.84 ± 1.67 | 1.43 | - | - |
| Gallic acid | 97.82 ± 0.24 | Positive control | ||
| Extract * | % Inhibition ± SD (20 µg/mL) |
|---|---|
| HS-TH-1-O | −6.30 ± 2.13 |
| HS-TH-1-M-H | −13.24 ± 4.55 |
| HS-TH-1-M-E | 11.53 ± 1.88 |
| HS-TH-2-O | −9.83 ± 2.28 |
| HS-TH-2-M-H | −3.26 ± 2.40 |
| HS-TH-2-M-E | 17.63 ± 2.59 |
| HS-FS-1-O | −7.80 ± 8.02 |
| HS-FS-1-M-H | −1.31 ± 5.57 |
| HS-FS-1-M-E | 4.91 ± 6.00 |
| HS-FS-2-O | −3.14 ± 6.61 |
| HS-FS-2-M-H | 0.33 ± 8.52 |
| HS-FS-2-M-E | 12.59 ± 3.33 |
| Kojic acid | 89.04 ± 4.99 |
| Water extract of A. lacucha wood | 96.01 ± 3.40 |
| Clionasterol | Linoleic Acid | Vitamin E | |
|---|---|---|---|
| Clionasterol | 40.97 ± 1.80 | 89.76 ± 1.20 [119%, 118%] | 66.94 ± 0.71 [67%, 63%] |
| Linoleic acid | 41.15 ± 0.15 | 51.88 ± 0.22 [29%, 26%] | |
| Vitamin E | 40.08 ± 0.38 |
| PubChem ID | Docking Score (Kcal/Mol) [% Increase] | Type | Total | Residue (Bond) | Subunit | Catalytic Site | |
|---|---|---|---|---|---|---|---|
| Single | |||||||
| Clionasterol (γ-sitosterol) | 457801 | −6.17 | H-bond | 1 | R61 (1) | 1 | No (near) |
| Linoleic Acid | 5280450 | 4.14 | H-bond | 2 | T41 (1) and H57 (1) | - | No (near) |
| Vitamin E | 14985 | −5.26 | H-bond | 1 | Q192 (1) | S’1-S’2 | Yes |
| Combination | |||||||
| Clionasterol–Linoleic Acid | - | −8.03 [94%, 30%] | H-bond | 4 | T41 (1), C42 (1), C 58(1) and R61 (1) | - | No (near) |
| Clionasterol–Vitamin E | - | −10.03 [91%, 63%] | H-bond | 5 | R61 (2) | No (near) | |
| Q192 (1) | S1-S’1 | Yes | |||||
| V216 (2) | S’1-S’2 | Yes | |||||
| Linoleic Acid–Vitamin E | - | −6.56 [58%, 25%] | H-bond | 2 | Q192 (1) | S’1-S’2 | Yes |
| H40 (1) | - | No (near) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sangkanu, S.; Pitakbut, T.; Phoopha, S.; Khanansuk, J.; Chandarajoti, K.; Dej-adisai, S. Insights into Thai and Foreign Hemp Seed Oil and Extracts’ GC/MS Data Re-Analysis Through Learning Algorithms and Anti-Aging Properties. Foods 2025, 14, 3739. https://doi.org/10.3390/foods14213739
Sangkanu S, Pitakbut T, Phoopha S, Khanansuk J, Chandarajoti K, Dej-adisai S. Insights into Thai and Foreign Hemp Seed Oil and Extracts’ GC/MS Data Re-Analysis Through Learning Algorithms and Anti-Aging Properties. Foods. 2025; 14(21):3739. https://doi.org/10.3390/foods14213739
Chicago/Turabian StyleSangkanu, Suthinee, Thanet Pitakbut, Sathianpong Phoopha, Jiraporn Khanansuk, Kasemsiri Chandarajoti, and Sukanya Dej-adisai. 2025. "Insights into Thai and Foreign Hemp Seed Oil and Extracts’ GC/MS Data Re-Analysis Through Learning Algorithms and Anti-Aging Properties" Foods 14, no. 21: 3739. https://doi.org/10.3390/foods14213739
APA StyleSangkanu, S., Pitakbut, T., Phoopha, S., Khanansuk, J., Chandarajoti, K., & Dej-adisai, S. (2025). Insights into Thai and Foreign Hemp Seed Oil and Extracts’ GC/MS Data Re-Analysis Through Learning Algorithms and Anti-Aging Properties. Foods, 14(21), 3739. https://doi.org/10.3390/foods14213739

