Emerging Trends in Sustainable Biological Resources and Bioeconomy for Food Production
Abstract
:1. Introduction
1.1. Context of the Global Problem
1.2. The Bioeconomy as a Tool to Achieve Sustainability
1.3. Policies and Regulatory Frameworks
2. Methodology
3. Green Bioeconomy Resources
3.1. Plant-Based Resources
3.2. Insect-Based Resources
4. Blue Bioeconomy Resources
Algal-Derived Resources
5. Common Resources in Green and Blue Bioeconomy
5.1. Fermented Proteins
5.2. Natural Polyphenols and Antioxidants
- Chemical modification, encompassing a range of reactions such as methylation and glycosylation, is a fundamental aspect of biological research.
- Nanoparticle encapsulation is a method of protecting materials from degradation and enabling targeted release. Polyphenols have been found to be compatible with nanospheres, micelles, and liposomes, enhancing aqueous solubility and cellular uptake [99].
- Emulsion-based systems have been shown to provide controlled release and improved dispersion, making them useful in both the pharmaceutical and functional foods industries [101].
- The incorporation of the subject into polymeric carriers, including but not limited to chitosan, dendrimers, and cyclodextrins, has been demonstrated to enhance solubility and stability in aqueous environments [78].
- Solid dispersions (where polyphenols are dispersed in hydrophilic carriers) have been shown to enhance the dissolution rate and absorption in gastrointestinal fluids.
- Supercritical fluid technologies and nanoprecipitation offer precise control over particle size, thereby improving surface area and, consequently, dissolution rate.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, R. The Outlook for Population Growth. Science 2011, 333, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Schneider, U.A.; Havlík, P.; Schmid, E.; Valin, H.; Mosnier, A.; Obersteiner, M.; Böttcher, H.; Skalský, R.; Balkovič, J.; Sauer, T.; et al. Impacts of Population Growth, Economic Development, and Technical Change on Global Food Production and Consumption. Agric. Syst. 2011, 104, 204–215. [Google Scholar] [CrossRef]
- Mondal, B.; Bauddh, K.; Kumar, A.; Bordoloi, N. India’s Contribution to Greenhouse Gas Emission from Freshwater Ecosystems: A Comprehensive Review. Water 2022, 14, 2965. [Google Scholar] [CrossRef]
- Junaid, M.; Gokce, A. Global Agricultural Losses and Their Causes. Bull. Biol. Allied Sci. Res. 2024, 2024, 66. [Google Scholar] [CrossRef]
- Hall, C.; Dawson, T.P.; Macdiarmid, J.I.; Matthews, R.; Smith, P. The Impact of Population Growth and Climate Change on Food Security in Africa: Looking Ahead to 2050. Int. J. Agric. Sustain. 2017, 15, 124–135. [Google Scholar] [CrossRef]
- Wiebe, K.; Robinson, S.; Cattaneo, A. Climate Change, Agriculture and Food Security: Impacts and the Potential for Adaptation and Mitigation. In Sustainable Food and Agriculture; Academic Press: Cambridge, MA, USA, 2019; pp. 55–74. [Google Scholar]
- Mehta, N.; Shah, K.J.; Lin, Y.-I.; Sun, Y.; Pan, S.-Y. Advances in Circular Bioeconomy Technologies: From Agricultural Wastewater to Value-Added Resources. Environments 2021, 8, 20. [Google Scholar] [CrossRef]
- Aguilar, A.; Twardowski, T.; Wohlgemuth, R. Bioeconomy for Sustainable Development. Biotechnol. J. 2019, 14, 1800638. [Google Scholar] [CrossRef]
- Birner, R. Bioeconomy Concepts. In Bioeconomy: Shaping the Transition to a Sustainable, Biobased Economy; Springer: Berlin/Heidelberg, Germany, 2018; pp. 17–38. [Google Scholar]
- Heimann, T. Bioeconomy and SDGs: Does the Bioeconomy Support the Achievement of the SDGs? Earth’s Future 2019, 7, 43–57. [Google Scholar] [CrossRef]
- Wesseler, J.; von Braun, J. Measuring the Bioeconomy: Economics and Policies. Annu. Rev. Resour. Econ. 2017, 9, 275–298. [Google Scholar] [CrossRef]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; De Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for Keeping the Food System within Environmental Limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Samtiya, M.; Aluko, R.E.; Dhewa, T.; Moreno-Rojas, J.M. Potential Health Benefits of Plant Food-Derived Bioactive Components: An Overview. Foods 2021, 10, 839. [Google Scholar] [CrossRef] [PubMed]
- Stagnari, F.; Maggio, A.; Galieni, A.; Pisante, M. Multiple Benefits of Legumes for Agriculture Sustainability: An Overview. Chem. Biol. Technol. Agric. 2017, 4, 2. [Google Scholar] [CrossRef]
- Hernanz, J.; Sánchez-Girón, V.; Navarrete, L. Soil Carbon Sequestration and Stratification in a Cereal/Leguminous Crop Rotation with Three Tillage Systems in Semiarid Conditions. Agric. Ecosyst. Environ. 2009, 133, 114–122. [Google Scholar] [CrossRef]
- Angus, J.; Kirkegaard, J.; Hunt, J.; Ryan, M.; Ohlander, L.; Peoples, M. Break Crops and Rotations for Wheat. Crop Pasture Sci. 2015, 66, 523–552. [Google Scholar] [CrossRef]
- Zuza, E.J.; Lambert, K.; Macmillan, T.; Chiyemura, F.; Araya, Y.; Bowskill, V.; Oluseye, A.; Ng’endo Kanui, M.; Keding, G.; Butler, G.; et al. Crop Species Diversity: A Key Strategy for Sustainable Food System Transformation and Climate Resilience. Food Energy Secur. 2024, 13, e558. [Google Scholar] [CrossRef]
- Kyriakopoulou, K.; Dekkers, B.; van der Goot, A.J. Plant-Based Meat Analogues. In Sustainable Meat Production and Processing; Elsevier: Amsterdam, The Netherlands, 2019; pp. 103–126. [Google Scholar]
- Andreani, G.; Sogari, G.; Marti, A.; Froldi, F.; Dagevos, H.; Martini, D. Plant-Based Meat Alternatives: Technological, Nutritional, Environmental, Market, and Social Challenges and Opportunities. Nutrients 2023, 15, 452. [Google Scholar] [CrossRef]
- Pingali, P.; Boiteau, J.; Choudhry, A.; Hall, A. Making Meat and Milk from Plants: A Review of Plant-Based Food for Human and Planetary Health. World Dev. 2023, 170, 106316. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The Green, Blue and Grey Water Footprint of Crops and Derived Crop Products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef]
- Joshi, V.; Kumar, S. Meat Analogues: Plant Based Alternatives to Meat Products-A Review. Int. J. Food Ferment. Technol. 2015, 5, 107. [Google Scholar] [CrossRef]
- Petersen, K.S.; Flock, M.R.; Richter, C.K.; Mukherjea, R.; Slavin, J.L.; Kris-Etherton, P.M. Healthy Dietary Patterns for Preventing Cardiometabolic Disease: The Role of Plant-Based Foods and Animal Products. Curr. Dev. Nutr. 2017, 1, cdn-117. [Google Scholar] [CrossRef] [PubMed]
- Alcorta, A.; Porta, A.; Tárrega, A.; Alvarez, M.D.; Vaquero, M.P. Foods for Plant-Based Diets: Challenges and Innovations. Foods 2021, 10, 293. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Sun, C.-X.; Corke, H.; Gul, K.; Gan, R.-Y.; Fang, Y. The Health Benefits, Functional Properties, Modifications, and Applications of Pea (Pisum sativum L.) Protein: Current Status, Challenges, and Perspectives. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1835–1876. [Google Scholar] [CrossRef]
- Dillard, C.J.; German, J.B. Phytochemicals: Nutraceuticals and Human Health. J. Sci. Food Agric. 2000, 80, 1744–1756. [Google Scholar] [CrossRef]
- Santos-Buelga, C.; González-Paramás, A.M.; Oludemi, T.; Ayuda-Durán, B.; González-Manzano, S. Plant Phenolics as Functional Food Ingredients. Adv. Food Nutr. Res. 2019, 90, 183–257. [Google Scholar]
- Dunford, N. Hemp and Flaxseed Oil: Properties and Applications for Use in Food. In Specialty Oils and Fats in Food and Nutrition; Elsevier: Amsterdam, The Netherlands, 2015; pp. 39–63. [Google Scholar]
- Shen, L.; Li, F.; Jiang, C.; Cao, X.; Jin, J.; Wang, X.; Wei, W. Comparative Analysis of DHA Positional Distribution and Triacylglycerol Molecular Species in Algal Oil (Schizochytrium sp.) from Different Oil Processing. Food Biosci. 2024, 58, 103634. [Google Scholar] [CrossRef]
- Khan, N.; Mukhtar, H. Tea Polyphenols in Promotion of Human Health. Nutrients 2018, 11, 39. [Google Scholar] [CrossRef]
- Gomiero, T. Alternative Land Management Strategies and Their Impact on Soil Conservation. Agriculture 2013, 3, 464–483. [Google Scholar] [CrossRef]
- Kraak, V.I.; Aschemann-Witzel, J. The Future of Plant-Based Diets: Aligning Healthy Marketplace Choices with Equitable, Resilient, and Sustainable Food Systems. Annu. Rev. Public Health 2024, 45, 253–275. [Google Scholar] [CrossRef]
- Sosa, D.A.T.; Fogliano, V. Potential of Insect-Derived Ingredients for Food Applications. Insect Physiol. Ecol. 2017, 2017, 215–231. [Google Scholar]
- van Huis, A.; Itterbeeck, J.V.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Oonincx, D.; Dierenfeld, E. An Investigation into the Chemical Composition of Alternative Invertebrate Prey. Zoo Biol. 2012, 31, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, A.; Cho, Y.-H.; Kim, Y.H.B.; Jones, O.G. Contributions of Protein and Milled Chitin Extracted from Domestic Cricket Powder to Emulsion Stabilization. Curr. Res. Food Sci. 2019, 1, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Sun-Waterhouse, D.; Waterhouse, G.I.; You, L.; Zhang, J.; Liu, Y.; Ma, L.; Gao, J.; Dong, Y. Transforming Insect Biomass into Consumer Wellness Foods: A Review. Food Res. Int. 2016, 89, 129–151. [Google Scholar] [CrossRef]
- Trujillo-Cayado, L.A.; García-Domínguez, I.; Rodríguez-Luna, A.; Hurtado-Fernández, E.; Santos, J. Cricket Protein as an Innovative Emulsifier for Avocado Oil: Formulation and Characterization of Sustainable Emulsions. Appl. Sci. 2024, 14, 1674. [Google Scholar] [CrossRef]
- Dossey, A.T.; Morales, J.A.; Rojas, M.G. Insects as Sustainable Food Ingredients; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-12-802856-8. [Google Scholar]
- Nowak, V.; Persijn, D.; Rittenschober, D.; Charrondiere, U.R. Review of Food Composition Data for Edible Insects. Food Chem. 2016, 193, 39–46. [Google Scholar] [CrossRef]
- Han, X.; Heinonen, M. Processing Improves Physical and Oxidative Stability of Cricket Protein Emulsions. Food Chem. Adv. 2022, 1, 100125. [Google Scholar] [CrossRef]
- Sogari, G.; Menozzi, D.; Hartmann, C.; Mora, C. How to Measure Consumers Acceptance towards Edible Insects?—A Scoping Review about Methodological Approaches. In Edible Insects in the Food Sector: Methods, Current Applications and Perspectives; Springer: Cham, Switzerland, 2019; pp. 27–44. [Google Scholar]
- Lange, K.W.; Nakamura, Y. Edible Insects as Future Food: Chances and Challenges. J. Future Foods 2021, 1, 38–46. [Google Scholar] [CrossRef]
- Verhoeckx, K.C.; van Broekhoven, S.; den Hartog-Jager, C.F.; Gaspari, M.; de Jong, G.A.; Wichers, H.J.; van Hoffen, E.; Houben, G.F.; Knulst, A.C. House Dust Mite (Der p 10) and Crustacean Allergic Patients May React to Food Containing Yellow Mealworm Proteins. Food Chem. Toxicol. 2014, 65, 364–373. [Google Scholar] [CrossRef]
- de Gier, S.; Verhoeckx, K. Insect (Food) Allergy and Allergens. Mol. Immunol. 2018, 100, 82–106. [Google Scholar] [CrossRef]
- Belluco, S.; Losasso, C.; Maggioletti, M.; Alonzi, C.C.; Paoletti, M.G.; Ricci, A. Edible Insects in a Food Safety and Nutritional Perspective: A Critical Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 296–313. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Nutritional Composition and Safety Aspects of Edible Insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef] [PubMed]
- Pali-Schöll, I.; Meinlschmidt, P.; Larenas-Linnemann, D.; Purschke, B.; Hofstetter, G.; Rodríguez-Monroy, F.A.; Einhorn, L.; Mothes-Luksch, N.; Jensen-Jarolim, E.; Jäger, H. Edible Insects: Cross-Recognition of IgE from Crustacean-and House Dust Mite Allergic Patients, and Reduction of Allergenicity by Food Processing. World Allergy Organ. J. 2019, 12, 100006. [Google Scholar] [CrossRef] [PubMed]
- Delgado, L.; Garino, C.; Moreno, F.J.; Zagon, J.; Broll, H. Sustainable Food Systems: EU Regulatory Framework and Contribution of Insects to the Farm-To-Fork Strategy. Food Rev. Int. 2023, 39, 6955–6976. [Google Scholar] [CrossRef]
- Lotta, F. Insects as Food: The Legal Framework. In Edible Insects in the Food Sector: Methods, Current Applications and Perspectives; Springer: Cham, Switzerland, 2019; pp. 105–118. [Google Scholar]
- Falkowski, P.; Scholes, R.J.; Boyle, E.; Canadell, J.; Canfield, D.; Elser, J.; Gruber, N.; Hibbard, K.; Högberg, P.; Linder, S.; et al. The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System. Science 2000, 290, 291–296. [Google Scholar] [CrossRef]
- Gallego, I.; Medic, N.; Pedersen, J.S.; Ramasamy, P.K.; Robbens, J.; Vereecke, E.; Romeis, J. The Microalgal Sector in Europe: Towards a Sustainable Bioeconomy. New Biotechnol. 2025, 86, 1–13. [Google Scholar] [CrossRef]
- Pardilhó, S.; Cotas, J.; Pereira, L.; Oliveira, M.B.; Dias, J.M. Marine Macroalgae in a Circular Economy Context: A Comprehensive Analysis Focused on Residual Biomass. Biotechnol. Adv. 2022, 60, 107987. [Google Scholar] [CrossRef]
- Karabulut, G.; Purkiewicz, A.; Goksen, G. Recent Developments and Challenges in Algal Protein and Peptide Extraction Strategies, Functional and Technological Properties, Bioaccessibility, and Commercial Applications. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13372. [Google Scholar] [CrossRef]
- García-Encinas, J.P.; Ruiz-Cruz, S.; Juárez, J.; Ornelas-Paz, J.d.J.; Del Toro-Sánchez, C.L.; Márquez-Ríos, E. Proteins from Microalgae: Nutritional, Functional and Bioactive Properties. Foods 2025, 14, 921. [Google Scholar] [CrossRef]
- Wu, J.Y.; Tso, R.; Teo, H.S.; Haldar, S. The Utility of Algae as Sources of High Value Nutritional Ingredients, Particularly for Alternative/Complementary Proteins to Improve Human Health. Front. Nutr. 2023, 10, 1277343. [Google Scholar] [CrossRef]
- Wang, Y.; Tibbetts, S.M.; McGinn, P.J. Microalgae as Sources of High-Quality Protein for Human Food and Protein Supplements. Foods 2021, 10, 3002. [Google Scholar] [CrossRef]
- Bakshi, S.; Kanetkar, P.; Bunkar, D.S.; Browne, C.; Paswan, V.K. Chlorella sp. as a Promising Protein Source: Insight to Novel Extraction Techniques, Nutritional and Techno-Functional Attributes of Derived Proteins. Crit. Rev. Food Sci. Nutr. 2025, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Geada, P.; Moreira, C.; Silva, M.; Nunes, R.; Madureira, L.; Rocha, C.M.; Pereira, R.N.; Vicente, A.A.; Teixeira, J.A. Algal Proteins: Production Strategies and Nutritional and Functional Properties. Bioresour. Technol. 2021, 332, 125125. [Google Scholar] [CrossRef] [PubMed]
- Wild, K.J.; Steingaß, H.; Rodehutscord, M. Variability in Nutrient Composition and in Vitro Crude Protein Digestibility of 16 Microalgae Products. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1306–1319. [Google Scholar] [CrossRef]
- Ali, S.S.; Al-Tohamy, R.; Al-Zahrani, M.; Schagerl, M.; Kornaros, M.; Sun, J. Advancements and Challenges in Microalgal Protein Production: A Sustainable Alternative to Conventional Protein Sources. Microb. Cell Factories 2025, 24, 61. [Google Scholar] [CrossRef]
- Li, F.; Ning, Y.; Zhang, Y.; Huang, H.; Yuan, Q.; Wang, X.; Wei, W. Positional Distribution of DHA in Triacylglycerols: Natural Sources, Synthetic Routes, and Nutritional Properties. Crit. Rev. Food Sci. Nutr. 2025, 1–19. [Google Scholar] [CrossRef]
- Santos-Sánchez, N.F.; Valadez-Blanco, R.; Hernández-Carlos, B.; Torres-Ariño, A.; Guadarrama-Mendoza, P.; Salas-Coronado, R. Lipids Rich in Ømega-3 Polyunsaturated Fatty Acids from Microalgae. Appl. Microbiol. Biotechnol. 2016, 100, 8667–8684. [Google Scholar] [CrossRef]
- Rivero-Pino, F.; Gonzalez-de la Rosa, T.; Torrecillas-Lopez, M.; Barrera-Chamorro, L.; del Rio-Vazquez, J.L.; Marquez-Paradas, E.; Fernandez-Prior, A.; Garcia-Vaquero, M.; Garcia-Gomez, J.C.; Montserrat-de la Paz, S.; et al. Characterization of Rugulopteryx Okamurae Algae: A Source of Bioactive Peptides, Omega-3 Fatty Acids, and Volatile Compounds. Food Chem. 2025, 473, 143084. [Google Scholar] [CrossRef]
- Hitl, M.; Kladar, N.; Banović Fuentes, J.; Bijelić, K.; Đermanović, M.; Torović, L. Knowledge and Consumption Patterns of Omega-3 Fatty Acids among the Central Balkan Population—A Prospective Cross-Sectional Study. Nutrients 2024, 17, 122. [Google Scholar] [CrossRef]
- Chen, W.; Li, T.; Du, S.; Chen, H.; Wang, Q. Microalgal Polyunsaturated Fatty Acids: Hotspots and Production Techniques. Front. Bioeng. Biotechnol. 2023, 11, 1146881. [Google Scholar] [CrossRef]
- Marsol-Vall, A.; Aitta, E.; Guo, Z.; Yang, B. Green Technologies for Production of Oils Rich in N-3 Polyunsaturated Fatty Acids from Aquatic Sources. Crit. Rev. Food Sci. Nutr. 2022, 62, 2942–2962. [Google Scholar] [CrossRef]
- Arun, J.; Vigneshwar, S.S.; Swetha, A.; Gopinath, K.P.; Basha, S.; Brindhadevi, K.; Pugazhendhi, A. Bio-Based Algal (Chlorella Vulgaris) Refinery on de-Oiled Algae Biomass Cake: A Study on Biopolymer and Biodiesel Production. Sci. Total Environ. 2022, 816, 151579. [Google Scholar] [CrossRef] [PubMed]
- Diwan, B.; Parkhey, P.; Gupta, P. From Agro-Industrial Wastes to Single Cell Oils: A Step towards Prospective Biorefinery. Folia Microbiol. 2018, 63, 547–568. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, Z.; Wang, K.; Tang, C.; Liu, Y.; Li, J. Prebiotic Carbohydrates: Effect on Physicochemical Stability and Solubility of Algal Oil Nanoparticles. Carbohydr. Polym. 2020, 228, 115372. [Google Scholar] [CrossRef]
- Li, Y.P.; Ahmadi, F.; Kariman, K.; Lackner, M. Recent Advances and Challenges in Single Cell Protein (SCP) Technologies for Food and Feed Production. npj Sci. Food 2024, 8, 66. [Google Scholar] [CrossRef]
- Fasihi, M.; Jouzi, F.; Tervasmäki, P.; Vainikka, P.; Breyer, C. Global Potential of Sustainable Single-Cell Protein Based on Variable Renewable Electricity. Nat. Commun. 2025, 16, 1496. [Google Scholar] [CrossRef]
- Majumder, R.; Miatur, S.; Saha, A.; Hossain, S. Mycoprotein: Production and Nutritional Aspects: A Review. Sustain. Food Technol. 2024, 2, 81–91. [Google Scholar] [CrossRef]
- Shahid, M.; Shah, P.; Mach, K.; Rodgers-Hunt, B.; Finnigan, T.; Frost, G.; Neal, B.; Hadjikakou, M. The Environmental Impact of Mycoprotein-Based Meat Alternatives Compared to Plant-Based Meat Alternatives: A Systematic Review. Future Foods 2024, 10, 100410. [Google Scholar] [CrossRef]
- Finnigan, T.J.; Theobald, H.; Bajka, B. Mycoprotein: A Healthy and Sustainable Source of Alternative Protein-Based Foods. Annu. Rev. Food Sci. Technol. 2024, 16, 105–125. [Google Scholar] [CrossRef]
- Aziz, A.; Noreen, S.; Khalid, W.; Mubarik, F.; Niazi, M.K.; Koraqi, H.; Ali, A.; Lima, C.M.G.; Alansari, W.S.; Eskandrani, A.A.; et al. Extraction of Bioactive Compounds from Different Vegetable Sprouts and Their Potential Role in the Formulation of Functional Foods against Various Disorders: A Literature-Based Review. Molecules 2022, 27, 7320. [Google Scholar] [CrossRef]
- Recharla, N.; Riaz, M.; Ko, S.; Park, S. Novel Technologies to Enhance Solubility of Food-Derived Bioactive Compounds: A Review. J. Funct. Foods 2017, 39, 63–73. [Google Scholar] [CrossRef]
- More, P.R.; Jambrak, A.R.; Arya, S.S. Green, Environment-Friendly and Sustainable Techniques for Extraction of Food Bioactive Compounds and Waste Valorization. Trends Food Sci. Technol. 2022, 128, 296–315. [Google Scholar] [CrossRef]
- Soni, N.; Yadav, M.; Malarvannan, M.; Sharma, D.; Paul, D. Current Developments and Trends in Hybrid Extraction Techniques for Green Analytical Applications in Natural Products. J. Chromatogr. B 2025, 1256, 124543. [Google Scholar] [CrossRef] [PubMed]
- Patil, B.S.; Jayaprakasha, G.K.; Chidambara Murthy, K.N.; Vikram, A. Bioactive Compounds: Historical Perspectives, Opportunities, and Challenges. J. Agric. Food Chem. 2009, 57, 8142–8160. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health Benefits of Polyphenols: A Concise Review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef]
- Chiorcea-Paquim, A.-M.; Enache, T.A.; De Souza Gil, E.; Oliveira-Brett, A.M. Natural Phenolic Antioxidants Electrochemistry: Towards a New Food Science Methodology. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1680–1726. [Google Scholar] [CrossRef]
- de Oliveira, I.; Santos-Buelga, C.; Aquino, Y.; Barros, L.; Heleno, S.A. New Frontiers in the Exploration of Phenolic Compounds and Other Bioactives as Natural Preservatives. Food Biosci. 2025, 68, 106571. [Google Scholar] [CrossRef]
- Piccolella, S.; Crescente, G.; Candela, L.; Pacifico, S. Nutraceutical Polyphenols: New Analytical Challenges and Opportunities. J. Pharm. Biomed. Anal. 2019, 175, 112774. [Google Scholar] [CrossRef]
- Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary Phenolics: Chemistry, Bioavailability and Effects on Health. Nat. Prod. Rep. 2009, 26, 1001–1043. [Google Scholar] [CrossRef]
- Zeb, A. Concept, Mechanism, and Applications of Phenolic Antioxidants in Foods. J. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef]
- Michalak, M. Plant-Derived Antioxidants: Significance in Skin Health and the Ageing Process. Int. J. Mol. Sci. 2022, 23, 585. [Google Scholar] [CrossRef]
- Faustino, M.; Veiga, M.; Sousa, P.; Costa, E.M.; Silva, S.; Pintado, M. Agro-Food Byproducts as a New Source of Natural Food Additives. Molecules 2019, 24, 1056. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.C.; Viganó, J.; de Souza Mesquita, L.M.; Dias, A.L.B.; de Souza, M.C.; Sanches, V.L.; Chaves, J.O.; Pizani, R.S.; Contieri, L.S.; Rostagno, M.A. Recent Advances and Trends in Extraction Techniques to Recover Polyphenols Compounds from Apple By-Products. Food Chem. X 2021, 12, 100133. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Wang, W.; Liu, D. Ultrasound-Assisted Accelerated Penetration Extraction of Polyphenols from Pomegranate Peels: Enhanced Mass Transfer by Calcium Ion Precipitation and Utilization of Fick’s Law. Food Bioprocess Technol. 2024, 17, 1017–1029. [Google Scholar] [CrossRef]
- Araujo, R.G.; Rodríguez-Jasso, R.M.; Ruíz, H.A.; Govea-Salas, M.; Pintado, M.; Aguilar, C.N. Recovery of Bioactive Components from Avocado Peels Using Microwave-Assisted Extraction. Food Bioprod. Process. 2021, 127, 152–161. [Google Scholar] [CrossRef]
- Xavier Machado, T.d.O.; Portugal, I.B.M.; Padilha, C.V.D.S.; Ferreira Padilha, F.; dos Santos Lima, M. New Trends in the Use of Enzymes for the Recovery of Polyphenols in Grape Byproducts. J. Food Biochem. 2021, 45, e13712. [Google Scholar] [CrossRef]
- García-Roldán, A.; Piriou, L.; Jauregi, P. Natural Deep Eutectic Solvents as a Green Extraction of Polyphenols from Spent Coffee Ground with Enhanced Bioactivities. Front. Plant Sci. 2023, 13, 1072592. [Google Scholar] [CrossRef]
- Sambanthamurthi, R.; Tan, Y.; Sundram, K.; Abeywardena, M.; Sambandan, T.; Rha, C.; Sinskey, A.J.; Subramaniam, K.; Leow, S.-S.; Hayes, K.C.; et al. Oil Palm Vegetation Liquor: A New Source of Phenolic Bioactives. Br. J. Nutr. 2011, 106, 1655–1663. [Google Scholar] [CrossRef]
- Healy, L.E.; Zhu, X.; Pojić, M.; Sullivan, C.; Tiwari, U.; Curtin, J.; Tiwari, B.K. Biomolecules from Macroalgae—Nutritional Profile and Bioactives for Novel Food Product Development. Biomolecules 2023, 13, 386. [Google Scholar] [CrossRef]
- Kumari, P.; Bhargava, B. Phytochemicals from Edible Flowers: Opening a New Arena for Healthy Lifestyle. J. Funct. Foods 2021, 78, 104375. [Google Scholar] [CrossRef]
- Milovanovic, S.; Grzegorczyk, A.; Świątek, Ł.; Dębczak, A.; Tyskiewicz, K.; Konkol, M. Dandelion Seeds as a New and Valuable Source of Bioactive Extracts Obtained Using the Supercritical Fluid Extraction Technique. Sustain. Chem. Pharm. 2022, 29, 100796. [Google Scholar] [CrossRef]
- Lu, X.; Wang, C.; Zhao, M.; Wu, J.; Niu, Z.; Zhang, X.; Simal-Gandara, J.; Süntar, I.; Jafari, S.M.; Qiao, X.; et al. Improving the Bioavailability and Bioactivity of Garlic Bioactive Compounds via Nanotechnology. Crit. Rev. Food Sci. Nutr. 2022, 62, 8467–8496. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.S.; Amir, S.; Sokač Cvetnić, T.; Jurinjak Tušek, A.; Benković, M.; Jurina, T.; Valinger, D.; Gajdoš Kljusurić, J. Sustainable Isolation of Bioactive Compounds and Proteins from Plant-Based Food (and Byproducts). Plants 2023, 12, 2904. [Google Scholar] [CrossRef] [PubMed]
- Kiokias, S.; Oreopoulou, V. Review on the Antioxidant Activity of Phenolics in o/w Emulsions along with the Impact of a Few Important Factors on Their Interfacial Behaviour. Colloids Interfaces 2022, 6, 79. [Google Scholar] [CrossRef]
- Martins, V.F.; Pintado, M.E.; Morais, R.M.; Morais, A.M. Valorisation of Micro/Nanoencapsulated Bioactive Compounds from Plant Sources for Food Applications towards Sustainability. Foods 2022, 12, 32. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trujillo-Cayado, L.A.; Sánchez-García, R.M.; García-Domínguez, I.; Rodríguez-Luna, A.; Hurtado-Fernández, E.; Santos, J. Emerging Trends in Sustainable Biological Resources and Bioeconomy for Food Production. Appl. Sci. 2025, 15, 6555. https://doi.org/10.3390/app15126555
Trujillo-Cayado LA, Sánchez-García RM, García-Domínguez I, Rodríguez-Luna A, Hurtado-Fernández E, Santos J. Emerging Trends in Sustainable Biological Resources and Bioeconomy for Food Production. Applied Sciences. 2025; 15(12):6555. https://doi.org/10.3390/app15126555
Chicago/Turabian StyleTrujillo-Cayado, Luis A., Rosa M. Sánchez-García, Irene García-Domínguez, Azahara Rodríguez-Luna, Elena Hurtado-Fernández, and Jenifer Santos. 2025. "Emerging Trends in Sustainable Biological Resources and Bioeconomy for Food Production" Applied Sciences 15, no. 12: 6555. https://doi.org/10.3390/app15126555
APA StyleTrujillo-Cayado, L. A., Sánchez-García, R. M., García-Domínguez, I., Rodríguez-Luna, A., Hurtado-Fernández, E., & Santos, J. (2025). Emerging Trends in Sustainable Biological Resources and Bioeconomy for Food Production. Applied Sciences, 15(12), 6555. https://doi.org/10.3390/app15126555