Advanced Technologies on the Control Method of Electromagnetic Actuator—Second Edition

A special issue of Actuators (ISSN 2076-0825). This special issue belongs to the section "Control Systems".

Deadline for manuscript submissions: 31 August 2026 | Viewed by 4025

Special Issue Editors


E-Mail Website
Guest Editor
College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Interests: active vibration control; intelligent control; computer vision theory and application; measurement technology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Instrumentation Science and Optoelectronics Engineering, Beihang University (BUAA), Beijing 100191, China
Interests: magnetic suspension motor; servo control; motor driver technology; position detection; signal processing; intelligent control
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The electromagnetic actuator has been widely used in many fields, such as high-speed rotating machines, valves, and precision machinery. After a successful first edition, this Special Issue “Advanced Technologies on the Control Method of Electromagnetic Actuator—Second Edition” is dedicated to advanced technologies in the control method of the electromagnetic actuator. This Special Issue could be focused on the novel structure, manufacturing technology, and advanced control methods of the electromagnetic actuator. We invite the submission of the latest high-quality contributions covering the advanced developments in the design, analysis, and control of electromagnetic actuators, including (but not limited to) the following technical areas:

  • Magnetic bearing;
  • Electromagnetic actuator;
  • Electromagnetic analysis;
  • Electromagnetic compatibility;
  • Advanced control theory;
  • Signal processing.

This Special Issue will publish original research articles and review articles submitted by academics in a wide range of professions, including researchers, academicians, and industry experts.

Dr. Biao Xiang
Prof. Dr. Cong Peng
Dr. Haitao Li
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Actuators is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • magnetic bearing
  • electromagnetic actuator
  • electromagnetic analysis
  • electromagnetic compatibility
  • advanced control theory
  • signal processing

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

25 pages, 7202 KB  
Article
Optimal Design of a Coaxial Magnetic Gear Considering Thermal Demagnetization and Structural Robustness for Torque Density Enhancement
by Tae-Kyu Ji and Soo-Whang Baek
Actuators 2026, 15(1), 59; https://doi.org/10.3390/act15010059 - 16 Jan 2026
Viewed by 290
Abstract
This study presents an optimal design combined with comprehensive multiphysics validation to enhance the torque density of a coaxial magnetic gear (CMG) incorporating an overhang structure. Four high non-integer gear-ratio CMG configurations exceeding 1:10 were designed using different pole-pair combinations, and three-dimensional finite [...] Read more.
This study presents an optimal design combined with comprehensive multiphysics validation to enhance the torque density of a coaxial magnetic gear (CMG) incorporating an overhang structure. Four high non-integer gear-ratio CMG configurations exceeding 1:10 were designed using different pole-pair combinations, and three-dimensional finite element method (3D FEM) was employed to accurately capture axial leakage flux and overhang-induced three-dimensional effects. Eight key geometric design variables were selected within non-saturating limits, and 150 sampling points were generated using an Optimal Latin Hypercube Design (OLHD). Multiple surrogate models were constructed and evaluated using the root-mean-square error (RMSE), and the Kriging model was selected for multi-objective optimization using a genetic algorithm. The optimized CMG with a 1:10.66 gear ratio achieved a 130.76% increase in average torque (65.75 Nm) and a 162.51% improvement in torque density (117.14 Nm/L) compared with the initial design. Harmonic analysis revealed a strengthened fundamental component and a reduction in total harmonic distortion, indicating improved waveform quality. To ensure the feasibility of the optimized design, comprehensive multiphysics analyses—including electromagnetic–thermal coupled simulation, high-temperature demagnetization analysis, and structural stress evaluation—were conducted. The results confirm that the proposed CMG design maintains adequate thermal stability, magnetic integrity, and mechanical robustness under rated operating conditions. These findings demonstrate that the proposed optimal design approach provides a reliable and effective means of enhancing the torque density of high gear-ratio CMGs, offering practical design guidance for electric mobility, robotics, and renewable energy applications. Full article
Show Figures

Figure 1

16 pages, 1650 KB  
Article
Torque Ripple Suppression in BLDC Reaction Wheels Using Adaptive Composite Control Strategy Under Non-Ideal Back-EMF
by Zhicheng Wang, Haitao Li, Tong Wen, Haitao Li and Xiangwen Chen
Actuators 2026, 15(1), 28; https://doi.org/10.3390/act15010028 - 3 Jan 2026
Viewed by 254
Abstract
High-precision torque regulation is essential to ensure reaction wheel systems meet the stringent attitude control requirements of modern spacecraft. In three-phase half-bridge brushless DC (BLDC) drives, non-ideal back-electromotive force (back-EMF) waveforms cause pronounced conduction interval torque ripple, leading to inaccurate and unstable output [...] Read more.
High-precision torque regulation is essential to ensure reaction wheel systems meet the stringent attitude control requirements of modern spacecraft. In three-phase half-bridge brushless DC (BLDC) drives, non-ideal back-electromotive force (back-EMF) waveforms cause pronounced conduction interval torque ripple, leading to inaccurate and unstable output torque. To address this problem, this article proposes a composite torque control strategy integrating an Adaptive Nonsingular Fast Terminal Sliding-Mode Observer (ANFTSMO) with an Adaptive Sliding-Mode Controller (ASMC). The ANFTSMO achieves precise back-EMF estimation and electromagnetic torque reconstruction by eliminating singularities, reducing chattering, and adaptively adjusting observer gains. Meanwhile, the ASMC employs an adaptive switching gain function to achieve asymptotic current convergence with suppressed chattering, thereby ensuring accurate current tracking. System stability is verified via Lyapunov analysis. Simulation and experimental results demonstrate that, compared with conventional constant-current control, the torque smoothness and disturbance rejection of the proposed method are improved, enabling precise and stable reaction wheel torque delivery for high-accuracy spacecraft attitude regulation. Full article
Show Figures

Figure 1

17 pages, 3382 KB  
Article
Ultra-Low Power Consumption Electromagnetic Actuator Based on Potential Magnetic Energy Harnessing: Principle of Operation and Experimental Validation
by M. Albertos-Cabanas, I. Valiente-Blanco, O. Manzano-Narro, D. Lopez-Pascual and S. Sanchez-Prieto
Actuators 2026, 15(1), 25; https://doi.org/10.3390/act15010025 - 1 Jan 2026
Viewed by 232
Abstract
This paper presents a novel rotary electromagnetic actuator designed for high-speed and high-precision positioning with ultra-low power consumption, intended for industrial and scientific applications such as rotary index tables, pick and place robots, or optical systems, among others. The actuator is based on [...] Read more.
This paper presents a novel rotary electromagnetic actuator designed for high-speed and high-precision positioning with ultra-low power consumption, intended for industrial and scientific applications such as rotary index tables, pick and place robots, or optical systems, among others. The actuator is based on harnessing electromagnetic potential energy and its transformation into kinetic energy to enable accurate and rapid changes between different equilibrium positions of the device. A prototype with an outer diameter of 86 mm and a thickness of 25 mm and a mass of about 0.57 kg has been manufactured and tested. It presents eight equilibrium positions evenly separated to 45 degrees, reachable in just 48 ms with a positioning accuracy of 20 arcmin. Experimental results demonstrate that the device generates a torque of 590 mNm, maximum angular speed and acceleration up to 663 rpm and 14,500 rad/s2, respectively, with an input current of ±500 mA and a maximum power consumption of just 6.3 W. This value of power consumption represents a power saving up to 80% when compared to a conventional electromagnetic actuator that reproduces the same motion profile. An energy saving up to 38% is calculated for a change between two adjacent equilibrium positions. This innovative technology provides a new tool for precise positioning in highly dynamic applications with unprecedented energy and power savings. Full article
Show Figures

Figure 1

27 pages, 8045 KB  
Article
Research on Sensorless Technology of a Magnetic Suspension Flywheel Battery Based on a Genetic BP Neural Network
by Weiyu Zhang and Fei Guo
Actuators 2025, 14(4), 174; https://doi.org/10.3390/act14040174 - 2 Apr 2025
Cited by 3 | Viewed by 728
Abstract
The research object of this paper is a new type of multi-functional, air-gap-type, vehicle-mounted magnetic suspension flywheel battery. It is a new energy storage technology with a long working life, high energy conversion efficiency, multiple charging and discharging times, low carbon and environmental [...] Read more.
The research object of this paper is a new type of multi-functional, air-gap-type, vehicle-mounted magnetic suspension flywheel battery. It is a new energy storage technology with a long working life, high energy conversion efficiency, multiple charging and discharging times, low carbon and environmental protection. However, when the vehicle-mounted flywheel battery is operating, it will inevitably be disturbed by road conditions, resulting in loose sensors and feedback errors, thereby reducing the control accuracy and reliability of the system. To solve these problems, a sensorless control system came into being. It samples the current of the magnetic bearing coil through the hardware circuit and converts it into displacement for real-time control, eliminating the risk of sensor failure. However, the control accuracy of the traditional sensorless system is relatively low. Therefore, this paper adopts a BP (backpropagation) neural network PID controller based on genetic algorithm optimization on the basis of the sensorless control system. Through the joint simulation of the dynamic simulation software ADAMS/VIEW2018 and MATLAB2022b, the optimal PID control parameter database for complex road conditions is established. Through sensorless technology, the current of the flywheel battery is converted into the position error for extensive training so that the genetic BP neural network PID controller can accurately identify the current complex road conditions according to the position error, so as to provide the optimal PID control parameters corresponding to the road conditions to carry out accurate real-time stability control of the flywheel rotor. The experimental results show that the method can effectively reduce feedback errors, improve the control accuracy, and output optimal control parameters in real time under complex road conditions, which significantly improves the reliability and control performance of the vehicle flywheel battery system. Full article
Show Figures

Figure 1

18 pages, 5388 KB  
Article
Research on the Control Method of a 2DOF Parallel Platform Based on Electromagnetic Drive
by Wei Wang, Jinlong Cao, Xu Liu, Yangguang Ye, Hao Yang, Weilun Zhang and Xudong Huang
Actuators 2024, 13(9), 347; https://doi.org/10.3390/act13090347 - 9 Sep 2024
Cited by 1 | Viewed by 1744
Abstract
In this paper, a spatial two-degree-of-freedom (2DOF) parallel platform based on electromagnetic redundant drive and its control method are investigated. The platform is redundantly driven by three electromagnetic-spring conforming branched chains, and the design provides better flexibility and responsiveness than conventional parallel structures. [...] Read more.
In this paper, a spatial two-degree-of-freedom (2DOF) parallel platform based on electromagnetic redundant drive and its control method are investigated. The platform is redundantly driven by three electromagnetic-spring conforming branched chains, and the design provides better flexibility and responsiveness than conventional parallel structures. The introduction of the electromagnetic drive alleviates the stresses within the conventional rigid redundant drive structure and reduces the detrimental effects associated with rigid redundancy. In this paper, the structure and equivalent SPU model of the platform are first introduced, with S referring to the kinematic sub, P to the spherical sub, and U to the universal joint. The degrees of freedom of the platform are analyzed, and the inverse kinematic model and velocity Jacobi matrix are derived, so as to derive the relationship between the pitch, roll angles, and length of the gimbal chain, and the relational equation between the angle and the current is further established to realize the electromagnetic control of the parallel redundant platform. The control part is realized as follows. Firstly, the angle information of the platform is obtained from the gyroscope to the microcontroller, the filtered angle is derived through the Untraceable Kalman Filter (UKF), and the angle value can be fused with data by both the mathematical model and PID algorithm to introduce the current value required to achieve the balance and realize the balance. In the simulation part, this paper uses Simulink and Simscape in MATLAB for joint simulation, and by giving the simulated trajectory and the desired trajectory of the joints, the driving force diagrams of the three branched chains based on the Least-Second Paradigm method are derived, and the trajectory error and driving force error are given to validate the reliability of the method of this paper. Full article
Show Figures

Figure 1

Back to TopTop