Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (155)

Search Parameters:
Keywords = edible lipid extract

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1647 KB  
Review
Advances in Plant-Derived Extracellular Vesicles: Implications for Apple-Derived EVs
by Hao Fu, Shunyuan Yong, Yanping Song, Jiangbo Dang, Danlong Jing, Di Wu and Qigao Guo
Plants 2025, 14(22), 3425; https://doi.org/10.3390/plants14223425 - 9 Nov 2025
Viewed by 436
Abstract
Plant-derived extracellular vesicles (PDEVs) are nanoscale membrane vesicles released by edible plants that deliver proteins, lipids, nucleic acids, and small metabolites to recipient cells, thereby modulating inflammation, barrier function, metabolism, and intercellular signaling. In recent years, PDEV research has advanced from concept and [...] Read more.
Plant-derived extracellular vesicles (PDEVs) are nanoscale membrane vesicles released by edible plants that deliver proteins, lipids, nucleic acids, and small metabolites to recipient cells, thereby modulating inflammation, barrier function, metabolism, and intercellular signaling. In recent years, PDEV research has advanced from concept and in vitro observations to engineering-ready systems with validation in animal models, encompassing oral, transdermal, and intranasal delivery paradigms. Among edible plants, the apple has broad consumption and a favorable safety profile; however, studies on apple-derived extracellular vesicles (ADEVs) lag behind those on other plant EVs. Accordingly, this review systematically summarizes ADEV progress across extraction methods, characterization, molecular cargo, and roles in disease settings. We highlight evidence gaps in animal efficacy and translation, and propose priorities including process standardization, harmonized critical quality attributes, in vivo biodistribution, and long-term safety. Our aim is to provide a reference for ADEV research and to accelerate the development of safe, low-cost, scalable bionanocarriers for disease therapy. Full article
Show Figures

Figure 1

17 pages, 4731 KB  
Article
Plant Metabolome Between Root and Aerial Parts of Cichorium intybus L. and Anti-Hyperuricemia Mechanisms Based on Cell Metabolomics
by Jingbo Wang, Shi Shen, Qi Zhao, Xin Shen and Qin Zhuo
Metabolites 2025, 15(11), 727; https://doi.org/10.3390/metabo15110727 - 6 Nov 2025
Viewed by 153
Abstract
Background/Objectives: Hyperuricemia (HUA) is a metabolic disease with increasing incidence. Chicory (Cichorium intybus L.), a traditional medicinal and edible plant, has demonstrated anti-HUA effects. However, the metabolic profiles of its aerial parts and roots are still not fully characterized. Moreover, few [...] Read more.
Background/Objectives: Hyperuricemia (HUA) is a metabolic disease with increasing incidence. Chicory (Cichorium intybus L.), a traditional medicinal and edible plant, has demonstrated anti-HUA effects. However, the metabolic profiles of its aerial parts and roots are still not fully characterized. Moreover, few studies have investigated its anti-HUA effects using cell metabolomics. Methods: The metabolomes of chicory root and aerial parts were characterized using UPLC-QTOF-MS-based untargeted metabolomics. Subsequently, the anti-HUA mechanism of chicory root was investigated by performing non-targeted metabolomics in HK-2 cells. Results: The results demonstrated that various hydroxycinnamic acids and flavonoids were more abundant in aerial parts, whereas sesquiterpenes and oligosaccharides were characteristic of the root. Both chicory root and aerial part extracts significantly reduced uric acid (UA) levels in HK-2 cells induced by adenosine with xanthine oxidase (XO). Cellular metabolomic profiling indicated a distinct separation between the root extract (CR40, 40 mg/mL) and the model group. OPLS-DA identified 165 differential metabolites, including acylcarnitines, acylamino acids, peptides, phospholipids, glycerides, and lipid-like molecules. These metabolites were associated with key metabolic pathways of sphingolipids, glycerophospholipids, phosphonate and phosphinate, linoleic acid, biotin, purine, as well as taurine and hypotaurine metabolism. Conclusions: Chicory is rich in diverse bioactive compounds and exhibits significant anti-HUA activity by modulating multiple metabolic pathways. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Figure 1

29 pages, 3015 KB  
Article
Green Optimization of Sesame Seed Oil Extraction via Pulsed Electric Field and Ultrasound Bath: Yield, Antioxidant Activity, Oxidative Stability, and Functional Food Potential
by Vassilis Athanasiadis, Marianna Giannopoulou, Georgia Sarlami, Eleni Bozinou, Panagiotis Varagiannis and Stavros I. Lalas
Foods 2025, 14(21), 3653; https://doi.org/10.3390/foods14213653 - 26 Oct 2025
Viewed by 571
Abstract
Sesame seed oil is a bioactive-rich lipid source, notable for lignans, tocopherols, and unsaturated fatty acids that underpin its antioxidant and cardioprotective properties. This study optimized two innovative, non-thermal extraction techniques—pulsed electric field (PEF) and ultrasound bath-assisted extraction (UBAE)—to maximize yield and preserve [...] Read more.
Sesame seed oil is a bioactive-rich lipid source, notable for lignans, tocopherols, and unsaturated fatty acids that underpin its antioxidant and cardioprotective properties. This study optimized two innovative, non-thermal extraction techniques—pulsed electric field (PEF) and ultrasound bath-assisted extraction (UBAE)—to maximize yield and preserve oil quality for functional food applications. A blocked definitive screening design combined with response surface methodology modeled the effects of energy power (X1, 60–100%), liquid-to-solid ratio (X2, 10–20 mL/g), and extraction time (X3, 10–30 min) on fat content, DPPH antiradical activity, and oxidative stability indices (Conjugated Dienes, CDs/Conjugated Trienes, CTs). UBAE achieved the highest fat yield—59.0% at low energy (60%), high X2 (20 mL/g), and short X3 (10 min)—while PEF maximized DPPH to 36.0 μmol TEAC/kg oil at high energy (100%), moderate X2 (17 mL/g), and short X3 (10 min). CDs were minimized to 19.78 mmol/kg (UBAE, 60%, 10 mL/g, 10 min) and CTs to 3.34 mmol/kg (UBAE, 60%, 12 mL/g, 10 min). Partial least squares analysis identified X2 and X3 as the most influential variables (VIP > 0.8), with energy–time interplay (X1 × X3) being critical for antioxidant capacity. Compared to cold-pressing and Soxhlet extraction, PEF and cold-pressing retained higher antioxidant activity (~19 μmol TEAC/kg) and oxidative stability (TBARS ≤ 0.30 mmol MDAE/kg), while Soxhlet—though yielding 55.65% fat—showed the poorest quality profile (Totox value > 560). Both non-thermal techniques can deliver bioactive-rich sesame oil with lower oxidative degradation, supporting their application in functional foods aimed at improving dietary antioxidant intake and mitigating lipid oxidation burden. PEF at high energy/short time and UBAE at low energy/short time present complementary, scalable options for producing high-value edible oils aligned with human health priorities. As a limitation, we did not directly quantify lignans or tocopherols in this study, and future work will address their measurement and bioaccessibility. Full article
Show Figures

Figure 1

24 pages, 2099 KB  
Article
Phenolic Compounds with Antimicrobial Properties in Mushrooms Frequently Encountered in Temperate Deciduous Forests
by Aida Puia, Stanca-Lucia Pandrea, Jeanine Cruceru, Ion Cosmin Puia, Veronica Sanda Chedea, Călina Ciont, Oana Lelia Pop, Loredana Florina Leopold, Floricuța Ranga, Adriana Cristina Urcan, Alexandru Nicolescu, Otilia Bobis, Ioana Corina Bocsan, Sebastian Armean, Anca Dana Buzoianu and Raluca Maria Pop
Life 2025, 15(11), 1653; https://doi.org/10.3390/life15111653 - 23 Oct 2025
Viewed by 573
Abstract
Mushrooms have long been recognized as a rich source of bioactive compounds, including phenolics, that possess important antioxidant, antimicrobial, and antibacterial properties, including activity against drug-resistant bacteria. This study evaluated total phenolic profile and content, total flavonoids content, the antioxidant activities, antimicrobial and [...] Read more.
Mushrooms have long been recognized as a rich source of bioactive compounds, including phenolics, that possess important antioxidant, antimicrobial, and antibacterial properties, including activity against drug-resistant bacteria. This study evaluated total phenolic profile and content, total flavonoids content, the antioxidant activities, antimicrobial and antibacterial activities, of water extracts of edible mushrooms from Romanian deciduous forests, including Cantharellus cibarius, Russula virescens, Lactarius piperatus, and Boletus edulis. The extracts were characterized using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) and Fourier Transform Infrared Spectroscopy (FTIR) analysis. Antioxidant activity was determined using DPPH radical-scavenging activity and ABTS radical cation decolorization assay. Antimicrobial and antibacterial activities were tested using standard strains of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, and Streptococcus pneumoniae following diffusion testing and time-killing assay, respectively. The HPLC-MS results indicated that major compounds in all the mushrooms belonged to the subclass of hydroxybenzoic acids. Trans-cinnamic acid and hydroxybenzoic acids, particularly gallic acid, 2,3-dihydroxybenzoic acid, and gentisic acid, were the predominant compounds detected in BEE and CCE. Their concentrations were measured as follows: 24 μg/mL, 63 μg/mL, 56 μg/mL, and 14 μg/mL, respectively, for BEE, and 26 μg/mL, 42 μg/mL, 7 μg/mL, and 5 μg/mL, respectively, for CCE. Among phenolic compounds, 2-dihydroxybenzoic acid, 2,3-dihydroxybenzoic acid, p-anisaldehyde, and gentisic acid were positively correlated with both DPPH (45% and 21% inhibition rate for BEE and CCE, respectively) and ABTS (64 and 31% inhibition rate for BEE and CCE, respectively) antioxidant activities. The FTIR analysis revealed the presence of lipids, proteins, and polysaccharides, extracted in different ratios in the water extract. All mushroom extracts showed a dose-dependent response with higher antimicrobial and antibacterial activities at the highest concentration (26.3 µg phenolics BEE, 12.7 µg pphenolics CCE, 28.3 µg phenolics LPE, and 14.5 µg phenolics RVE per well for antimicrobial activity and 175.2 µg phenolics/mL BEE, 84.4 µg phenolics/mL CCE, and 188.9 µg phenolics/mL LPE for antibacterial activity). These species demonstrate potential for the development of alternative antimicrobial formulations, particularly relevant in the context of antibiotic resistance. Full article
(This article belongs to the Special Issue Research Progress of Cultivation of Edible Fungi: 2nd Edition)
Show Figures

Figure 1

21 pages, 3364 KB  
Article
Antibacterial Efficacy of Ethanol Extracts from Edible Rumex madaio Root and Application Potential for Eliminating Staphylococcus aureus and Vibrio cholerae in Aquatic Products for Green Food Preservation
by Huanhuan Fan, Yue Liu, Enyu Tian, Yaping Wang, Shunlin Ren, Bailin Li, Huajun Zheng and Lanming Chen
Foods 2025, 14(20), 3479; https://doi.org/10.3390/foods14203479 - 12 Oct 2025
Viewed by 502
Abstract
Edible and medicinal plants provide a treasure trove of natural phytochemicals for mining the next generation of green food preservatives. Herein, we evaluated antibacterial activities of 55–95% ethanol extracts from the edible rhizome of Rumex madaio (RmEEs). The 75% ethanol extract [...] Read more.
Edible and medicinal plants provide a treasure trove of natural phytochemicals for mining the next generation of green food preservatives. Herein, we evaluated antibacterial activities of 55–95% ethanol extracts from the edible rhizome of Rumex madaio (RmEEs). The 75% ethanol extract displayed the strongest antibacterial activity, and its purified fraction 2 (RmEE-F2) blocked the proliferation of common pathogens Staphylococcus aureus and Vibrio cholerae, with minimum inhibitory concentrations (MICs) of 391 μg/mL. RmEE-F2 (1 × MIC) altered the bacterial cell surface biophysical parameters and impaired cell structure, resulting in intracellular nucleic acid and protein leakage. It manifested bacteriostatic rates of 88.21–91.17% against S. aureus and V. cholerae in spiked fish (Carassius auratus) and shrimp (Penaeus vannamei) during storage at 4 °C for 24 h. Meanwhile, RmEE-F2 effectively rendered the pH rising and reduced lipid oxidation and protein degradation of C. auratus and P. vannamei meat samples at 4 °C for 6 days. Additionally, RmEE-F2 (< 781 µg/mL) showed non-cytotoxicity to human colon Caco-2, liver HepG-2, and lung A549 cell lines, and rescued V. cholerae and S. aureus-infected Caco-2 cellcells with enhanced viability of 14.31–16.60% (1 × MIC). Comparative transcriptomic analysis revealed down-regulated protein synthesis, cell wall and cell membrane synthesis, and or DNA replication and repair in the tested bacteria triggered by RmEE-F2. The major antibacterial compounds in RmEE-F2 included melibiose (9.86%), 3-(N, N-dimethylaminomethyl) indole (7.12%), and citric acid (6.07%). Overall, this study underscores the promising potential of RmEE-F2 for aquatic product green preservation. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plant Food: Discovering Their Health Benefits)
Show Figures

Figure 1

14 pages, 2109 KB  
Article
Impact of Artemisia selengensis Turcz. Leaf Extract on Beer Brewing: Fermentation Dynamics, Flavor Compounds and Hypolipidemic/Antihyperuricemic Effects
by Zeyu Li, Jiazhi Zhou, Chaoqun Ye, Jian Yang and Changli Zeng
Molecules 2025, 30(19), 3936; https://doi.org/10.3390/molecules30193936 - 1 Oct 2025
Viewed by 414
Abstract
Artemisia selengensis Turcz. (AST), an edible-medicinal herb, contains multifunctional bioactives. This study investigated the application of AST leaf extract (ASTLE) in beer brewing, focusing on the addition stage and its impacts on fermentation dynamics, flavor profile, and functional properties. Fermentation parameters, bioactive compounds [...] Read more.
Artemisia selengensis Turcz. (AST), an edible-medicinal herb, contains multifunctional bioactives. This study investigated the application of AST leaf extract (ASTLE) in beer brewing, focusing on the addition stage and its impacts on fermentation dynamics, flavor profile, and functional properties. Fermentation parameters, bioactive compounds (phenolic; flavonoid), and volatiles (using HS-SPME-GC-MS) were analyzed. In vivo efficacy was assessed in high-fat diet-fed mice supplemented for 8 weeks with beer containing 10% ASTLE (post-primary fermentation), evaluating body weight change, serum lipids, and uric acid levels. It was found that adding ASTLE before primary fermentation promoted yeast activity but increased the risk of excessive diacetyl production. Adding ASTLE after primary fermentation significantly increased total phenolic and flavonoid contents. GC-MS analysis revealed that ASTLE contributed 28 additional volatile compounds, including chrysanthenone and eucalyptol, thereby enriching the beer’s flavor profile and complexity. In mice, beer with 10% ASTLE (post-primary fermentation) reduced body-weight gain, and regulated abnormal blood lipids and serum uric acid levels. Adding ASTLE after primary fermentation optimized fermentation stability, bioactive retention, flavor enhancement, and conferred benefits including body-weight regulation, lipid metabolism improvement, and uric acid control, providing a reference for developing functional beers targeting health-conscious consumers. Full article
(This article belongs to the Collection Advances in Food Chemistry)
Show Figures

Graphical abstract

28 pages, 4543 KB  
Article
Development and Evaluation of a Bioactive Halophilic Bacterial Exopolysaccharide-Based Coating Material to Extend Shelf Life and Mitigate Citrus Canker Disease in Citrus limon L.
by Chandni Upadhyaya, Hiren Patel, Ishita Patel and Trushit Upadhyaya
Coatings 2025, 15(9), 1068; https://doi.org/10.3390/coatings15091068 - 11 Sep 2025
Viewed by 576
Abstract
Halophilic isolates were screened to mitigate postharvest losses caused by citrus canker disease in lemon fruits. Among all isolates, SWIS03, isolated from the Sambhar Salt Lake in Rajasthan, India, exhibited the highest exopolysaccharide production, with good stability and antibacterial activity against Xanthomonas citri [...] Read more.
Halophilic isolates were screened to mitigate postharvest losses caused by citrus canker disease in lemon fruits. Among all isolates, SWIS03, isolated from the Sambhar Salt Lake in Rajasthan, India, exhibited the highest exopolysaccharide production, with good stability and antibacterial activity against Xanthomonas citri. Isolate SWIS03 was identified as halophilic Bacillus licheniformis DET601. It produced a very high EPS content in optimized sterilized seawater-based minimal media fortified with 2.5% sucrose and 0.3% beef extract, which was purified through repeated deproteinization and Sephadex G-75 chromatography. HPTLC analysis of composition check indicated the presence of glucose, mannose, and galactose. FTIR analysis also confirmed the presence of sugar and bound water, as well as the presence of hydroxyl, amine, amide, and methyl groups. Rheological characterization revealed a pseudoplastic nature, making it suitable for uniform coating. EPS was reported to have bioactive properties, including antioxidant activity (84.7 ± 1.75% DPPH scavenging potential), antimicrobial activity against human pathogens, and a noncytotoxic nature, which are essential for use in edible coatings. The effect of EPS coating formulation on healthy lemon fruits resulted in shelf-life extension of up to 26.6 ± 1.14 days and 18.0 ± 1.41 days at 4 °C and 30 °C in coated lemons, respectively, as demonstrated by physiological parameters such as % weight loss, firmness, titratable acidity, and shelf life of lemons. Also, EPS coating preserved the quality of fruits in terms of phenolic compounds and Vitamin C content, and reduced lipid peroxidation during storage. Biocontrol potential of halophilic EPS coating on lemon fruits revealed an 86.50% and 68.64% reduction in % disease incidence compared to uncoated fruits at 4 °C and 30 °C, respectively. Similarly, a significantly lower disease incidence (46.80% at 4 °C and 67.03% at 30 °C) was also reported compared to paraffin-coated (positive control) lemons. Consequently, halophilic Bacillus licheniformis DET601 EPS is an effective coating material for citrus fruits to prevent canker disease in post-harvest settings for agricultural and food industry applications. Full article
Show Figures

Figure 1

24 pages, 5051 KB  
Article
Carbon Dots from Dried German Chamomile Flower and Its Residual Biomass: Characteristics, Bioactivities, Cytotoxicity and Its Preservative Effect on the Refrigerated Precooked Baby Clam (Paphia undulata)
by Birinchi Bora, Suriya Palamae, Bin Zhang, Tao Yin, Jun Tae Kim, Jong-Whan Rhim and Soottawat Benjakul
Foods 2025, 14(17), 3130; https://doi.org/10.3390/foods14173130 - 7 Sep 2025
Viewed by 1746
Abstract
The growing demand for natural and sustainable food preservatives has drawn interest in carbon dots (CDs) derived from plant sources. This study aimed to synthesize CDs from dried German chamomile flowers (DF) and residual biomass (RB) obtained after essential oil extraction using a [...] Read more.
The growing demand for natural and sustainable food preservatives has drawn interest in carbon dots (CDs) derived from plant sources. This study aimed to synthesize CDs from dried German chamomile flowers (DF) and residual biomass (RB) obtained after essential oil extraction using a hydrothermal process. Their characteristics, bioactivities and cytotoxicity were examined. Both DF-CDs and RB-CDs were spherical (7–10 nm), exhibited strong UV blocking properties and tunable fluorescence and were rich in polyphenolic functional groups, especially the –OH group. DF-CDs generally showed higher antioxidant capacity than RB-CDs as assayed by DPPH, ABTS radical scavenging activities, FRAP and metal chelation activity. Both CDs showed antibacterial effects toward pathogenic bacterial strains (Escherichia coli and Listeria monocytogenes) and spoilage bacteria (Shewanella putrefaciens and Pseudomonas aeruginosa) in a dose-dependent manner. Cytotoxicity was assessed in BJ human fibroblasts, and both CDs exhibited high biocompatibility (>88% viability at 1000 µg/mL). When both CDs at 300 and 600 ppm were applied in a precooked baby clam edible portion (PBC-EP) stored at 4 °C, microbial growth, TVB and TMA contents were lower than those of the control. The total viable count was still under the limit (5.8 log CFU/mL) for the sample treated with CDs at 600 ppm up to 9 days, while the control was kept for only 3 days. Furthermore, the lipid oxidation level (PV and TBARS value) of PBC-EP decreased with CD treatment, especially at higher concentrations (600 ppm). Therefore, chamomile-derived CDs could serve as a promising alternative for perishable seafood preservation. Full article
Show Figures

Figure 1

16 pages, 981 KB  
Article
Effect of Defatting Method on the Nutritional, Functional, and Bioactive Properties of Black Soldier Fly (Hermetia illucens) Larvae
by Natasha Spindola Marasca, Alan Carvalho de Sousa Araújo, Karoline da Silva Noda, Bruna Silva de Farias, Ana Paula Dutra Resem Brizio, Sibele Santos Fernandes and Vilásia Guimarães Martins
Insects 2025, 16(8), 844; https://doi.org/10.3390/insects16080844 - 15 Aug 2025
Viewed by 1565
Abstract
Defatting methods are key to modulating the nutritional, functional, and bioactive characteristics of edible insect powders. This study evaluated the effects of mechanical pressing and ethanol-based solvent extraction on Hermetia illucens larvae powder. Solvent-defatted samples (DPSs) showed the highest protein content (54.96 g/100 [...] Read more.
Defatting methods are key to modulating the nutritional, functional, and bioactive characteristics of edible insect powders. This study evaluated the effects of mechanical pressing and ethanol-based solvent extraction on Hermetia illucens larvae powder. Solvent-defatted samples (DPSs) showed the highest protein content (54.96 g/100 g), with a 61% increase compared to full-fat powder (FP), and the lowest residual lipid content (3.18 g/100 g). In contrast, mechanical pressing (DPP) preserved higher antioxidant activity (68.30% DPPH inhibition), a 30% increase over FP. DPS also showed greater fiber content (13.90 g/100 g), improved water solubility, emulsification capacity, and reduced water activity (0.269), desirable traits for food formulations. DPP retained higher hygroscopicity and exhibited the highest antioxidant potential among the samples. These findings demonstrate that defatting method selection significantly impacts the techno-functional and nutritional quality of insect powders and should align with the desired end use, whether for protein enrichment, enhanced antioxidant activity, or development of sustainable food ingredients. This work supports the strategic use of Hermetia illucens as a functional, high-protein ingredient and reinforces its role in advancing circular and sustainable food systems. Full article
Show Figures

Figure 1

17 pages, 822 KB  
Article
From Forest to Fork: Antioxidant and Antimicrobial Potential of Laetiporus sulphureus (Bull.) Murrill in Cooked Sausages
by Aleksandra Novaković, Maja Karaman, Branislav Šojić, Predrag Ikonić, Tatjana Peulić, Jelena Tomić and Mirjana Šipovac
Microorganisms 2025, 13(8), 1832; https://doi.org/10.3390/microorganisms13081832 - 6 Aug 2025
Viewed by 993
Abstract
In response to the growing demand for clean-label preservatives, this study investigates the potential of Laetiporus sulphureus, an edible polypore mushroom, as a multifunctional additive in cooked sausages. The ethanolic extract of L. sulphureus (LsEtOH) was evaluated for its chemical composition, antioxidant [...] Read more.
In response to the growing demand for clean-label preservatives, this study investigates the potential of Laetiporus sulphureus, an edible polypore mushroom, as a multifunctional additive in cooked sausages. The ethanolic extract of L. sulphureus (LsEtOH) was evaluated for its chemical composition, antioxidant capacity, and antimicrobial activity. Leucine (12.4 ± 0.31 mg/g d.w.) and linoleic acid (68.6%) were identified as the dominant essential amino acid and fatty acid. LsEtOH exhibited strong antioxidant activity, with IC50 values of 215 ± 0.05 µg/mL (DPPH•), 182 ± 0.40 µg/mL (NO•), and 11.4 ± 0.01 µg/mL (OH•), and showed a selective inhibition of Gram-positive bacteria, particularly Staphylococcus aureus (MIC/MBC: 0.31/0.62 mg/mL). In cooked sausages treated with 0.05 mg/kg of LsEtOH, lipid peroxidation was reduced (TBARS: 0.26 mg MDA/kg compared to 0.36 mg MDA/kg in the control), microbial growth was suppressed (33.3 ± 15.2 CFU/g in the treated sample compared to 43.3 ± 5.7 CFU/g in the control group), and color and pH were stabilized over 30 days. A sensory evaluation revealed minor flavor deviations due to the extract’s inherent aroma. Encapsulation and consumer education are recommended to enhance acceptance. This is the first study to demonstrate the efficacy of L. sulphureus extract as a natural preservative in a meat matrix, supporting its application as a clean-label additive for shelf life and safety improvement. Full article
(This article belongs to the Special Issue Microbial Biocontrol in the Agri-Food Industry, 2nd Edition)
Show Figures

Figure 1

18 pages, 2005 KB  
Article
Seaweed Pelvetia canaliculata as a Source of Bioactive Compounds for Application in Fried Pre-Coated Mackerel (Scomber scombrus) Fillets: A Functional Food Approach
by Catarina D. Freire, Madalena Antunes, Susana F. J. Silva, Marta Neves and Carla Tecelão
Appl. Sci. 2025, 15(13), 7623; https://doi.org/10.3390/app15137623 - 7 Jul 2025
Cited by 2 | Viewed by 603
Abstract
Fatty fish, such as mackerel (Scomber scombrus), are recommended as part of a healthy diet, providing essential fatty acids (FA). Fried fish is appreciated for its attributes, including a crispy texture, golden crust, and pleasant taste. However, frying increases the fat [...] Read more.
Fatty fish, such as mackerel (Scomber scombrus), are recommended as part of a healthy diet, providing essential fatty acids (FA). Fried fish is appreciated for its attributes, including a crispy texture, golden crust, and pleasant taste. However, frying increases the fat content and the caloric value of food. This study evaluated the use of pre-frying edible coatings on mackerel fillets aiming to: (i) reduce oil absorption, (ii) minimize water loss, preserving fish succulence, and (iii) prevent fat oxidation. For this purpose, alginate- and carrageenan-based coatings were supplemented with extracts of Pelvetia canaliculata (Pc), a seaweed with high potential as a source of bioactive compounds. The fried fillets were analysed for colour, texture, moisture, ash, lipid content, and FA profile. No significant differences were observed for colour and textural parameters. Fillets coated with Pc-supplemented carrageenan showed the highest moisture (an increase of 3%) and the lowest fat content (a decrease of 7,5%) compared to the control (fried uncoated fillets). Coated fillets also exhibited reduced saturated FA and increased monounsaturated FA. In general, linoleic acid (C18:2) decreased markedly, while the values for docosahexaenoic acid (C22:6, n-3) remained stable (11–12% of total FA). Moreover, the n3/n6 ratio and atherogenic indices (AI) were improved in the coated fillets. Full article
(This article belongs to the Special Issue Harnessing Microalgae and Seaweed for the Food Sector)
Show Figures

Figure 1

24 pages, 4053 KB  
Article
Saponins from Solanum nigrum L. Fruit: Extraction Optimization, Structural Characterization, and Dual-Functional Efficacy
by Shuyuan Chen, Weiyun Guo, Tonghe Zhang, Jianfang Chen, Li Huang, Jihong Huang and Ruqiang Huang
Foods 2025, 14(13), 2370; https://doi.org/10.3390/foods14132370 - 3 Jul 2025
Cited by 1 | Viewed by 1305
Abstract
Solanum nigrum L., a widely consumed Asian medicinal edible plant, is a promising source of bioactive saponins for functional food applications. This study optimized the extraction of saponins from S. nigrum fruits (8.59% total saponin yield), followed by isolation via column chromatography and [...] Read more.
Solanum nigrum L., a widely consumed Asian medicinal edible plant, is a promising source of bioactive saponins for functional food applications. This study optimized the extraction of saponins from S. nigrum fruits (8.59% total saponin yield), followed by isolation via column chromatography and structural elucidation using spectroscopic analyses (IR, NMR, and MS). Concurrently, the antioxidant properties and antibacterial activity of the purified substances were detected and analyzed. The three saponins (SNL1, SNL2, SNL3) were identified as γ2-Solamargine , Diosgenin, and β-Solanine. The  n-butanol -purified fraction demonstrated a remarkable capacity to scavenge DPPH, hydroxyl, and ABTS radicals (DPPH IC50 = 0.0096 mg/mL; hydroxyl radical IC50 = 0.8 mg/mL; ABTS IC50 = 0.061 μg/mL), indicating the inhibition of a multi-pathway oxidative chain reaction. Concurrently, the saponins exhibited selective antimicrobial efficacy against key foodborne pathogens, particularly Escherichia coli. To the best of our knowledge, this work provides the first empirical evidence of S. nigrum fruit saponins as dual-functional natural preservatives, synergistically suppressing lipid oxidation and microbial growth. These findings highlight their potential as safer, multi-mechanistic alternatives to synthetic additives, aligning with clean-label food industry demands. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

19 pages, 301 KB  
Review
Emerging Trends in Sustainable Biological Resources and Bioeconomy for Food Production
by Luis A. Trujillo-Cayado, Rosa M. Sánchez-García, Irene García-Domínguez, Azahara Rodríguez-Luna, Elena Hurtado-Fernández and Jenifer Santos
Appl. Sci. 2025, 15(12), 6555; https://doi.org/10.3390/app15126555 - 11 Jun 2025
Cited by 2 | Viewed by 1461
Abstract
The mounting global population and the challenges posed by climate change underline the need for sustainable food production systems. This review synthesizes evidence for a dual-track bioeconomy, green (terrestrial plants and insects) and blue (aquatic algae), as complementary pathways toward sustainable nutrition. A [...] Read more.
The mounting global population and the challenges posed by climate change underline the need for sustainable food production systems. This review synthesizes evidence for a dual-track bioeconomy, green (terrestrial plants and insects) and blue (aquatic algae), as complementary pathways toward sustainable nutrition. A comprehensive review of the extant literature, technical reports, and policy documents published between 2015 and 2025 was conducted, with a particular focus on environmental, nutritional, and techno-economic metrics. In addition, precision agriculture datasets, gene-editing breakthroughs, and circular biorefinery case studies were extracted and compared. As demonstrated in this study, the use of green resources, such as legumes, oilseeds, and edible insects, results in a significant reduction in greenhouse gas emissions, land use, and water footprints compared with conventional livestock production. In addition, these alternative protein sources offer substantial benefits in terms of bioactive lipids. Blue resources, centered on micro- and macroalgae, furnish additional proteins, long-chain polyunsaturated fatty acids, and antioxidant pigments and sequester carbon on non-arable or wastewater substrates. The transition to bio-based resources is facilitated by technological innovations, such as gene editing and advanced extraction methods, which promote the efficient valorization of agricultural residues. In conclusion, the study strongly suggests that policy support be expedited and that research into bioeconomy technologies be increased to ensure the sustainable meeting of future food demands. Full article
(This article belongs to the Special Issue Application of Natural Components in Food Production)
27 pages, 2332 KB  
Article
Conversion of Soluble Compounds in Distillery Wastewater into Fungal Biomass and Metabolites Using Australian Ganoderma Isolates
by Aline D. O. Campos, Hashini J. Wahalathanthrige, Shane Russell, Mark D. Harrison and Peter James Strong
J. Fungi 2025, 11(6), 432; https://doi.org/10.3390/jof11060432 - 6 Jun 2025
Viewed by 2031
Abstract
Stillage is an acidic residue from ethanol production that has a high carbon load. Here, Ganoderma isolates were assessed for the treatment of rum stillage while producing biomass and associated metabolites. Isolates grew in 25% raw stillage, removing up to 73% of soluble [...] Read more.
Stillage is an acidic residue from ethanol production that has a high carbon load. Here, Ganoderma isolates were assessed for the treatment of rum stillage while producing biomass and associated metabolites. Isolates grew in 25% raw stillage, removing up to 73% of soluble organic carbon, 77% soluble nitrogen, and 74% phenolic compounds. Isolate G2 demonstrated faster removal of organic carbon and nitrogen. Biomass and metabolite production were benchmarked against a nutrient medium. In stillage, maximum values of the following were obtained: 8.2 g·L−1 biomass; 52.8% crude protein; 22.1 mg·g−1 extractable protein; antioxidants of 17.2 mg TE·g−1 (2,2′-azino-di-(3-ethylbenzothiazoline-6-sulfonic acid), ABTS) and 16.6 µmol Fe2+·g−1 (ferric reducing antioxidant power, FRAP); 2.9 mg GAE·g−1 phenolic compounds (gallic acid equivalents); 1.2% lipids; and 11% β-glucans. In the nutrient medium, the following were obtained: 6.9 g·L−1 biomass; 56.4% crude protein; 38.7 mg·g−1 extractable protein; antioxidants of 24.9 mg TE·g−1 (ABTS) and 25.9 µmol Fe2+·g−1 (FRAP); 6.0 mg GAE·g−1 phenolic compounds; 0.7% lipids; and 13% β-glucans. To our knowledge, this is the first report detailing the biomass metabolite content of Ganoderma mycelium using rum stillage. The production of edible biomass containing bioactive products demonstrates the potential of using Ganoderma strains to valorize this residue. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

19 pages, 1298 KB  
Article
In Vivo Regenerative Potential of Coprinus comatus in Pancreatic Tissue After Acute Stress with Chronic Consequences
by Nebojša Stilinović, Ana Tomas, Saša Vukmirović, Nebojša Kladar, Miloš Čanković, Maja Đanić, Michał Seweryn Karbownik, Aleksandar Rašković and Ivan Čapo
Molecules 2025, 30(11), 2261; https://doi.org/10.3390/molecules30112261 - 22 May 2025
Cited by 1 | Viewed by 1270
Abstract
The edible mushroom Coprinus comatus has a long history of use in metabolic diseases, which is increasingly documented by modern research. Due to its favorable nutritional composition, it was assumed that this mushroom could accelerate tissue recovery after acutely induced damage with subsequent [...] Read more.
The edible mushroom Coprinus comatus has a long history of use in metabolic diseases, which is increasingly documented by modern research. Due to its favorable nutritional composition, it was assumed that this mushroom could accelerate tissue recovery after acutely induced damage with subsequent disturbance of primarily carbohydrate metabolism. To test this hypothesis, the alloxan diabetes model was used, where experimental animals’ change in body weight and biochemical and histological indicators of recovery were monitored. Before performing the in vivo part, HPLC analysis of the C. comatus extract was carried out with subsequent in silico and in vitro tests. Comparing the animals treated with the mushroom in three different doses, no significant change in body weight was observed. Still, the change was also noticed in the lipid status and glycemia, with a dose-dependent beneficial effect. Morphometric analysis of pancreatic tissue stained by immuno-histochemical methods showed that long-term treatment with C. comatus leads to increased numerical density, nuclear volume, and absolute number of beta cells of the islets of Langerhans, which suffered severe damage after alloxan administration. Overall, C. comatus may contribute to faster tissue recovery after acute diabetic-relevant damage with chronic consequences. Full article
(This article belongs to the Special Issue Research on Functional Active Ingredients of Edible Fungi)
Show Figures

Figure 1

Back to TopTop