Current and Emerging Energy Sources for Atrial Fibrillation Ablation: A Comparative Analysis of Clinical Efficacy, Safety, and Procedural Implementation
Abstract
1. Introduction
2. Methods
3. Thermal Modalities: Established Standards and Persistent Limitations
3.1. Radiofrequency and the Pursuit of Lesion Durability
3.2. Cryoballoon: Efficiency and Anatomical Considerations
3.3. Laser Balloon: Visual Precision and Versatility
4. Biophysics of Electroporation: Beyond the “Non-Thermal” Label
5. Pulsed-Field Ablation: Technological Approaches and Critical Appraisal
5.1. Pentaspline Catheters (Farawave)
- Critical Appraisal: The main limitation of the first-generation system was the lack of integration with electroanatomical mapping (“blind” procedure), necessitating heavy fluoroscopy use. While the “single-shot” approach is fast, it lacks the feedback of contact force, relying entirely on catheter positioning to ensure field coverage.
5.2. Circular Loop Catheters (PulseSelect, Varipulse)
- PulseSelect (Medtronic): This fixed-diameter loop was evaluated in the PULSED AF trial, achieving 66% freedom from arrhythmia at one year [20]. While safety was exceptional (0% esophageal/phrenic injury), the efficacy was slightly lower than historical thermal benchmarks, likely due to the learning curve and the fixed loop size not fitting all anatomies.
- Varipulse (Biosense Webster): This variable-loop catheter integrates fully with the CARTO 3 system. The INSPIRE trial reported 100% acute isolation and zero primary adverse events [24]. The integration with 3D mapping allows for “lesion tagging”, addressing the “blindness” of earlier systems and potentially reducing gap formation.
5.3. Balloon-Based Systems (Volt, OptiShot)
- Volt (Abbott): Uses a “balloon-in-basket” design to insulate the blood pool while splines deliver energy [25].
- OptiShot (Galvanize): Incorporates the direct endoscopic visualization of laser balloons. This addresses a critical PFA challenge: verifying tissue contact. Visual confirmation of blood displacement could theoretically improve lesion transmurality assurance [26].
5.4. Focal/Lattice-Tip Catheters (Sphere-9)
- Critical Appraisal: This device provides maximum flexibility for treating non-PV triggers (e.g., mitral lines, localized reentry) where single-shot tools fail. However, point-by-point PFA is slower than single-shot approaches, negating the “speed” advantage of PFA, but offering a comprehensive tool for complex substrates.
6. Nanosecond PFA: Theoretical Advantages vs. Clinical Reality
7. Safety Profile: A Multi-Energy Comparative Analysis
7.1. Collateral Damage: Esophagus and Phrenic Nerve
7.2. Neurological Safety: Thromboembolism and Microbubbles
7.3. Vascular Complications: Stenosis vs. Spasm
7.4. Mechanical Complications: Pericardial Effusion
8. Real-World Challenges: The Operator’s Perspective
8.1. Workflow and Anesthesia
8.2. Lesion Quality Assessment
8.3. The “Learning Curve” Factor
| Aspect | RF (Standard) | Cryoballoon | PFA (Microsecond) | nsPFA (Nanosecond, Emerging) | Notes/Evidence |
|---|---|---|---|---|---|
| Average Procedural Time | 90–120 min | 60–90 min | 45–60 min | <45 min (preclinical/estimated) | PFA reduces “skin-to-skin” time, improving lab throughput [39] |
| Workflow Complexity | High point-by-point, operator dependent | Medium single-shot, vein occlusion required | Low reproducible single-shot isolation | Very low potential sedation-only workflow | Lower complexity allows higher daily case volumes |
| Device Cost (per procedure) | Low-Medium | Medium | High | High (next-gen) | PFA devices cost more, but reduce downstream costs [40,41] |
| Redo/Retreatment Rate | 10–20% | 10–15% | 5–10% | Estimated < 5% | Durable lesions reduce need for repeat procedures [39,41] |
| Major Complications | AEF, PV stenosis, char (1–2%) | Phrenic nerve palsy (2–4%), PV stenosis | Rare-minimal AEF, PV stenosis | Expected lower than microsecond PFA | PFA’s tissue selectivity reduces collateral injury [22,23] |
| Microbubble/Embolic Risk | Moderate | Low | Low (3–10%) | Minimal | nsPFA may reduce electrolysis-related microbubbles [28] |
| Total Cost of Care | Medium-High | Medium | Competitive | Competitive | Includes hospital stay, anesthesia, management of complications |
| Economic Advantage | Limited | Moderate | High–faster workflow | High-additional savings with sedation | ICER within willingness-to-pay thresholds for PFA [39] |
| Challenge | Thermal Modalities (RF/Cryo/Laser) | Pulsed-Field Ablation (PFA) |
|---|---|---|
| Anesthesia | Often feasible with Conscious Sedation. | Often requires General Anesthesia (muscle capture). |
| Lesion Feedback | Good: Contact Force (RF), Temperature/Time (Cryo), Visual (Laser). | Poor: No direct metric for depth; relies on electrogram reduction. |
| Anatomy | Cryo/Laser: Limited by vein size/shape (occlusion). RF: Highly adaptable. | Single-shot PFA: Limited by spline/loop contact. Focal PFA: Adaptable. |
| Vascular | Risk of PV Stenosis (structural damage). | Risk of Coronary Spasm (functional effect). |
| Learning Curve | RF/Laser: Steep/Moderate. | PFA: Short (comparable to Cryo). |
9. Economic Analysis: The Value Equation
9.1. Direct Costs vs. Efficiency
9.2. Long-Term Value: The Cost of Recurrence
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lippi, G.; Sanchis-Gomar, F.; Cervellin, G. Global Epidemiology of Atrial Fibrillation: An Increasing Epidemic and Public Health Challenge. Int. J. Stroke 2021, 16, 217–221. [Google Scholar] [CrossRef]
- Van Gelder, I.C.; Rienstra, M.; Bunting, K.V.; Casado-Arroyo, R.; Caso, V.; Crijns, H.J.G.M.; De Potter, T.J.R.; Dwight, J.; Guasti, L.; Hanke, T.; et al. 2024 ESC Guidelines for the Management of Atrial Fibrillation Developed in Collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2024, 45, 3314–3414. [Google Scholar] [CrossRef] [PubMed]
- Kirchhof, P.; Camm, A.J.; Goette, A.; Brandes, A.; Eckardt, L.; Elvan, A.; Fetsch, T.; van Gelder, I.C.; Haase, D.; Haegeli, L.M.; et al. Early Rhythm-Control Therapy in Patients with Atrial Fibrillation. N. Engl. J. Med. 2020, 383, 1305–1316. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.G.; Wells, G.A.; Deyell, M.W.; Bennett, M.; Essebag, V.; Champagne, J.; Roux, J.-F.; Yung, D.; Skanes, A.; Khaykin, Y.; et al. Cryoablation or Drug Therapy for Initial Treatment of Atrial Fibrillation. N. Engl. J. Med. 2021, 384, 305–315. [Google Scholar] [CrossRef]
- Wazni, O.M.; Dandamudi, G.; Sood, N.; Hoyt, R.; Tyler, J.; Durrani, S.; Niebauer, M.; Makati, K.; Halperin, B.; Gauri, A.; et al. Cryoballoon Ablation as Initial Therapy for Atrial Fibrillation. N. Engl. J. Med. 2021, 384, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Haïssaguerre, M.; Jaïs, P.; Shah, D.C.; Takahashi, A.; Hocini, M.; Quiniou, G.; Garrigue, S.; Le Mouroux, A.; Le Métayer, P.; Clémenty, J. Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. N. Engl. J. Med. 1998, 339, 659–666. [Google Scholar] [CrossRef]
- Kapur, S.; Barbhaiya, C.; Deneke, T.; Michaud, G.F. Esophageal Injury and Atrioesophageal Fistula Caused by Ablation for Atrial Fibrillation. Circulation 2017, 136, 1247–1255. [Google Scholar] [CrossRef]
- Fender, E.A.; Widmer, R.J.; Hodge, D.O.; Cooper, G.M.; Monahan, K.H.; Peterson, L.A.; Holmes, D.R.; Packer, D.L. Severe Pulmonary Vein Stenosis Resulting From Ablation for Atrial Fibrillation. Circulation 2016, 134, 1812–1821. [Google Scholar] [CrossRef]
- Reddy, V.Y.; Koruth, J.; Jais, P.; Petru, J.; Timko, F.; Skalsky, I.; Hebeler, R.; Labrousse, L.; Barandon, L.; Kralovec, S.; et al. Ablation of Atrial Fibrillation With Pulsed Electric Fields: An Ultra-Rapid, Tissue-Selective Modality for Cardiac Ablation. JACC Clin. Electrophysiol. 2018, 4, 987–995. [Google Scholar] [CrossRef]
- Brasca, F.M.; Curti, E.; Perego, G.B. Thermal and Non-Thermal Energies for Atrial Fibrillation Ablation. J. Clin. Med. 2025, 14, 2071. [Google Scholar] [CrossRef]
- Haines, D.E. The Biophysics of Radiofrequency Catheter Ablation in the Heart: The Importance of Temperature Monitoring. Pacing Clin. Electrophysiol. 1993, 16, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Shurrab, M.; Di Biase, L.; Briceno, D.F.; Kaoutskaia, A.; Haj-Yahia, S.; Newman, D.; Lashevsky, I.; Nakagawa, H.; Crystal, E. Impact of Contact Force Technology on Atrial Fibrillation Ablation: A Meta-Analysis. J. Am. Heart Assoc. 2015, 4, e002476. [Google Scholar] [CrossRef] [PubMed]
- Ravi, V.; Poudyal, A.; Abid, Q.-U.-A.; Larsen, T.; Krishnan, K.; Sharma, P.S.; Trohman, R.G.; Huang, H.D. High-Power Short Duration vs. Conventional Radiofrequency Ablation of Atrial Fibrillation: A Systematic Review and Meta-Analysis. EP Eur. 2021, 23, 710–721. [Google Scholar] [CrossRef]
- Heeger, C.-H.; Kuck, K.-H.; Tilz, R.R. Very High-Power Short-Duration Catheter Ablation for Treatment of Cardiac Arrhythmias: Insights from the FAST and FURIOUS Study Series. J. Cardiovasc. Electrophysiol. 2024, 35, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Kuck, K.-H.; Brugada, J.; Fürnkranz, A.; Metzner, A.; Ouyang, F.; Chun, K.R.J.; Elvan, A.; Arentz, T.; Bestehorn, K.; Pocock, S.J.; et al. Cryoballoon or Radiofrequency Ablation for Paroxysmal Atrial Fibrillation. N. Engl. J. Med. 2016, 374, 2235–2245. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Kowal, R.; Kowalski, M.; Metzner, A.; Svinarich, J.T.; Wheelan, K.; Wang, P. Best Practice Guide for Cryoballoon Ablation in Atrial Fibrillation: The Compilation Experience of More than 3000 Procedures. Heart Rhythm 2015, 12, 1658–1666. [Google Scholar] [CrossRef]
- Murray, M.-I.; Arnold, A.; Younis, M.; Varghese, S.; Zeiher, A.M. Cryoballoon versus Radiofrequency Ablation for Paroxysmal Atrial Fibrillation: A Meta-Analysis of Randomized Controlled Trials. Clin. Res. Cardiol. 2018, 107, 658–669. [Google Scholar] [CrossRef]
- Dukkipati, S.R.; Cuoco, F.; Kutinsky, I.; Aryana, A.; Bahnson, T.D.; Lakkireddy, D.; Woollett, I.; Issa, Z.F.; Natale, A.; Reddy, V.Y.; et al. Pulmonary Vein Isolation Using the Visually Guided Laser Balloon: A Prospective, Multicenter, and Randomized Comparison to Standard Radiofrequency Ablation. J. Am. Coll. Cardiol. 2015, 66, 1350–1360. [Google Scholar] [CrossRef]
- Martignani, C.; Rovaris, G.; Tilz, R.R.; Schiavone, M.; Ciconte, G.; Giaccardi, M.; Miracapillo, G.; Giomi, A.; Arena, G.; Spadotto, A.; et al. Atrial Fibrillation Laser Balloon Ablation: Multicenter International Study. Heart Rhythm O2 2025, 6, 1870–1876. [Google Scholar] [CrossRef]
- Verma, A.; Haines, D.E.; Boersma, L.V.; Sood, N.; Natale, A.; Marchlinski, F.E.; Calkins, H.; Sanders, P.; Packer, D.L.; Kuck, K.-H.; et al. Pulsed Field Ablation for the Treatment of Atrial Fibrillation: PULSED AF Pivotal Trial. Circulation 2023, 147, 1422–1432. [Google Scholar] [CrossRef]
- Koruth, J.S.; Kuroki, K.; Kawamura, I.; Brose, R.; Viswanathan, R.; Buck, E.D.; Donskoy, E.; Neuzil, P.; Dukkipati, S.R.; Reddy, V.Y. Pulsed Field Ablation Versus Radiofrequency Ablation: Esophageal Injury in a Novel Porcine Model. Circ. Arrhythmia Electrophysiol. 2020, 13, e008303. [Google Scholar] [CrossRef]
- Reddy, V.Y.; Gerstenfeld, E.P.; Natale, A.; Whang, W.; Cuoco, F.A.; Patel, C.; Mountantonakis, S.E.; Gibson, D.N.; Harding, J.D.; Ellis, C.R.; et al. Pulsed Field or Conventional Thermal Ablation for Paroxysmal Atrial Fibrillation. N. Engl. J. Med. 2023, 389, 1660–1671. [Google Scholar] [CrossRef]
- Turagam, M.K.; Neuzil, P.; Schmidt, B.; Reichlin, T.; Neven, K.; Metzner, A.; Hansen, J.; Blaauw, Y.; Maury, P.; Arentz, T.; et al. Safety and Effectiveness of Pulsed Field Ablation to Treat Atrial Fibrillation: One-Year Outcomes From the MANIFEST-PF Registry. Circulation 2023, 148, 35–46. [Google Scholar] [CrossRef]
- Duytschaever, M.; De Potter, T.; Grimaldi, M.; Anic, A.; Vijgen, J.; Neuzil, P.; Van Herendael, H.; Verma, A.; Skanes, A.; Scherr, D.; et al. Paroxysmal Atrial Fibrillation Ablation Using a Novel Variable-Loop Biphasic Pulsed Field Ablation Catheter Integrated With a 3-Dimensional Mapping System: 1-Year Outcomes of the Multicenter inspIRE Study. Circ. Arrhythmia Electrophysiol. 2023, 16, e011780. [Google Scholar] [CrossRef] [PubMed]
- Tilz, R.R.; Chierchia, G.B.; Gunawardene, M.; Sanders, P.; Haqqani, H.; Kalman, J.; Healy, S.; Pürerfellner, H.; Neuzil, P.; Asensi, J.O.; et al. Safety and Effectiveness of the First Balloon-in-Basket Pulsed Field Ablation System for the Treatment of Atrial Fibrillation: VOLT CE Mark Study 6-Month Results. EP Eur. 2025, 27, euaf072. [Google Scholar] [CrossRef] [PubMed]
- CardioFocus. Pulmonary Vein Isolation with the Single Shot Endoscopic Ultra-Compliant Pulsed Field Ablation Balloon for the Treatment of Atrial Fibrillation; ClinicalTrials.gov: Bethesda, MD, USA, 2025.
- Anter, E.; Mansour, M.; Nair, D.G.; Sharma, D.; Taigen, T.L.; Neuzil, P.; Kiehl, E.L.; Kautzner, J.; Osorio, J.; Mountantonakis, S.; et al. Dual-Energy Lattice-Tip Ablation System for Persistent Atrial Fibrillation: A Randomized Trial. Nat. Med. 2024, 30, 2303–2310. [Google Scholar] [CrossRef] [PubMed]
- Nies, M.; Watanabe, K.; Kawamura, I.; Wang, B.J.; Litt, J.; Turovskiy, R.; Danitz, D.J.; Uecker, D.R.; Linder, K.E.; Maejima, Y.; et al. Ablating Myocardium Using Nanosecond Pulsed Electric Fields: Preclinical Assessment of Feasibility, Safety, and Durability. Circ. Arrhythmia Electrophysiol. 2024, 17, e012854. [Google Scholar] [CrossRef]
- Xie, F.; Varghese, F.; Pakhomov, A.G.; Semenov, I.; Xiao, S.; Philpott, J.; Zemlin, C. Ablation of Myocardial Tissue With Nanosecond Pulsed Electric Fields. PLoS ONE 2015, 10, e0144833. [Google Scholar] [CrossRef]
- Di Biase, L.; Gaita, F.; Toso, E.; Santangeli, P.; Mohanty, P.; Rutledge, N.; Yan, X.; Mohanty, S.; Trivedi, C.; Bai, R.; et al. Does Periprocedural Anticoagulation Management of Atrial Fibrillation Affect the Prevalence of Silent Thromboembolic Lesion Detected by Diffusion Cerebral Magnetic Resonance Imaging in Patients Undergoing Radiofrequency Atrial Fibrillation Ablation with Open Irrigated Catheters? Results from a Prospective Multicenter Study. Heart Rhythm 2014, 11, 791–798. [Google Scholar] [CrossRef]
- Hu, X.; Li, W.; Ren, B.; Zeng, R. Incidence of Silent Cerebral Events Detected by MRI in Patients with Atrial Fibrillation Undergoing Pulsed Field Ablation vs Thermal Ablation: A Systematic Review and Network Meta-Analysis. Heart Rhythm 2025, 23, 32–43. [Google Scholar] [CrossRef]
- Kuroki, K.; Whang, W.; Eggert, C.; Lam, J.; Leavitt, J.; Kawamura, I.; Reddy, A.; Morrow, B.; Schneider, C.; Petru, J.; et al. Ostial Dimensional Changes after Pulmonary Vein Isolation: Pulsed Field Ablation vs Radiofrequency Ablation. Heart Rhythm 2020, 17, 1528–1535. [Google Scholar] [CrossRef]
- Gunawardene, M.A.; Schaeffer, B.N.; Jularic, M.; Eickholt, C.; Maurer, T.; Akbulak, R.Ö.; Flindt, M.; Anwar, O.; Hartmann, J.; Willems, S. Coronary Spasm During Pulsed Field Ablation of the Mitral Isthmus Line. JACC Clin. Electrophysiol. 2021, 7, 1618–1620. [Google Scholar] [CrossRef]
- Carboni, L.; Tondo, C.; Rossillo, A.; Polselli, M.; Themistoclakis, S.; Dello Russo, A.; Volpicelli, M.; Maggio, R.; Bertini, M.; De Simone, A.; et al. Sedation Protocols for Atrial Fibrillation Ablation Using Pulsed-Field Ablation: Patient and Operator-Reported Outcomes from a Large Nationwide Study. Europace 2025, 27, euaf085.383. [Google Scholar] [CrossRef]
- Heeger, C.-H.; Gassanov, N.; Mutallimov, M. Anaesthesia for Pulsed Field Ablation Procedures. Arrhythmia Electrophysiol. Rev. 2025, 14, e25. [Google Scholar] [CrossRef] [PubMed]
- Keçe, F.; de Riva, M.; Alizadeh Dehnavi, R.; Wijnmaalen, A.P.; Mertens, B.J.; Schalij, M.J.; Zeppenfeld, K.; Trines, S.A. Predicting Early Reconnection after Cryoballoon Ablation with Procedural and Biophysical Parameters. Heart Rhythm O2 2021, 2, 290–297. [Google Scholar] [CrossRef]
- Velagic, V.; Prepolec, I.; Pasara, V.; Puljevic, M.; Puljevic, D.; Planinc, I.; Samardzic, J.; Milicic, D. Learning Curves in Atrial Fibrillation Ablation—A Comparison between Second Generation Cryoballoon and Contact Force Sensing Radiofrequency Catheters. Indian Pacing Electrophysiol. J. 2020, 20, 273–280. [Google Scholar] [CrossRef]
- Kueffer, T.; King, R.; Maurhofer, J.; Iqbal, S.U.R.; Thalmann, G.; Kozhuharov, N.A.; Galuszka, O.; Servatius, H.; Haeberlin, A.; Noti, F.; et al. Beyond the Learning Curve: How Operator Experience Affects Pulsed-Field Ablation Outcomes. Heart Rhythm, 2025; in press. [Google Scholar] [CrossRef]
- Neužil, P.; Ferrero de Loma-Osorio, A.; Martínez Brotons, Á.; Bondanza Saavedra, L.; Mei, D.A.; Moučka, P.; Uffenorde, S.; Vieira Ruiz, J.; Boriani, G. Cost-Consequence Analysis of Three Cardiac Ablation Technologies in Paroxysmal Atrial Fibrillation. J. Med. Econ. 2025, 28, 1826–1839. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, H.; Dastjerdi, P.; Mohammadi, N.S.H.; Shayesteh, H.; Yarmohammadi, H.; Mollazadeh, R. Cost Comparison of Pulsed Field Ablation and Conventional Thermal Ablation for Atrial Fibrillation: A Systematic Review. Pacing Clin. Electrophysiol. 2025. online ahead of print. [Google Scholar] [CrossRef]
- Padula, W.V.; Paffrath, A.; Jacobsen, C.M.; Cohen, B.G.; Nadboy, R.; Sutton, B.S.; Gerstenfeld, E.P.; Mansour, M.; Reddy, V.Y. Comparing Pulsed Field Ablation and Thermal Energy Catheter Ablation for Paroxysmal Atrial Fibrillation: A Cost-Effectiveness Analysis of the ADVENT Trial. J. Med. Econ. 2025, 28, 127–135. [Google Scholar] [CrossRef]



| Modality | Energy Mechanism | Target Selectivity | Muscle Capture | Microbubbles | Esophageal Risk | Hemolysis Risk | Coronary Spasm Risk |
|---|---|---|---|---|---|---|---|
| RF (Standard) | Resistive + Conductive Heating | Low | No | Low | Moderate | Low | Low |
| vHPSD RF | Predominantly Resistive Heating | Moderate | No | Low | Low-Moderate | Low | Low |
| Cryoballoon | Freezing (Joule-Thomson) | Low | No | None | Low | Low | Low |
| Laser Balloon | Photothermal Heating | Low | No | Low | Low-Moderate | Low | Low |
| PFA (Microsecond) | Irreversible Electroporation | High (Myocardium) | Yes (GA req) | High | Minimal | High | Moderate |
| nsPFA | Nanosecond Electroporation | High (Myocardium) | No (Sedation possible) | Minimal | Minimal | Low | Low |
| Geometry | Device | Mapping Integration | Key Strength | Critical Limitation |
|---|---|---|---|---|
| Pentaspline | Farawave | No (Gen 1)/Yes (Gen 2) | Extensive safety data (ADVENT) | “Blind” procedure (Gen 1); fluoroscopy dependent |
| Circular Loop | PulseSelect | No | Familiar shape for RF operators | Fixed diameter may not fit all ostia; lower efficacy in first gen |
| Variable Loop | Varipulse | Yes (CARTO 3) | Visualized tissue proximity | Mechanics of variable loop can be complex |
| Compliant Balloon | OptiShot | N/A (Visual) | Direct Endoscopic View | Learning curve for visual interpretation |
| Balloon-in-Basket | Volt | Yes (EnSite) | Insulation of blood pool | Virtual visualization only (no direct view) |
| Focal Lattice | Sphere-9 | Yes (Mapping) | Flexibility (Linear/Point) | Slower (point-by-point); requires high skill |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Martignani, C.; Massaro, G.; Spadotto, A.; Oppimitti, J.; Carelli, M.; Angeletti, A.; Carecci, A.; Diemberger, I.; Biffi, M. Current and Emerging Energy Sources for Atrial Fibrillation Ablation: A Comparative Analysis of Clinical Efficacy, Safety, and Procedural Implementation. J. Clin. Med. 2026, 15, 751. https://doi.org/10.3390/jcm15020751
Martignani C, Massaro G, Spadotto A, Oppimitti J, Carelli M, Angeletti A, Carecci A, Diemberger I, Biffi M. Current and Emerging Energy Sources for Atrial Fibrillation Ablation: A Comparative Analysis of Clinical Efficacy, Safety, and Procedural Implementation. Journal of Clinical Medicine. 2026; 15(2):751. https://doi.org/10.3390/jcm15020751
Chicago/Turabian StyleMartignani, Cristian, Giulia Massaro, Alberto Spadotto, Jennifer Oppimitti, Maria Carelli, Andrea Angeletti, Alessandro Carecci, Igor Diemberger, and Mauro Biffi. 2026. "Current and Emerging Energy Sources for Atrial Fibrillation Ablation: A Comparative Analysis of Clinical Efficacy, Safety, and Procedural Implementation" Journal of Clinical Medicine 15, no. 2: 751. https://doi.org/10.3390/jcm15020751
APA StyleMartignani, C., Massaro, G., Spadotto, A., Oppimitti, J., Carelli, M., Angeletti, A., Carecci, A., Diemberger, I., & Biffi, M. (2026). Current and Emerging Energy Sources for Atrial Fibrillation Ablation: A Comparative Analysis of Clinical Efficacy, Safety, and Procedural Implementation. Journal of Clinical Medicine, 15(2), 751. https://doi.org/10.3390/jcm15020751

