Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,181)

Search Parameters:
Keywords = effective thermal conductivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1788 KB  
Article
Performance Analysis and Design of a Pulsating Heat Pipe-Based Thermal Management System for PEMFC
by Hongchun Zhao, Meng Zheng, Zheshu Ma, Yan Zhu and Liangyu Tao
Sustainability 2026, 18(2), 1047; https://doi.org/10.3390/su18021047 - 20 Jan 2026
Abstract
Given automotive PEMFCs’ susceptibility to thermal runaway and uneven temperature distribution under high-power-density operation, this study proposes a novel embedded pulsating heat pipe cooling system. The core innovations of this work are threefold, fundamentally distinguishing it from prior PHP cooling approaches: (1) an [...] Read more.
Given automotive PEMFCs’ susceptibility to thermal runaway and uneven temperature distribution under high-power-density operation, this study proposes a novel embedded pulsating heat pipe cooling system. The core innovations of this work are threefold, fundamentally distinguishing it from prior PHP cooling approaches: (1) an embedded PHP cooling plate design that integrates the heat pipe within a unified copper plate, eliminating the need for external attachment or complex bipolar plate channels and enhancing structural compactness; (2) a system-level modeling methodology that derives an effective thermal conductivity (k_eff ≈ 65,000 W·m−1·K−1) from a thermal resistance network for seamless integration into a full-stack CFD model, significantly simplifying the simulation of the passive PHP component; and (3) a parametric system-level optimization of the secondary active cooling loop. Numerical results demonstrate that the system achieves an exceptional maximum temperature difference (ΔT_max) of less than 1.7 K within the PEMFC stack at an optimal coolant flow rate of 0.11 m/s, far surpassing the performance of conventional liquid cooling baselines. This three-layer framework (PHP heat transfer, cooling plate conduction, liquid coolant convection) offers robust theoretical and design support for high-efficiency, passive-dominant thermal control of automotive fuel cells. Full article
(This article belongs to the Section Sustainable Engineering and Science)
20 pages, 5050 KB  
Article
Improving Mechanical Coffee Drying with Recycled Insulating Materials: A Thermal Efficiency and Economic Feasibility Analysis
by Valentina Cruz-Ospina, Eduardo Duque-Dussán and Juan R. Sanz-Uribe
Foods 2026, 15(2), 367; https://doi.org/10.3390/foods15020367 - 20 Jan 2026
Abstract
Mechanical coffee drying is an energy-intensive stage of postharvest processing that directly affects product quality and production costs. This study evaluated the technical and economic feasibility of using expanded polystyrene (EPS) as a thermal insulation material to improve the performance of a mechanical [...] Read more.
Mechanical coffee drying is an energy-intensive stage of postharvest processing that directly affects product quality and production costs. This study evaluated the technical and economic feasibility of using expanded polystyrene (EPS) as a thermal insulation material to improve the performance of a mechanical coffee dryer and to demonstrate its potential for sustainable reuse. Experiments were conducted using a total of 210 kg of wet parchment coffee (Coffea arabica L. var. Cenicafé 1) per treatment, corresponding to three experimental replicates of 70 kg each, dried at 50 ± 2 °C, comparing an EPS-insulated dryer (0.02 m thickness) with a non-insulated control. A theoretical model based on steady-state heat transfer through series resistances estimated energy losses and system efficiency for different insulating materials. Theoretical results indicated that EPS, polyethylene foam, and cork reduced heat losses by 58.1%, 54.3%, and 50.9%, respectively. Experimentally, EPS reduced drying time by 7.82%, fuel consumption by 13.9%, and energy demand by 9.5%, while increasing overall efficiency by 6.7% and reducing wall heat losses by 37.7%. Improved temperature stability enhanced heat retention and moisture migration behavior. Economically, EPS reduced operating costs, yielding annual savings of USD 81.5, a 0.45-year payback period, and an annual return on investment (ROI) of 10.86, confirming its viability as a cost-effective and sustainable solution for improving energy efficiency in mechanical coffee drying. Full article
Show Figures

Figure 1

23 pages, 3943 KB  
Article
Radiative Cooling Techniques for Efficient Urban Lighting and IoT Energy Harvesting
by Edgar Saavedra, Guillermo del Campo, Igor Gomez, Juan Carrero and Asuncion Santamaria
Appl. Sci. 2026, 16(2), 1015; https://doi.org/10.3390/app16021015 - 19 Jan 2026
Abstract
This work presents an experimental assessment of radiative cooling (RC) films and compound parabolic concentrator (CPC) optics integrated into systems relevant for smart cities: LED street luminaires and small photovoltaic (PV) and thermoelectric (TE) modules used as energy-harvesting (EH) sources for IoT devices. [...] Read more.
This work presents an experimental assessment of radiative cooling (RC) films and compound parabolic concentrator (CPC) optics integrated into systems relevant for smart cities: LED street luminaires and small photovoltaic (PV) and thermoelectric (TE) modules used as energy-harvesting (EH) sources for IoT devices. Using commercial RC film and simple 2D/3D CPC geometries, we conducted outdoor measurements under realistic conditions. For a commercial LED luminaire, several configurations were compared (painted aluminum reference, full RC coverage of the head, partial RC strips above the LED and driver, and RC combined with CPCs), recording surface temperatures during daytime and nighttime operation. In parallel, single-junction PV cells and Peltier-type TE generators were mounted on aluminum plates in three configurations: reference, RC-coated, RC + 3D-CPC. Their surface temperatures and open-circuit (OC) voltages were monitored in daylight. Across all campaigns, RC consistently reduced device or surface temperatures by a few degrees Celsius compared to the reference, with larger reductions under higher irradiance. For PV and TE modules, thermal differences produced small but measurable increases in OC voltage—percent-level for PV, millivolt-level for TE. CPCs generally preserved or slightly enhanced the cooling effect in some configurations, acting as incremental modifiers rather than primary drivers. The experiments are deliberately exploratory and provide initial experimental evidence that RC integration can be beneficial in real devices. They establish an empirical baseline for future work on long-term, multi-season campaigns, electrical characterization, optimized materials/optics, and system-level prototypes in smart-city lighting and IoT EH applications. Full article
(This article belongs to the Special Issue Applied Thermodynamics)
Show Figures

Figure 1

35 pages, 9379 KB  
Article
Utilization of Recycled Foam Concrete Powder with Phase-Change Material as a Cement or Sand Replacement: Impact on Mortar Properties and Superplasticizer Performance
by Jacek Gołaszewski, Grzegorz Cygan, Małgorzata Gołaszewska, Barbara Klemczak, Henk Jonkers, Dmitry Zhilyaev and Eduardus A. B. Koenders
Sustainability 2026, 18(2), 1004; https://doi.org/10.3390/su18021004 - 19 Jan 2026
Abstract
The recycling of ultralight foam concrete (ULFC), both with and without phase-change material (PCM), involves crushing it and using the resulting recycled foam concrete powder (RFCP) as a partial substitute for cement or sand in cement composites. These recycling paths remain insufficiently explored [...] Read more.
The recycling of ultralight foam concrete (ULFC), both with and without phase-change material (PCM), involves crushing it and using the resulting recycled foam concrete powder (RFCP) as a partial substitute for cement or sand in cement composites. These recycling paths remain insufficiently explored in the literature regarding practical feasibility. Since both RFCP and PCM reduce the flowability of fresh mortars, incorporating RFCP with PCM is, in practice, only feasible with the addition of a superplasticizer (SP). The primary objectives of this study were to determine: (1) the effect of RFCP with PCM, when used to replace cement or sand, on mortar properties, and (2) its influence on the performance of the superplasticizer (SP), to assess the feasibility of using RFCP with PCM in cement composites. The addition of RFCP, both without PCM (RFCP_0) and with PCM (RFCP_PCM), deteriorates the properties of fresh and hardened mortars compared to reference mortars. The negative impact of RFCP is less pronounced when it replaces sand rather than cement. Compared to RFCP_0 mortars, RFCP_PCM mortars exhibit reduced flowability. PCM delays setting and reduces heat evolution during the first 48 h of hardening. PCM does not significantly affect strength or water absorption but increases shrinkage and lowers thermal conductivity. While RFCP_PCM does not impair SP efficiency, PCM causes SP to significantly retard setting and hardening. Full article
Show Figures

Figure 1

15 pages, 2882 KB  
Article
Adopting Data-Driven Safety Management Strategy for Thermal Runaway Risks of Electric Vehicles: Insights from an Experimental Scenario
by Huxiao Shi, Yunli Xu, Jia Qiu, Yang Xu, Cuicui Zheng, Jie Geng, Davide Fissore and Micaela Demichela
Appl. Sci. 2026, 16(2), 996; https://doi.org/10.3390/app16020996 - 19 Jan 2026
Abstract
Thermal runaway (TR) of lithium-ion batteries (LIBs) represents a critical safety challenge in EV applications. This study explores the potential of data-driven safety management strategies for mitigating TR risks in EVs. To minimize the impact of external environmental factors on the degradation of [...] Read more.
Thermal runaway (TR) of lithium-ion batteries (LIBs) represents a critical safety challenge in EV applications. This study explores the potential of data-driven safety management strategies for mitigating TR risks in EVs. To minimize the impact of external environmental factors on the degradation of LIBs, experiments were conducted using an accelerating rate calorimeter (ARC). The intrinsic thermal behavior of six nickel–cobalt–manganese (NCM) cells at different states of health (SOH) and operating temperatures has been captured in created adiabatic conditions. Multiple sensors were deployed to monitor the temperature and electrochemical and environmental parameters throughout the degradation process until TR occurred. The results show that both the thermal and electrochemical stability of LIBs have been affected, exhibiting consistent thermal patterns and early electrochemical instability. Furthermore, even under adiabatic conditions, the degradation of LIBs show synergistic effects with environmental parameters such as chamber temperature and pressure. Correlation analysis further revealed the coupling relationships between the monitored parameters. Through calculating their correlation coefficients, the results indicate advantages of combining thermal, electrochemical, and environmental parameters as being to characterize the degradation of LIBs and enhance the identification of TR precursors. These findings stress the importance of considering the battery-environment system as a whole in safety management of EVs. They also provide insights into the development of data-driven safety management strategies, highlighting the potential for achievement and integration of anomaly detection, diagnosis, and prognostics functions in current EV management frameworks. Full article
(This article belongs to the Special Issue Safety and Risk Assessment in Industrial Systems)
Show Figures

Figure 1

13 pages, 4761 KB  
Article
Low Molecular Weight Acid-Modified Aluminum Nitride Powders for Enhanced Hydrolysis Resistance
by Linguang Wu, Yaling Yu, Shaomin Lin, Xianxue Li, Chenyang Zhang and Ji Luo
Inorganics 2026, 14(1), 30; https://doi.org/10.3390/inorganics14010030 - 18 Jan 2026
Viewed by 32
Abstract
Aluminum nitride (AlN) possesses an exceptional combination of high thermal conductivity and an ultra-wide band gap, rendering it highly attractive for electronic packaging and semiconductor substrate applications. In this study, surface chemical modification of AlN powders was performed employing low-molecular-weight organic acids, successfully [...] Read more.
Aluminum nitride (AlN) possesses an exceptional combination of high thermal conductivity and an ultra-wide band gap, rendering it highly attractive for electronic packaging and semiconductor substrate applications. In this study, surface chemical modification of AlN powders was performed employing low-molecular-weight organic acids, successfully yielding hydrolysis-resistant AlN powders. The underlying mechanisms responsible for the improved anti-hydrolysis performance imparted by both single organic acids and the composite acid were systematically investigated using X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM), characterization techniques. The results reveal that Oxalic acid within the concentration range of 0.25 M to 1.50 M partially inhibits the hydrolysis of aluminum nitride (AlN); however, hydrolysis products such as aluminum hydroxide are still formed. In the case of citric acid, a higher concentration leads to a stronger anti-hydrolysis effect on the modified AlN. No significant hydrolysis products were detected when the AlN sample was treated in a 1 M aqueous citric acid solution at 80 °C. The effectiveness of the organic acids in enhancing the hydrolysis resistance of AlN follows the order: composite acid (citric acid + oxalic acid) > citric acid > oxalic acid. Under the action of the composite acid, the AlN diffraction peaks exhibit the highest intensity. Furthermore, TEM observations reveal the formation of an amorphous protective layer on the surface, which contributes to the improved hydrolysis resistance. Analytical results confirmed that the surface modification process, mediated by citric acid, oxalic acid, or the composite acid, involved an esterification-like reaction between the surface hydroxyl groups on AlN and the chemical modifiers. This reaction led to the formation of a continuous protective coordination layer encapsulating the AlN particles, which serves as an effective diffusion barrier against water molecules, thereby significantly inhibiting the hydrolysis reaction. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

24 pages, 12498 KB  
Article
Study on Surface Properties and Microstructural Evolution of LA103Z Mg-Li Alloy by Friction Stir Processing
by Jiqiang Zhai, Kai Hu, Zihan Kong and Xinzhen Fang
Metals 2026, 16(1), 108; https://doi.org/10.3390/met16010108 - 18 Jan 2026
Viewed by 150
Abstract
Magnesium–lithium alloys are the lightest structural metals and offer high specific strength, good damping capacity, and excellent thermal conductivity; however, their limited room-temperature strength restricts wider engineering applications. In this study, friction stir processing (FSP) was applied to LA103Z magnesium–lithium alloy to modify [...] Read more.
Magnesium–lithium alloys are the lightest structural metals and offer high specific strength, good damping capacity, and excellent thermal conductivity; however, their limited room-temperature strength restricts wider engineering applications. In this study, friction stir processing (FSP) was applied to LA103Z magnesium–lithium alloy to modify its surface microstructure and mechanical properties. The effects of tool rotational speed and travelling speed on dynamic recrystallization behavior, grain refinement, and phase evolution in the stirred zone (SZ) and thermomechanically affected zone (TMAZ) were systematically investigated. FSP induced significant grain refinement accompanied by the precipitation of a reticular α-Mg phase along β-Li grain boundaries, as well as Li3Mg7 and Li2MgAl phases within the stirred zone, leading to pronounced strengthening. Under optimized processing conditions, substantial improvements in hardness and tensile properties were achieved compared with the base material. The optimal condition was obtained at 600 rpm and 100 mm/min, yielding an average hardness of 79.17 HV0.2, a tensile strength of 243.6 MPa, and an elongation of 17.9%, corresponding to increases of 47.5% in hardness and 53.3% in tensile strength. Quantitative relationships between heat input, grain size, and mechanical properties further demonstrate that heat input governs microstructural evolution and strengthening behavior during FSP of LA103Z alloy. Full article
(This article belongs to the Special Issue Surface Modification and Characterization of Metals and Alloys)
Show Figures

Figure 1

22 pages, 5734 KB  
Article
Multi-Aspect Evaluation of Ventilated Façade Brackets with Thermal Breaks
by Jan Barnat, Olga Rubinová, Aleš Rubina, Miroslav Bajer and Milan Šmak
Buildings 2026, 16(2), 398; https://doi.org/10.3390/buildings16020398 - 18 Jan 2026
Viewed by 56
Abstract
Ventilated façade systems are being increasingly used in energy-efficient building envelopes due to their configurational flexibility and potential to reduce thermal bridging. This study focuses on the experimental evaluation of anchoring components used in such systems, specifically examining the effect of various thermal [...] Read more.
Ventilated façade systems are being increasingly used in energy-efficient building envelopes due to their configurational flexibility and potential to reduce thermal bridging. This study focuses on the experimental evaluation of anchoring components used in such systems, specifically examining the effect of various thermal insulation pads and internal inserts on the system’s mechanical, thermal, and fire performance. A series of laboratory tests was carried out to assess the static behavior of aluminum brackets under both tensile (suction wind load) and compressive (pressure wind load) forces. The results demonstrate that the use of thermal pads and inserts does not lead to any significant degradation of the mechanical capacity of the anchoring brackets, confirming their structural reliability. Additional thermal testing revealed that the use of insulating materials significantly reduces heat transfer through the brackets. Fire resistance tests were conducted to compare the performance of different types of insulation pads under elevated temperatures. The findings indicate that the choice of pad material substantially influences both fire integrity and thermal performance. This study confirms the potential of incorporating optimized insulating pads and inserts into façade brackets to enhance the thermal and fire performance of ventilated façades without compromising their structural behavior. Full article
(This article belongs to the Special Issue Advances in Energy-Efficient Building Design and Renovation)
Show Figures

Figure 1

18 pages, 2971 KB  
Article
First Experimental Measurements of Biophotons from Astrocytes and Glioblastoma Cell Cultures
by Luca De Paolis, Elisabetta Pace, Chiara Maria Mazzanti, Mariangela Morelli, Francesca Di Lorenzo, Lucio Tonello, Catalina Curceanu, Alberto Clozza, Maurizio Grandi, Ivan Davoli, Angelo Gemignani, Paolo Grigolini and Maurizio Benfatto
Entropy 2026, 28(1), 112; https://doi.org/10.3390/e28010112 - 17 Jan 2026
Viewed by 81
Abstract
Biophotons are non-thermal and non-bioluminescent ultraweak photon emissions, first hypothesised by Gurwitsch as a regulatory mechanism in cell division, and then experimentally observed in living organisms. Today, two main hypotheses explain their origin: stochastic decay of excited molecules and coherent electromagnetic fields produced [...] Read more.
Biophotons are non-thermal and non-bioluminescent ultraweak photon emissions, first hypothesised by Gurwitsch as a regulatory mechanism in cell division, and then experimentally observed in living organisms. Today, two main hypotheses explain their origin: stochastic decay of excited molecules and coherent electromagnetic fields produced in biochemical processes. Recent interest focuses on the role of biophotons in cellular communication and disease monitoring. This study presents the first campaign of biophoton emission measurements from cultured astrocytes and glioblastoma cells, conducted at Fondazione Pisana per la Scienza (FPS) using two ultra-sensitive setups developed in collaboration between the National Laboratories of Frascati (LNF-INFN) and the University of Rome II Tor Vergata. The statistical analyses of the collected data revealed a clear separation between cellular signals and dark noise, confirming the high sensitivity of the apparatus. The Diffusion Entropy Analysis (DEA) was applied to the data to uncover dynamic patterns, revealing anomalous diffusion and long-range memory effects that may be related to intercellular signaling and cellular communication. These findings support the hypothesis that biophoton emissions encode rich information beyond intensity, reflecting metabolic and pathological states. The differences revealed by applying the Diffusion Entropy Analysis to the biophotonic signals of Astrocytes and Glioblastoma are highlighted and discussed in the paper. This work lays the groundwork for future studies on neuronal cultures and proposes biophoton dynamics as a promising tool for non-invasive diagnostics and the study of cellular communication. Full article
(This article belongs to the Section Entropy and Biology)
Show Figures

Figure 1

16 pages, 3945 KB  
Article
Analysis of Multi-Physics Thermal Response Characteristics of Anchor Rod and Sealant Systems Under Fire Scenarios
by Kui Tian, Rui Rao, Yu Zeng, Sihang Chen and Qingyuan Xu
Buildings 2026, 16(2), 383; https://doi.org/10.3390/buildings16020383 - 16 Jan 2026
Viewed by 76
Abstract
During on-site welding operations, the sealant coated on anchor bolt surfaces can be ignited by hot particles or localized sparks, potentially triggering a fire hazard. This combustion process involves a complex multi-physics coupling among sealant combustion, convective and radiative heat transfer, and three-dimensional [...] Read more.
During on-site welding operations, the sealant coated on anchor bolt surfaces can be ignited by hot particles or localized sparks, potentially triggering a fire hazard. This combustion process involves a complex multi-physics coupling among sealant combustion, convective and radiative heat transfer, and three-dimensional heat conduction in solids. To resolve this coupling, a simulation strategy is proposed that correspondingly integrates the Fire Dynamics Simulator (FDS, version 6.7.6) for modeling combustion and radiation with ABAQUS (2024) for simulating conductive heat transfer in solids. The proposed method is validated against experimental measurements, showing close agreement in temperature evolution. It also demonstrates robustness across varying geometric scales, thereby confirming its reliability for predicting thermal response. Using this validated method, simulations are performed to analyze the fire behavior of an anchor rod-sealant system. Results show that the burning sealant can raise anchor rod temperatures above 900 °C and lead to rapid flame spread between adjacent rods. Furthermore, a sensitivity analysis of thermophysical parameters identifies critical thresholds for fire safety optimization: sealants with an ignition temperature > 280 °C and thermal conductivity ≥ 0.26 W/(m·K) demonstrate effective self-extinguishing properties, while specific heat capacity can retard flame growth. These findings provide a robust numerical framework and quantitative guidelines for the fire-safe design of bridge anchorage systems. Full article
(This article belongs to the Special Issue Advances in Steel and Composite Structures)
Show Figures

Figure 1

34 pages, 12428 KB  
Article
Seasonal Changes in Indoor Thermal Conditions and Thermal Comfort in Urban Houses in the Warm–Humid Climate of India
by Subhagata Mukhopadhyay, Nikhil Kumar, Tetsu Kubota, Shankha Pratim Bhattacharya, Hanief Ariefman Sani and Takashi Asawa
Buildings 2026, 16(2), 382; https://doi.org/10.3390/buildings16020382 - 16 Jan 2026
Viewed by 144
Abstract
Cities in India experience distinct seasons, including summer, winter and monsoons. the understanding of thermal comfort within modern houses throughout the different seasons is pivotal for determining a passive design strategy for residences, towards carbon neutrality. Long-term investigations were conducted within five typical [...] Read more.
Cities in India experience distinct seasons, including summer, winter and monsoons. the understanding of thermal comfort within modern houses throughout the different seasons is pivotal for determining a passive design strategy for residences, towards carbon neutrality. Long-term investigations were conducted within five typical houses in the warm–humid climate of Kharagpur, India, spanning three seasons from July 2023 to July 2024. These included air temperature (AT), relative humidity (RH), indoor wind speed and globe temperature for calculating standard effective temperature (SET*). The SET* was used in thermal comfort evaluation, focusing on the cooling effects of elevated wind speeds. The results showed that indoor ATs were well stabilized among the houses, ranging from 27 to 32 °C in monsoon, 20 to 23 °C in winter and 30 to 32 °C in summer on average, due to the effects of high thermal mass structure with relatively small openings. Overall, both the house-wise differences (1–2 °C) and diurnal differences (0.5–3 °C) were much smaller than the seasonal differences. It was found that the resultant indoor operative temperatures (OTs) did not fall within the required comfort levels during the summer and monsoons, whereas those of the winter months met the required standard. The current modern Indian houses of high thermal mass structure prevented flexible adaptations to the dynamic seasonal changes as well as changes within a day. The occupants tended to reduce the SET* by increasing the wind speeds with the assistance of mechanical air circulation, thus reducing the perceived AT by 5 °C in summers. Separate design strategies should be adopted seasonally and in different parts of the day, to maintain a thermally comfortable environment for the occupants. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

14 pages, 1350 KB  
Review
Current and Emerging Energy Sources for Atrial Fibrillation Ablation: A Comparative Analysis of Clinical Efficacy, Safety, and Procedural Implementation
by Cristian Martignani, Giulia Massaro, Alberto Spadotto, Jennifer Oppimitti, Maria Carelli, Andrea Angeletti, Alessandro Carecci, Igor Diemberger and Mauro Biffi
J. Clin. Med. 2026, 15(2), 751; https://doi.org/10.3390/jcm15020751 - 16 Jan 2026
Viewed by 115
Abstract
Atrial fibrillation (AF) management has historically relied on thermal ablation modalities—radiofrequency (RF) and cryoballoon—which have established a high benchmark for pulmonary vein isolation (PVI). However, the inherent risk of collateral thermal injury and lesion inconsistency has driven the search for alternative energy sources. [...] Read more.
Atrial fibrillation (AF) management has historically relied on thermal ablation modalities—radiofrequency (RF) and cryoballoon—which have established a high benchmark for pulmonary vein isolation (PVI). However, the inherent risk of collateral thermal injury and lesion inconsistency has driven the search for alternative energy sources. The recent clinical adoption of pulsed-field ablation (PFA), based on irreversible electroporation, represents a significant technological evolution. This narrative review provides a critical appraisal of the transition from thermal to pulsed-field technologies. We synthesized data from pivotal trials and recent health-economic analyses to evaluate the biophysical mechanisms, clinical efficacy, and safety profiles of contemporary devices. We conduct a head-to-head comparison of all modalities regarding critical safety endpoints (esophageal, neurological, and vascular), real-world procedural challenges (anesthesia, lesion assessment), and economic sustainability. While PFA offers distinct advantages in procedural speed and tissue selectivity, we highlight that thermal modalities—particularly cryoballoon and very-high-power RF—retain competitive profiles in terms of cost-effectiveness and established long-term durability. This review aims to provide a balanced roadmap for clinicians navigating the complex choice between established thermal efficacy and the promising, yet evolving, landscape of electroporation. Full article
Show Figures

Figure 1

25 pages, 7202 KB  
Article
Optimal Design of a Coaxial Magnetic Gear Considering Thermal Demagnetization and Structural Robustness for Torque Density Enhancement
by Tae-Kyu Ji and Soo-Whang Baek
Actuators 2026, 15(1), 59; https://doi.org/10.3390/act15010059 - 16 Jan 2026
Viewed by 176
Abstract
This study presents an optimal design combined with comprehensive multiphysics validation to enhance the torque density of a coaxial magnetic gear (CMG) incorporating an overhang structure. Four high non-integer gear-ratio CMG configurations exceeding 1:10 were designed using different pole-pair combinations, and three-dimensional finite [...] Read more.
This study presents an optimal design combined with comprehensive multiphysics validation to enhance the torque density of a coaxial magnetic gear (CMG) incorporating an overhang structure. Four high non-integer gear-ratio CMG configurations exceeding 1:10 were designed using different pole-pair combinations, and three-dimensional finite element method (3D FEM) was employed to accurately capture axial leakage flux and overhang-induced three-dimensional effects. Eight key geometric design variables were selected within non-saturating limits, and 150 sampling points were generated using an Optimal Latin Hypercube Design (OLHD). Multiple surrogate models were constructed and evaluated using the root-mean-square error (RMSE), and the Kriging model was selected for multi-objective optimization using a genetic algorithm. The optimized CMG with a 1:10.66 gear ratio achieved a 130.76% increase in average torque (65.75 Nm) and a 162.51% improvement in torque density (117.14 Nm/L) compared with the initial design. Harmonic analysis revealed a strengthened fundamental component and a reduction in total harmonic distortion, indicating improved waveform quality. To ensure the feasibility of the optimized design, comprehensive multiphysics analyses—including electromagnetic–thermal coupled simulation, high-temperature demagnetization analysis, and structural stress evaluation—were conducted. The results confirm that the proposed CMG design maintains adequate thermal stability, magnetic integrity, and mechanical robustness under rated operating conditions. These findings demonstrate that the proposed optimal design approach provides a reliable and effective means of enhancing the torque density of high gear-ratio CMGs, offering practical design guidance for electric mobility, robotics, and renewable energy applications. Full article
Show Figures

Figure 1

21 pages, 4861 KB  
Article
Synthesis and Characterization of ITO Films via Forced Hydrolysis for Surface Functionalization of PET Sheets
by Silvia del Carmen Madrigal-Diaz, Laura Cristel Rodríguez-López, Isaura Victoria Fernández-Orozco, Saúl García-López, Cecilia del Carmen Díaz-Reyes, Claudio Martínez-Pacheco, José Luis Cervantes-López, Ibis Ricárdez-Vargas and Laura Lorena Díaz-Flores
Coatings 2026, 16(1), 120; https://doi.org/10.3390/coatings16010120 - 16 Jan 2026
Viewed by 77
Abstract
Transparent conductive oxides (TCOs), such as indium tin oxide (ITO), are essential for flexible electronics; however, conventional vacuum-based deposition is costly and thermally aggressive for polymers. This study investigated the surface functionalization of PET substrates with ITO thin film-based forced hydrolysis as a [...] Read more.
Transparent conductive oxides (TCOs), such as indium tin oxide (ITO), are essential for flexible electronics; however, conventional vacuum-based deposition is costly and thermally aggressive for polymers. This study investigated the surface functionalization of PET substrates with ITO thin film-based forced hydrolysis as a low-cost, reproducible alternative. SnO2 nanoparticles were synthesized by forced hydrolysis at 180 °C for 3 h and 6 h, yielding crystalline nanoparticles with a cassiterite phase and an average crystallite size of 20.34 nm. The process showed high reproducibility, enabling consistent structural properties without complex equipment or high-temperature treatments. The SnO2 sample obtained at 3 h was incorporated into commercial In2O3 to form a mixed In–Sn–O oxide, which was subsequently deposited onto PET substrates by spin coating onto UV-activated PET. The resulting 1.1 µm ITO films demonstrated good adhesion (4B according to ASTM D3359), a low resistivity of 1.27 × 10−6 Ω·m, and an average optical transmittance of 80% in the visible range. Although their resistivity is higher than vacuum-processed films, this route provides a superior balance of mechanical robustness, featuring a hardness of (H) of 3.8 GPa and an elastic modulus (E) of 110 GPa. These results highlight forced hydrolysis as a reproducible route for producing ITO/PET thin films. The thickness was strategically optimized to act as a structural buffer, preventing crack propagation during bending. Forced hydrolysis-driven PET sheet functionalization is an effective route for producing durable ITO/PET electrodes that are suitable for flexible sensors and solar cells. Full article
(This article belongs to the Special Issue Recent Advances in Surface Functionalisation, 2nd Edition)
Show Figures

Figure 1

22 pages, 5885 KB  
Article
Performance Analysis of Phase Change Material Walls and Different Window-to-Wall Ratios in Elderly Care Home Buildings Under Hot-Summer and Cold-Winter Climate
by Wuying Chen, Bao Xie and Lu Nie
Buildings 2026, 16(2), 367; https://doi.org/10.3390/buildings16020367 - 15 Jan 2026
Viewed by 159
Abstract
In regions with hot summers and cold winters, elderly care buildings face the dual challenges of high energy consumption and stringent thermal comfort requirements. Using Nanchang as a case study, this research presents an optimization approach that integrates phase change material (PCM) walls [...] Read more.
In regions with hot summers and cold winters, elderly care buildings face the dual challenges of high energy consumption and stringent thermal comfort requirements. Using Nanchang as a case study, this research presents an optimization approach that integrates phase change material (PCM) walls with the window-to-wall ratio (WWR). PCM wall performance was tested experimentally, and EnergyPlus simulations were conducted to assess building energy use for WWR values ranging from 0.25 to 0.50, with and without PCM. The phase change material (PCM) used in this study is paraffin (an organic phase change material), which has a melting point of 26 °C and can store and release heat during temperature fluctuations. The experimental results show that PCM walls effectively reduce heat transfer, lowering the surface temperatures of external, central, and internal walls by 3.9 °C, 3.8 °C, and 3.7 °C, respectively, compared to walls without PCM. The simulation results predict that the PCM wall can reduce air conditioning energy consumption by 8.2% in summer and total annual energy consumption by 14.2%. The impact of WWR is orientation-dependent: east and west façades experience significant cooling penalties as WWR increases and should be maintained at or below 0.30; the south façade achieves optimal performance at a WWR of 0.40, with the lowest total energy load (111.2 kW·h·m-2); and the north façade performs best at the lower bound (WWR = 0.25). Under the combined strategy (south wall with PCM and WWR = 0.40), annual total energy consumption is reduced by 9.8% compared to the baseline (no PCM), with indoor temperatures maintained between 18 and 26 °C. This range is selected based on international thermal comfort standards (e.g., ASHRAE) and comfort research specifically targeting the elderly population, ensuring comfort for elderly occupants. These findings offer valuable guidance for energy-efficient design in similar climates and demonstrate that the synergy between PCM and WWR can reduce energy consumption while maintaining thermal comfort. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop