Advances in Plant-Derived Extracellular Vesicles: Implications for Apple-Derived EVs
Abstract
1. Introduction
2. Search Strategy (Databases, Search Terms, and Criteria)
3. Isolation and Characterization
| Method | Principle | Advantages | Limitations | Applications in PDEVs | Reference (ex.) | Current Status in ADEVs |
|---|---|---|---|---|---|---|
| Differential ultracentrifugation (DUC) | Stepwise centrifugation to remove debris and organelles, then high g-force to pellet EVs. | Widely available; reproducible starting workflow; scalable sample volumes. | Lower purity vs. DGC/SEC; co-precipitation of soluble proteins/small molecules; time-consuming. | Grapefruit juice; Ginger; Arabidopsis leaves. | [11,12,13] | ADEVs: primary workflow; combine with density-gradient centrifugation when needed. |
| Density-gradient centrifugation (DGC) | Separation by buoyant density in sucrose/iodixanol gradients to resolve EV subpopulations. | High purity; resolves subfractions; reduces contaminants. | Labor-intensive; long runtime; requires ultracentrifuge and gradients. | Grapefruit; Almond; Panax notoginseng. | [14,15,16] | Occasionally used as a polishing step after DUC; not routine in apples. |
| Size-exclusion chromatography (SEC) | Fractionation by size on a porous matrix; EVs elute in early fractions. | Higher purity; reduces soluble protein/small-molecule carryover; preserves integrity. | Requires dedicated columns/instrumentation; lower throughput; fraction handling needed. | Carrot; Tomato; Blueberry. | [17,18,19] | UC followed by SEC has been reported for apples; broader, systematic SEC-only validation remains limited. |
| PEG precipitation | Polyethylene glycol competes for water, reducing EV solubility and precipitating vesicles. | Simple; inexpensive; relatively high yield; amenable to scale. | Co-precipitation of proteins/impurities; purity limited—prefer as pre-concentration. | Ginger (PEG6000). | [20] | ADEVs: rarely used; if applied, follow with SEC to remove contaminants. |
| Ultrafiltration (UF) | Size-based retention through membranes with defined MWCO for concentration/rough fractionation. | Rapid; low cost; compatible with serial processing; no special rotors. | Membrane clogging; shear stress risk; alone may affect integrity/purity. | Commonly used as pre-concentration, then coupled with SEC for purification. | [20] | Rarely used; if applied, follow with SEC to remove contaminants. |
| Immunoaffinity capture | Antibody–antigen recognition of EV surface markers (e.g., tetraspanins) for selective capture. | High specificity and purity; enables subpopulation isolation. | Depends on known markers; cost; potential yield trade-offs. | Arabidopsis TET8+ EVs. | [21] | ADEVs: lack of universal surface markers—routine application not established. |
| Microfluidics | On-chip fractionation by size, charge, or affinity using engineered microstructures/fields. | High-throughput potential; small sample requirement; precise control. | Specialized chips; standardization and scalability still developing. | Exploratory in PDEVs (method development stage). | [22,23] | ADEVs: no mature application reported. |
| Electrophoresis–dialysis (ELD) | Electric field–assisted migration with concurrent dialysis to separate EVs from small solutes. | No large equipment; feasible in standard labs; yields comparable to UC in some studies. | Cross-source reproducibility and scale-up to be validated. | Lemon (ELD). | [24] | ADEVs: not yet systematically validated. |
3.1. Isolation and Purification Methods
3.2. Characterization and Quality Control
4. Molecular Composition and Biological Functions
4.1. Proteome
4.2. Lipidome
4.3. Nucleic Acids
4.4. Secondary Metabolites
5. Applications of PDEVs in Disease Therapy
5.1. Barrier Tissues and Regeneration
5.2. Cancers
5.3. Metabolic Disorders & Hepatobiliary Diseases
5.4. Mucosal Inflammation and Barrier Repair (IBD, Colitis, Oral Mucosa)
5.5. Immune and Vascular Systemic Diseases (IgA Nephropathy and Vascular Calcification/Atherosclerosis)
5.6. Neurological Disorders
6. Conclusions and Outlook
6.1. Regulatory Landscape and Quality Standards
6.2. Industrial Scalability and Process Selection
6.3. Agricultural Variability, Raw Material Control, and Contamination
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Wang, Q.; Yang, Y.; Zhou, S.; Zhang, P.; Feng, T. The role of exosomal lncRNAs in cancer biology and clinical management. Exp. Mol. Med. 2021, 53, 1669–1673. [Google Scholar] [CrossRef]
- Penas-Martinez, J.; Barrachina, M.N.; Cuenca-Zamora, E.J.; Luengo-Gil, G.; Bravo, S.B.; Caparros-Perez, E.; Teruel-Montoya, R.; Eliseo-Blanco, J.; Vicente, V.; Garcia, A.; et al. Qualitative and Quantitative Comparison of Plasma Exosomes from Neonates and Adults. Int. J. Mol. Sci. 2021, 22, 1926. [Google Scholar] [CrossRef]
- Xu, Z.J.; Xu, Y.Z.; Zhang, K.; Liu, Y.H.; Liang, Q.J.; Thakur, A.; Liu, W.; Yan, Y.L. Plant-derived extracellular vesicles (PDEVs) in nanomedicine for human disease and therapeutic modalities. J. Nanobiotechnol. 2023, 21, 114. [Google Scholar] [CrossRef]
- Regente, M.; Corti-Monzón, G.; Maldonado, A.M.; Pinedo, M.; Jorrín, J.; de la Canal, L. Vesicular fractions of sunflower apoplastic fluids are associated with potential exosome marker proteins. Febs Lett. 2009, 583, 3363–3366. [Google Scholar] [CrossRef]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef]
- Daccord, N.; Celton, J.M.; Linsmith, G.; Becker, C.; Choisne, N.; Schijlen, E.; van de Geest, H.; Bianco, L.; Micheletti, D.; Velasco, R.; et al. High-quality assembly of the apple genome and methylome dynamics of early fruit development. Nat. Genet. 2017, 49, 1099–1106. [Google Scholar] [CrossRef]
- Fujita, D.; Arai, T.; Komori, H.; Shirasaki, Y.; Wakayama, T.; Nakanishi, T.; Tamai, I. Apple-Derived Nanoparticles Modulate Expression of Organic-Anion-Transporting Polypeptide (OATP) 261 in Caco-2 Cells. Mol. Pharm. 2018, 15, 5772–5780. [Google Scholar] [CrossRef] [PubMed]
- Trentini, M.; Zanotti, F.; Tiengo, E.; Camponogara, F.; Degasperi, M.; Licastro, D.; Lovatti, L.; Zavan, B. An Apple a Day Keeps the Doctor Away: Potential Role of miRNA 146 on Macrophages Treated with Exosomes Derived from Apples. Biomedicines 2022, 10, 415. [Google Scholar] [CrossRef]
- Usui, S.; Zhu, Q.A.; Komori, H.; Iwamoto, Y.; Nishiuchi, T.; Shirasaka, Y.; Tamai, I. Apple-derived extracellular vesicles modulate the expression of human intestinal bile acid transporter ASBT/SLC10A2 via downregulation of transcription factor RARa. Drug Metab. Pharmacokinet. 2023, 52, 100512. [Google Scholar] [CrossRef]
- Zhao, B.; Lin, H.J.; Jiang, X.C.; Li, W.S.; Gao, Y.L.; Li, M.H.; Yu, Y.A.; Chen, N.G.; Gao, J.Q. Exosome-like nanoparticles derived from fruits, vegetables, and herbs: Innovative strategies of therapeutic and drug delivery. Theranostics 2024, 14, 4598–4621. [Google Scholar] [CrossRef] [PubMed]
- Garaeva, L.; Kamyshinsky, R.; Kil, Y.; Varfolomeeva, E.; Verlov, N.; Komarova, E.; Garmay, Y.; Landa, S.; Burdakov, V.; Myasnikov, A.; et al. Delivery of functional exogenous proteins by plant-derived vesicles to human cells in vitro. Sci. Rep. 2021, 11, 6489. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.F.; Wang, S.M.; Cai, Q.; Jin, H.L. Effective methods for isolation and purification of extracellular vesicles from plants. J. Integr. Plant Biol. 2021, 63, 2020–2030. [Google Scholar] [CrossRef] [PubMed]
- Man, F.L.; Meng, C.; Liu, Y.; Wang, Y.C.; Zhou, Y.; Ma, J.Q.; Lu, R. The Study of Ginger-Derived Extracellular Vesicles as a Natural Nanoscale Drug Carrier and Their Intestinal Absorption in Rats. AAPS PharmSciTech 2021, 22, 206. [Google Scholar] [CrossRef] [PubMed]
- Stanly, C.; Alfieri, M.; Ambrosone, A.; Leone, A.; Fiume, I.; Pocsfalvi, G. Grapefruit-Derived Micro and Nanovesicles Show Distinct Metabolome Profiles and Anticancer Activities in the A375 Human Melanoma Cell Line. Cells 2020, 9, 2722. [Google Scholar] [CrossRef]
- Santangelo, C.; Binetti, E.; Azman, S.N.A.; Bondi, D.; Brunetti, V.; Farina, M.; Purcaro, C.; Marramiero, L.; Di Raimo, R.; Pietrangelo, G.; et al. Biophysical features of plant-derived nanovesicles: Focus on almonds. J. Food Compos. Anal. 2024, 134, 106494. [Google Scholar] [CrossRef]
- Li, S.Y.; Zhang, R.; Wang, A.N.; Li, Y.; Zhang, M.M.; Kim, J.; Zhu, Y.; Wang, Q.Z.; Zhang, Y.; Wei, Y.; et al. Panax notoginseng: Derived exosome-like nanoparticles attenuate ischemia reperfusion injury via altering microglia polarization. J. Nanobiotechnol. 2023, 21, 416. [Google Scholar] [CrossRef]
- Stanly, C.; Fiume, I.; Capasso, G.; Pocsfalvi, G. Isolation of Exosome-Like Vesicles from Plants by Ultracentrifugation on Sucrose/Deuterium Oxide (D2O) Density Cushions. In Unconventional Protein Secretion; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2016; Volume 1459, pp. 259–269. [Google Scholar] [CrossRef]
- del Pozo-Acebo, L.; de las Hazas, M.C.L.; Tomé-Carneiro, J.; Gil-Cabrerizo, P.; San-Cristobal, R.; Busto, R.; García-Ruiz, A.; Dávalos, A. Bovine Milk-Derived Exosomes as a Drug Delivery Vehicle for miRNA-Based Therapy. Int. J. Mol. Sci. 2021, 22, 1105. [Google Scholar] [CrossRef]
- Bokka, R.; Ramos, A.P.; Fiume, I.; Manno, M.; Raccosta, S.; Turiák, L.; Sugár, S.; Adamo, G.; Csizmadia, T.; Pocsfalvi, G. Biomanufacturing of Tomato-Derived Nanovesicles. Foods 2020, 9, 1852. [Google Scholar] [CrossRef]
- Kalarikkal, S.P.; Prasad, D.; Kasiappan, R.; Chaudhari, S.R.; Sundaram, G.M. A cost-effective polyethylene glycol-based method for the isolation of functional edible nanoparticles from ginger rhizomes. Sci. Rep. 2020, 10, 4456. [Google Scholar] [CrossRef]
- He, B.Y.; Cai, Q.; Qiao, L.L.; Huang, C.Y.; Wang, S.M.; Miao, W.L.; Ha, T.; Wang, Y.S.; Jin, H.L. RNA-binding proteins contribute to small RNA loading in plant extracellular vesicles. Nat. Plants 2021, 7, 342–352. [Google Scholar] [CrossRef]
- Wu, Y.S.; Wang, Y.Q.; Lu, Y.J.; Luo, X.M.; Huang, Y.H.; Xie, T.; Pilarsky, C.; Dang, Y.Y.; Zhang, J.Y. Microfluidic Technology for the Isolation and Analysis of Exosomes. Micromachines 2022, 13, 1571. [Google Scholar] [CrossRef]
- Wang, D.Y.; Yang, S.J.; Wang, N.; Guo, H.; Feng, S.L.; Luo, Y.; Zhao, J.L. A Novel Microfluidic Strategy for Efficient Exosome Separation via Thermally Oxidized Non-Uniform Deterministic Lateral Displacement (DLD) Arrays and Dielectrophoresis (DEP) Synergy. Biosensors 2024, 14, 174. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Liu, X.Y.; Luo, Q.Q.; Xu, L.L.; Chen, F.X. An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy. J. Nanobiotechnol. 2020, 18, 100. [Google Scholar] [CrossRef]
- Gardiner, C.; Di Vizio, D.; Sahoo, S.; Théry, C.; Witwer, K.W.; Wauben, M.; Hill, A.F. Techniques used for the isolation and characterization of extracellular vesicles: Results of a worldwide survey. J. Extracell. Vesicles 2016, 5, 32945. [Google Scholar] [CrossRef]
- Webber, J.; Clayton, A. How pure are your vesicles? J. Extracell. Vesicles 2013, 2, 19861. [Google Scholar] [CrossRef]
- Park, H.-B.; Yeon, P.J. Research Trends in the Development of Cosmetic Ingredients for Skin Barrier Improvement. J. Korean Appl. Sci. Technol. 2023, 40, 1445–1453. [Google Scholar]
- Logozzi, M.; Di Raimo, R.; Mizzoni, D.; Fais, S. Nanovesicles from Organic Agriculture-Derived Fruits and Vegetables: Characterization and Functional Antioxidant Content. Int. J. Mol. Sci. 2021, 22, 8170. [Google Scholar] [CrossRef]
- Sidhom, K.; Obi, P.O.; Saleem, A. A Review of Exosomal Isolation Methods: Is Size Exclusion Chromatography the Best Option? Int. J. Mol. Sci. 2020, 21, 6466. [Google Scholar] [CrossRef]
- Nemati, M.; Singh, B.; Mir, R.A.; Nemati, M.; Babaei, A.; Ahmadi, M.; Rasmi, Y.; Golezani, A.G.; Rezaie, J. Plant-derived extracellular vesicles: A novel nanomedicine approach with advantages and challenges. Cell Commun. Signal. 2022, 20, 69. [Google Scholar] [CrossRef]
- Robinson, S.D.; Samuels, M.; Jones, W.; Stewart, N.; Eravci, M.; Mazarakis, N.K.; Gilbert, D.; Critchley, G.; Giamas, G. Confirming size-exclusion chromatography as a clinically relevant extracellular vesicles separation method from 1mL plasma through a comprehensive comparison of methods. BMC Methods 2024, 1, 7. [Google Scholar] [CrossRef]
- Lyu, N.; Knight, R.; Robertson, S.Y.T.; Dos Santos, A.; Zhang, C.; Ma, C.; Xu, J.J.; Zheng, J.; Deng, S.X. Stability and Function of Extracellular Vesicles Derived from Immortalized Human Corneal Stromal Stem Cells: A Proof of Concept Study. AAPS J. 2022, 25, 8. [Google Scholar] [CrossRef]
- Dad, H.A.; Gu, T.W.; Zhu, A.Q.; Huang, L.Q.; Peng, L.H. Plant Exosome-like Nanovesicles: Emerging Therapeutics and Drug Delivery Nanoplatforms. Mol. Ther. 2021, 29, 13–31. [Google Scholar] [CrossRef]
- Kilasoniya, A.; Garaeva, L.; Shtam, T.; Spitsyna, A.; Putevich, E.; Moreno-Chamba, B.; Salazar-Bermeo, J.; Komarova, E.; Malek, A.; Valero, M.; et al. Potential of Plant Exosome Vesicles from Grapefruit (Citrus × paradisi) and Tomato (Solanum lycopersicum) Juices as Functional Ingredients and Targeted Drug Delivery Vehicles. Antioxidants 2023, 12, 943. [Google Scholar] [CrossRef]
- Wang, F.; Li, L.Y.; Deng, J.Y.; Ai, J.C.; Mo, S.S.; Ding, D.D.; Xiao, Y.X.; Hu, S.Q.; Zhu, D.S.; Li, Q.S.; et al. Lipidomic analysis of plant-derived extracellular vesicles for guidance of potential anti-cancer therapy. Bioact. Mater. 2025, 46, 82–96. [Google Scholar] [CrossRef]
- Xiao, X.; Guo, Y.; Msomi, N.Z.; Islam, M.S.; Chu, M. Exosome-Like Nanoparticles Extracted from Plant Cells for Diabetes Therapy. Int. J. Mol. Sci. 2025, 26, 9155. [Google Scholar] [CrossRef]
- Bahri, F.; Mansoori, M.; Vafaei, S.; Fooladi, S.; Mir, Y.; Mehrabani, M.; Hozhabri, Y.; Nematollahi, M.H.; Iravani, S. A comprehensive review on ginger-derived exosome-like nanoparticles as feasible therapeutic nano-agents against diseases. Mater. Adv. 2024, 5, 1846–1867. [Google Scholar] [CrossRef]
- Hao, S.Y.; Yang, H.Y.; Hu, J.J.; Luo, L.L.; Yuan, Y.; Liu, L.B. Bioactive compounds and biological functions of medicinal plant-derived extracellular vesicles. Pharmacol. Res. 2024, 200, 107062. [Google Scholar] [CrossRef]
- Che, K.; Wang, C.; Chen, H. Advancing functional foods: A systematic analysis of plant-derived exosome-like nanoparticles and their health-promoting properties. Front. Nutr. 2025, 12, 1544746. [Google Scholar] [CrossRef]
- de las Hazas, M.C.L.; Tomé-Carneiro, J.; del Pozo-Acebo, L.; del Saz-Lara, A.; Chapado, L.A.; Balaguer, L.; Rojo, E.; Espín, J.C.; Crespo, C.; Moreno, D.A.; et al. Therapeutic potential of plant-derived extracellular vesicles as nanocarriers for exogenous miRNAs. Pharmacol. Res. 2023, 198, 106999. [Google Scholar] [CrossRef]
- Kim, S.Q.; Kim, K.H. Emergence of Edible Plant-Derived Nanovesicles as Functional Food Components and Nanocarriers for Therapeutics Delivery: Potentials in Human Health and Disease. Cells 2022, 11, 2232. [Google Scholar] [CrossRef]
- Alfieri, M.; Leone, A.; Ambrosone, A. Plant-Derived Nano and Microvesicles for Human Health and Therapeutic Potential in Nanomedicine. Pharmaceutics 2021, 13, 498. [Google Scholar] [CrossRef]
- Özkan, I.; Koçak, P.; Yildirim, M.; Ünsal, N.; Yilmaz, H.; Telci, D.; Sahin, F. Garlic (Allium sativum)-derived SEVs inhibit cancer cell proliferation and induce caspase mediated apoptosis. Sci. Rep. 2021, 11, 14773. [Google Scholar] [CrossRef]
- Ambrosone, A.; Barbulova, A.; Cappetta, E.; Cillo, F.; De Palma, M.; Ruocco, M.; Pocsfalvi, G. Plant Extracellular Vesicles: Current Landscape and Future Directions. Plants 2023, 12, 4141. [Google Scholar] [CrossRef]
- Trentini, M.; Zanolla, I.; Tiengo, E.; Zanotti, F.; Sommella, E.; Merciai, F.; Campiglia, P.; Licastro, D.; Degasperi, M.; Lovatti, L.; et al. Link between organic nanovescicles from vegetable kingdom and human cell physiology: Intracellular calcium signalling. J. Nanobiotechnol. 2024, 22, 68. [Google Scholar] [CrossRef]
- Lian, M.Q.; Chng, W.H.; Liang, J.; Yeo, H.Q.; Lee, C.K.; Belaid, M.; Tollemeto, M.; Wacker, M.G.; Czarny, B.; Pastorin, G. Plant-derived extracellular vesicles: Recent advancements and current challenges on their use for biomedical applications. J. Extracell. Vesicles 2022, 11, e12283. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Zhang, M.Z.; Flores, S.R.L.; Woloshun, R.R.; Yang, C.H.; Yin, L.J.; Xiang, P.; Xu, X.D.; Garrick, M.D.; Vidyasagar, S.; et al. Oral Gavage of Ginger Nanoparticle-Derived Lipid Vectors Carrying Dmt1 siRNA Blunts Iron Loading in Murine Hereditary Hemochromatosis. Mol. Ther. 2019, 27, 493–506. [Google Scholar] [CrossRef]
- Calzoni, E.; Bertoldi, A.; Cusumano, G.; Buratta, S.; Urbanelli, L.; Emiliani, C. Plant-Derived Extracellular Vesicles: Natural Nanocarriers for Biotechnological Drugs. Processes 2024, 12, 2938. [Google Scholar] [CrossRef]
- Simhadri, V.R.; Andersen, J.F.; Calvo, E.; Choi, S.C.; Coligan, J.E.; Borrego, F. Human CD300a binds to phosphatidylethanolamine and phosphatidylserine, and modulates the phagocytosis of dead cells. Blood 2012, 119, 2799–2809. [Google Scholar] [CrossRef]
- Chen, N.X.; Sun, J.F.; Zhu, Z.H.; Cribbs, A.P.; Xiao, B. Edible plant-derived nanotherapeutics and nanocarriers: Recent progress and future directions. Expert Opin. Drug Deliv. 2022, 19, 409–419. [Google Scholar] [CrossRef]
- Sundaram, K.; Miller, D.P.; Kumar, A.; Teng, Y.; Sayed, M.; Mu, J.Y.; Lei, C.; Sriwastva, M.K.; Zhang, L.F.; Jun, Y.; et al. Plant-Derived Exosomal Nanoparticles Inhibit Pathogenicity of Porphyromonas gingivalis. iScience 2019, 21, 308–327. [Google Scholar] [CrossRef]
- Leng, Y.F.; Yang, L.B.; Pan, S.Y.; Zhan, L.L.; Yuan, F. Characterization of blueberry exosome-like nanoparticles and miRNAs with potential cross-kingdom human gene targets. Food Sci. Hum. Wellness 2024, 13, 869–878. [Google Scholar] [CrossRef]
- Qiu, F.S.; Wang, J.F.; Guo, M.Y.; Li, X.J.; Shi, C.Y.; Wu, F.; Zhang, H.H.; Ying, H.Z.; Yu, C.H. Rgl-exomiR-7972, a novel plant exosomal microRNA derived from fresh Rehmanniae Radix, ameliorated lipopolysaccharide-induced acute lung injury and gut dysbiosis. Biomed. Pharmacother. 2023, 165, 115007. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Li, S.Y.; Zhang, S.Y.; Wang, J.X. Plant-derived exosome-like nanoparticles and their therapeutic activities. Asian J. Pharm. Sci. 2022, 17, 53–69. [Google Scholar] [CrossRef]
- Guo, Z.; Li, G.; Shen, L.; Pan, J.; Dou, D.; Gong, Y.; Shi, W.; Sun, Y.; Zhang, Y.; Ma, K.; et al. Ginger-Derived Exosome-Like Nanoparticles Loaded With Indocyanine Green Enhances Phototherapy Efficacy for Breast Cancer. Int. J. Nanomed. 2025, 20, 1147–1169. [Google Scholar] [CrossRef]
- Yepes-Molina, L.; Carvajal, M. Nanoencapsulation of sulforaphane in broccoli membrane vesicles and their in vitro antiproliferative activity. Pharm. Biol. 2021, 59, 1490–1504. [Google Scholar] [CrossRef]
- Yi, Q.L.; Xu, Z.J.; Thakur, A.; Zhang, K.; Liang, Q.J.; Liu, Y.H.; Yan, Y.L. Current understanding of plant-derived exosome-like nanoparticles in regulating the inflammatory response and immune system microenvironment. Pharmacol. Res. 2023, 190, 106733. [Google Scholar] [CrossRef]
- Wang, J.; Kong, Z.S. Plant-derived vesicle-like nanoparticles in food crops: Emerging insights into nutritional biofortification and biomedical applications. Plant Biotechnol. J. 2025, 23, 3260–3282. [Google Scholar] [CrossRef]
- Chen, Q.B.; Li, Q.; Liang, Y.Q.; Zu, M.H.; Chen, N.X.; Canup, B.S.B.; Luo, L.Y.; Wang, C.H.; Zeng, L.; Xiao, B. Natural exosome-like nanovesicles from edible tea flowers suppress metastatic breast cancer ROS generation and microbiota modulation. Acta Pharm. Sin. B 2022, 12, 907–923. [Google Scholar] [CrossRef]
- Orefice, N.S.; Di Raimo, R.; Mizzoni, D.; Logozzi, M.; Fais, S. Purposing plant-derived exosomes-like nanovesicles for drug delivery: Patents and literature review. Expert Opin. Ther. Pat. 2023, 33, 89–100. [Google Scholar] [CrossRef]
- Han, Y.H.; Jones, T.W.; Dutta, S.; Zhu, Y.; Wang, X.Y.; Narayanan, S.P.; Fagan, S.C.; Zhang, D. Overview and Update on Methods for Cargo Loading into Extracellular Vesicles. Processes 2021, 9, 356. [Google Scholar] [CrossRef]
- Hassanzadeh-Barforoushi, A.; Sango, X.; Johnston, E.L.; Haylock, D.; Wang, Y.L. Microfluidic Devices for Manufacture of Therapeutic Extracellular Vesicles: Advances and Opportunities. J. Extracell. Vesicles 2025, 14, e70132. [Google Scholar] [CrossRef]
- Jin, E.Y.; Yang, Y.S.; Cong, S.J.; Chen, D.K.; Chen, R.X.; Zhang, J.; Hu, Y.J.; Chen, W.N. Lemon-derived nanoparticle-functionalized hydrogels regulate macrophage reprogramming to promote diabetic wound healing. J. Nanobiotechnol. 2025, 23, 68. [Google Scholar] [CrossRef]
- Kalarikkal, S.P.; Kumar, M.N.; Rajendran, S.; Bethi, C.M.S.; Ravilla, J.; Narayanan, J.; Sundaram, G.M. Natural plant-derived nanovesicles for effective psoriasis therapy via dual modulation of IL-17 and NRF2 pathway. iScience 2025, 28, 112556. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.H.; Pi, J.K.; Zou, C.Y.; Jiang, Y.L.; Li, Q.J.; Zhang, X.Z.; Xing, F.; Nie, R.; Han, C.; Xie, H.Q. Hydrogel-exosome system in tissue engineering: A promising therapeutic strategy. Bioact. Mater. 2024, 38, 1–30. [Google Scholar] [CrossRef]
- Kim, M.K.; Choi, Y.C.; Cho, S.H.; Choi, J.S.; Cho, Y.W. The Antioxidant Effect of Small Extracellular Vesicles Derived from Peels for Wound Healing. Tissue Eng. Regen. Med. 2021, 18, 561–571. [Google Scholar] [CrossRef]
- Savci, Y.; Kirbas, O.K.; Bozkurt, B.T.; Abdik, E.A.; Tasli, P.N.; Sahin, F.; Abdik, H. Grapefruit-derived extracellular vesicles as a promising cell-free therapeutic tool for wound healing. Food Funct. 2021, 12, 5144–5156. [Google Scholar] [CrossRef]
- Trentini, M.; Zanolla, I.; Zanotti, F.; Tiengo, E.; Licastro, D.; Dal Monego, S.; Lovatti, L.; Zavan, B. Apple Derived Exosomes Improve Collagen Type I Production and Decrease MMPs during Aging of the Skin through Downregulation of the NF-κB Pathway as Mode of Action. Cells 2022, 11, 3950. [Google Scholar] [CrossRef]
- Sileo, L.; Cavaleri, M.P.; Lovatti, L.; Pezzotti, G.; Ferroni, L.; Zavan, B. Dermatologically Tested Apple-Derived Extracellular Vesicles: Safety, Anti-Aging, and Soothing Benefits for Skin Health. J. Cosmet. Dermatol. 2025, 24, e70254. [Google Scholar] [CrossRef]
- Zhang, M.Z.; Xiao, B.; Wang, H.; Han, M.K.; Zhang, Z.; Viennois, E.; Xu, C.L.; Merlin, D. Edible Ginger-derived Nano-lipids Loaded with Doxorubicin as a Novel Drug-delivery Approach for Colon Cancer Therapy. Mol. Ther. 2016, 24, 1783–1796. [Google Scholar] [CrossRef]
- Wang, Q.L.; Ren, Y.; Mu, J.Y.; Egilmez, N.K.; Zhuang, X.Y.; Deng, Z.B.; Zhang, L.F.; Yan, J.; Miller, D.; Zhang, H.G. Grapefruit-Derived Nanovectors Use an Activated Leukocyte Trafficking Pathway to Deliver Therapeutic Agents to Inflammatory Tumor Sites. Cancer Res. 2015, 75, 2520–2529. [Google Scholar] [CrossRef]
- Liu, H.Z.; Luo, G.F.; Shang, Z.J. Plant-derived nanovesicles as an emerging platform for cancer therapy. Acta Pharm. Sin. B 2024, 14, 133–154. [Google Scholar] [CrossRef]
- Wu, H.J.; Shi, M.Y.; Meng, L.W.; Qiu, J.; Jiang, Y.C.; Qian, D.; Shen, F.Q. Plant-derived extracellular vesicles as a novel tumor-targeting delivery system for cancer treatment. Front. Cell Dev. Biol. 2025, 13, 1589550. [Google Scholar] [CrossRef]
- Anusha, R.; Ashin, M.; Priya, S. Ginger exosome-like nanoparticles (GELNs) induced apoptosis, cell cycle arrest, and anti-metastatic effects in triple-negative breast cancer MDA-MB-231 cells. Food Chem. Toxicol. 2023, 182, 114102. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Luo, C.; Qiu, X.L.; Mu, J.Y.; Sriwastva, M.K.; Xu, Q.B.; Liu, M.M.; Hu, X.; Xu, F.Y.; Zhang, L.F.; et al. Plant-nanoparticles enhance anti-PD-L1 efficacy by shaping human commensal microbiota metabolites. Nat. Commun. 2025, 16, 1295. [Google Scholar] [CrossRef]
- Zhuang, X.Y.; Teng, Y.; Samykutty, A.; Mu, J.Y.; Deng, Z.B.; Zhang, L.F.; Cao, P.X.; Rong, Y.; Yan, J.; Miller, D.; et al. Grapefruit-derived Nanovectors Delivering Therapeutic miR17 Through an Intranasal Route Inhibit Brain Tumor Progression. Mol. Ther. 2016, 24, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Kürtösi, B.; Kazsoki, A.; Zelkó, R. A Systematic Review on Plant-Derived Extracellular Vesicles as Drug Delivery Systems. Int. J. Mol. Sci. 2024, 25, 7559. [Google Scholar] [CrossRef]
- Zhuang, X.; Deng, Z.B.; Mu, J.; Zhang, L.; Yan, J.; Miller, D.; Feng, W.; McClain, C.J.; Zhang, H.G. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J. Extracell. Vesicles 2015, 4, 28713. [Google Scholar] [CrossRef]
- Li, W.J.; Yang, S.; Zhao, Y.M.; Di Nunzio, G.; Ren, L.M.; Fan, L.L.; Zhao, R.H.; Zhao, D.Q.; Wang, J.W. Ginseng-derived nanoparticles alleviate alcohol-induced liver injury by activating the Nrf2/HO-1 signalling pathway and inhibiting the NF-κB signalling pathway in vitro and in vivo. Phytomedicine 2024, 127, 155428. [Google Scholar] [CrossRef]
- Zhan, W.Q.; Deng, M.Z.; Huang, X.Q.; Xie, D.; Gao, X.; Chen, J.X.; Shi, Z.; Lu, J.X.; Lin, H.; Li, P. Pueraria lobata-derived exosome-like nanovesicles alleviate osteoporosis by enhacning autophagy. J. Control. Release 2023, 364, 644–653. [Google Scholar] [CrossRef]
- Komori, H.; Fujita, D.; Shirasaki, Y.; Zhu, Q.N.; Iwamoto, Y.; Nakanishi, T.; Nakajima, M.; Tamai, I. MicroRNAs in Apple-Derived Nanoparticles Modulate Intestinal Expression of Organic Anion-Transporting Peptide 2B1/ SLCO2B1 in Caco-2 Cells. Drug Metab. Dispos. 2021, 49, 803–809. [Google Scholar] [CrossRef]
- Zhang, M.Z.; Viennois, E.; Prasad, M.; Zhang, Y.C.; Wang, L.X.; Zhang, Z.; Han, M.K.; Xiao, B.; Xu, C.L.; Srinivasan, S.; et al. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 2016, 101, 321–340. [Google Scholar] [CrossRef]
- Di Raimo, R.; Mizzoni, D.; Spada, M.; Dolo, V.; Fais, S.; Logozzi, M. Oral Treatment with Plant--Derived Exosomes Restores Redox Balance in H2O2-Treated Mice. Antioxidants 2023, 12, 1169. [Google Scholar] [CrossRef]
- Deng, Z.B.; Rong, Y.; Teng, Y.; Mu, J.Y.; Zhuang, X.Y.; Tseng, M.; Samykutty, A.; Zhang, L.F.; Yan, J.; Miller, D.; et al. Broccoli-Derived Nanoparticle Inhibits Mouse Colitis by Activating Dendritic Cell AMP-Activated Protein Kinase. Mol. Ther. 2017, 25, 1641–1654. [Google Scholar] [CrossRef]
- Kim, J.; Zhang, S.Y.; Zhu, Y.; Wang, R.R.; Wang, J.X. Amelioration of colitis progression by ginseng-derived exosome-like nanoparticles through suppression of inflammatory cytokines. J. Ginseng Res. 2023, 47, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Ferroni, L.; Rubini, A.; Bargellini, P.; Tremoli, E.; Cappucci, I.P.; D’Amora, U.; Ronca, A.; Calogero, G.; Panini, P.C.; Bettini, G.; et al. Apple vescicles: Revolutionary gut microbiota treatment for Inflammatory Bowel Disease. Food Biosci. 2024, 62, 105052. [Google Scholar] [CrossRef]
- Zhang, W.; Yuan, Y.; Li, X.; Luo, J.; Zhou, Z.M.; Yu, L.; Wang, G.B. Orange-derived and dexamethasone-encapsulated extracellular vesicles reduced proteinuria and alleviated pathological lesions in IgA nephropathy by targeting intestinal lymphocytes. Front. Immunol. 2022, 13, 900963. [Google Scholar] [CrossRef]
- Du, Y.T.; Cheng, T.Z.; Liu, C.X.; Zhu, T.T.; Guo, C.; Li, S.; Rao, X.R.; Li, J.P. IgA Nephropathy: Current Understanding and Perspectives on Pathogenesis and Targeted Treatment. Diagnostics 2023, 13, 303. [Google Scholar] [CrossRef]
- Raimondo, S.; Urzì, O.; Meraviglia, S.; Di Simone, M.; Corsale, A.M.; Ganji, N.R.; Piccionello, A.P.; Polito, G.; Lo Presti, E.; Dieli, F.; et al. Anti-inflammatory properties of lemon-derived extracellular vesicles are achieved through the inhibition of ERK/NF-κB signalling pathways. J. Cell. Mol. Med. 2022, 26, 4195–4209. [Google Scholar] [CrossRef] [PubMed]
- Jin, K.; Luo, Z.M.; Zhang, B.; Pang, Z.Q. Biomimetic nanoparticles for inflammation targeting. Acta Pharm. Sin. B 2018, 8, 23–33. [Google Scholar] [CrossRef]
- Olejarz, W.; Sadowski, K.; Radoszkiewicz, K. Extracellular Vesicles in Atherosclerosis: State of the Art. Int. J. Mol. Sci. 2024, 25, 388. [Google Scholar] [CrossRef]
- Sui, Y.C.; Sun, X.Y.; Liu, Q.S.J.; Qi, G.W.; Yang, Y.Z.; Zhang, X.Y.; Francis, O.B.; Wang, Y.C.; Liu, R.; Li, X.G.; et al. Mori fructus-derived extracellular vesicle-like nanoparticles regulate dyslipidemia and prevent atherosclerosis progression via miRNAs. Phytomedicine 2025, 146, 157128. [Google Scholar] [CrossRef]
- Sanchez, S.V.; Otavalo, G.N.; Gazeau, F.; Silva, A.K.A.; Morales, J.O. Intranasal delivery of extracellular vesicles: A promising new approach for treating neurological and respiratory disorders. J. Control. Release 2025, 379, 489–523. [Google Scholar] [CrossRef]
- Chen, X.Y.; Zhou, Y.; Yu, J.J. Exosome-like Nanoparticles from Ginger Rhizomes Inhibited NLRP3 Inflammasome Activation. Mol. Pharm. 2019, 16, 2690–2699. [Google Scholar] [CrossRef]
- Hyodo, M.; Kawada, K.; Ishida, T.; Izawa-Ishizawa, Y.; Matoba, R.; Okamoto, R.; Jobu, K.; Horikawa, I.; Aizawa, F.; Yagi, K.; et al. Atractylodes lancea (Thunb.) DC. [Asteraceae] Rhizome-Derived Exosome-like Nanoparticles Suppress Lipopolysaccharide-Induced Inflammation by Reducing Toll-like Receptor 4 Expression in BV-2 Murine Microglial Cells. Pharmaceuticals 2025, 18, 1099. [Google Scholar] [CrossRef]
- Liu, H.H.; Deng, Y.; Li, J.Y.; Lin, W.; Liu, C.Z.; Yang, X.F.; Zhou, Z.Z.; Jiang, Y. Ginger-derived exosome-like nanoparticles: A representative of plant-based natural nanostructured drug delivery system. Front. Bioeng. Biotechnol. 2025, 13, 1569889. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, H.; Yong, S.; Song, Y.; Dang, J.; Jing, D.; Wu, D.; Guo, Q. Advances in Plant-Derived Extracellular Vesicles: Implications for Apple-Derived EVs. Plants 2025, 14, 3425. https://doi.org/10.3390/plants14223425
Fu H, Yong S, Song Y, Dang J, Jing D, Wu D, Guo Q. Advances in Plant-Derived Extracellular Vesicles: Implications for Apple-Derived EVs. Plants. 2025; 14(22):3425. https://doi.org/10.3390/plants14223425
Chicago/Turabian StyleFu, Hao, Shunyuan Yong, Yanping Song, Jiangbo Dang, Danlong Jing, Di Wu, and Qigao Guo. 2025. "Advances in Plant-Derived Extracellular Vesicles: Implications for Apple-Derived EVs" Plants 14, no. 22: 3425. https://doi.org/10.3390/plants14223425
APA StyleFu, H., Yong, S., Song, Y., Dang, J., Jing, D., Wu, D., & Guo, Q. (2025). Advances in Plant-Derived Extracellular Vesicles: Implications for Apple-Derived EVs. Plants, 14(22), 3425. https://doi.org/10.3390/plants14223425

