Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,576)

Search Parameters:
Keywords = dynamic growth systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 843 KiB  
Article
The Nexus Between Tax Revenue, Economic Policy Uncertainty, and Economic Growth: Evidence from G7 Economies
by Emre Sakar, Mahmut Unsal Sasmaz and Ahmet Ozen
Sustainability 2025, 17(15), 6780; https://doi.org/10.3390/su17156780 - 25 Jul 2025
Abstract
Economic policy uncertainty is an important macroeconomic risk factor that can have direct effects on investment decisions, growth dynamics, and public finance. In particular, its potential impact on tax revenue is critical in terms of fiscal sustainability. This study investigates the Granger-causal relationship [...] Read more.
Economic policy uncertainty is an important macroeconomic risk factor that can have direct effects on investment decisions, growth dynamics, and public finance. In particular, its potential impact on tax revenue is critical in terms of fiscal sustainability. This study investigates the Granger-causal relationship between economic policy uncertainty, total tax revenue, and economic growth in G7 economies over the 1997–2021 period, applying symmetric and asymmetric panel causality tests. The empirical findings revealed evidence of causality between economic policy uncertainty and tax revenue and between economic growth and economic policy uncertainty. In asymmetric analyses where the effects of positive and negative shocks were separated, the direction of causal relationships differed between countries. These results imply that asymmetric effects vary by country. Overall, the empirical findings suggest that enhancing transparency and predictability in tax systems could play a vital role in reducing economic policy uncertainty and thus positively affect tax revenue performance and fiscal resilience. Full article
14 pages, 3995 KiB  
Article
Future Illiteracies—Architectural Epistemology and Artificial Intelligence
by Mustapha El Moussaoui
Architecture 2025, 5(3), 53; https://doi.org/10.3390/architecture5030053 - 25 Jul 2025
Abstract
In the age of artificial intelligence (AI), architectural practice faces a paradox of immense potential and creeping standardization. As humans are increasingly relying on AI-generated outputs, architecture risks becoming a spectacle of repetition—a shuffling of data that neither truly innovates nor progresses vertically [...] Read more.
In the age of artificial intelligence (AI), architectural practice faces a paradox of immense potential and creeping standardization. As humans are increasingly relying on AI-generated outputs, architecture risks becoming a spectacle of repetition—a shuffling of data that neither truly innovates nor progresses vertically in creative depth. This paper explores the critical role of data in AI systems, scrutinizing the training datasets that form the basis of AI’s generative capabilities and the implications for architectural practice. We argue that when architects approach AI passively, without actively engaging their own creative and critical faculties, they risk becoming passive users locked in an endless loop of horizontal expansion without meaningful vertical growth. By examining the epistemology of architecture in the AI age, this paper calls for a paradigm where AI serves as a tool for vertical and horizontal growth, contingent on human creativity and agency. Only by mastering this dynamic relationship can architects avoid the trap of passive, standardized design and unlock the true potential of AI. Full article
(This article belongs to the Special Issue AI as a Tool for Architectural Design and Urban Planning)
Show Figures

Figure 1

17 pages, 1357 KiB  
Article
A Novel Experimental Method and Setup to Quantify Evaporation-Induced Foaming Behavior of Polymer Solutions
by Xiaoyi Qiu, Zhaoqi Cui, Ming Zhao, Jie Jiang, Wenze Guo, Ling Zhao, Zhenhao Xi and Weikang Yuan
Polymers 2025, 17(15), 2025; https://doi.org/10.3390/polym17152025 - 24 Jul 2025
Abstract
This study provides a novel experimental setup and methodology for the quantitative investigation of evaporation-induced foaming behaviors in a polymer/small-molecule solution system (PSMS). In traditional dynamic test methods, it is difficult to precisely describe the evaporation-induced foaming process of a multicomponent solution because [...] Read more.
This study provides a novel experimental setup and methodology for the quantitative investigation of evaporation-induced foaming behaviors in a polymer/small-molecule solution system (PSMS). In traditional dynamic test methods, it is difficult to precisely describe the evaporation-induced foaming process of a multicomponent solution because the concentration of light components in solution continuously decreases during ebullition, causing undesired changes in foaming behavior. In this study, a precisely controlled condensation reflux module was introduced into the setup to maintain pressure, temperature, and concentration of the PSMS at constant levels during the entire ebullition process, allowing dynamic test methods to quantify the evaporation-induced foamability. With this newly proposed device, experimental data of typical PSMS, polyolefin elastomer (POE)/n-hexane solution system, were obtained and modeled to illustrate the foam growth profile, thereby characterizing the dynamic foaming process based on a logistic growth function. The corresponding dimensionless number Σevap was calculated to evaluate evaporation-induced foam stability by analyzing the foam growth profile under varying pressure, concentration, and energy input levels. Furthermore, given that the PSMS represents a highly non-ideal system, the bubble nucleation rate J was modified in this work by introducing a correction coefficient δ to account for the non-ideal effects of macromolecules present in solutions. Additionally, another correction coefficient λ was incorporated into the Gibbs free energy term to adjust for supersaturation of liquid during nucleation. The experiment’s data align well with the modified bubble nucleation rate mechanism proposed herein. Full article
19 pages, 687 KiB  
Article
A Low-Carbon and Economic Optimal Dispatching Strategy for Virtual Power Plants Considering the Aggregation of Diverse Flexible and Adjustable Resources with the Integration of Wind and Solar Power
by Xiaoqing Cao, He Li, Di Chen, Qingrui Yang, Qinyuan Wang and Hongbo Zou
Processes 2025, 13(8), 2361; https://doi.org/10.3390/pr13082361 - 24 Jul 2025
Abstract
Under the dual-carbon goals, with the rapid increase in the proportion of fluctuating power sources such as wind and solar energy, the regulatory capacity of traditional thermal power generation can no longer meet the demand for intra-day fluctuations. There is an urgent need [...] Read more.
Under the dual-carbon goals, with the rapid increase in the proportion of fluctuating power sources such as wind and solar energy, the regulatory capacity of traditional thermal power generation can no longer meet the demand for intra-day fluctuations. There is an urgent need to tap into the potential of flexible load-side regulatory resources. To this end, this paper proposes a low-carbon economic optimal dispatching strategy for virtual power plants (VPPs), considering the aggregation of diverse flexible and adjustable resources with the integration of wind and solar power. Firstly, the method establishes mathematical models by analyzing the dynamic response characteristics and flexibility regulation boundaries of adjustable resources such as photovoltaic (PV) systems, wind power, energy storage, charging piles, interruptible loads, and air conditioners. Subsequently, considering the aforementioned diverse adjustable resources and aggregating them into a VPP, a low-carbon economic optimal dispatching model for the VPP is constructed with the objective of minimizing the total system operating costs and carbon costs. To address the issue of slow convergence rates in solving high-dimensional state variable optimization problems with the traditional plant growth simulation algorithm, this paper proposes an improved plant growth simulation algorithm through elite selection strategies for growth points and multi-base point parallel optimization strategies. The improved algorithm is then utilized to solve the proposed low-carbon economic optimal dispatching model for the VPP, aggregating diverse adjustable resources. Simulations conducted on an actual VPP platform demonstrate that the proposed method can effectively coordinate diverse load-side adjustable resources and achieve economically low-carbon dispatching, providing theoretical support for the optimal aggregation of diverse flexible resources in new power systems. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 3185 KiB  
Article
Lettuce Performance in a Tri-Trophic System Incorporating Crops, Fish and Insects Confirms the Feasibility of Circularity in Agricultural Production
by Michalis Chatzinikolaou, Anastasia Mourantian, Maria Feka and Efi Levizou
Agronomy 2025, 15(8), 1782; https://doi.org/10.3390/agronomy15081782 - 24 Jul 2025
Abstract
A circular tri-trophic system integrating aquaponics, i.e., combined cultivation of crops and fish, with insect rearing is presented for lettuce cultivation. The nutrition cycle among crops, insects and fish turns waste into resource, thereby increasing the sustainability of this food production system. A [...] Read more.
A circular tri-trophic system integrating aquaponics, i.e., combined cultivation of crops and fish, with insect rearing is presented for lettuce cultivation. The nutrition cycle among crops, insects and fish turns waste into resource, thereby increasing the sustainability of this food production system. A comprehensive evaluation of the system’s efficiency was performed, including the growth, functional and resource use efficiency traits of lettuce, the dynamics of which were followed in a pilot-scale aquaponics greenhouse, under three treatments: conventional hydroponics (HP) as the control, coupled aquaponics (CAP) with crops irrigated with fish-derived water, and decoupled aquaponics (DCAP), where fish-derived water was amended with fertilizers to reach the HP target. The main findings indicate comparable physiological performance between DCAP and HP, despite the slightly lower yield observed in the former. The CAP treatment exhibited a significant decrease in biomass accumulation and functional impairments, which were attributed to reduced nutrient levels in lettuce leaves. The DCAP treatment exhibited a 180% increase in fertilizer use efficiency compared to the HP treatment. We conclude that the tri-trophic cropping system with the implementation of DCAP variant is an effective system that enables the combined production of crops and fish, the latter being fed with sustainably derived insect protein. The tri-trophic system improves the environmental impact and sustainability of lettuce production, while making circularity feasible. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

34 pages, 9140 KiB  
Article
The Synergistic Evolution and Coordination of the Water–Energy–Food Nexus in Northeast China: An Integrated Multi-Method Assessment
by Huanyu Chang, Yongqiang Cao, Jiaqi Yao, He Ren, Zhen Hong and Naren Fang
Sustainability 2025, 17(15), 6745; https://doi.org/10.3390/su17156745 - 24 Jul 2025
Abstract
The interconnections among water, energy, and food (WEF) systems are growing increasingly complex, making it essential to understand their evolutionary mechanisms and coordination barriers to enhance regional resilience and sustainability. In this study, we investigated the WEF system in Northeast China by constructing [...] Read more.
The interconnections among water, energy, and food (WEF) systems are growing increasingly complex, making it essential to understand their evolutionary mechanisms and coordination barriers to enhance regional resilience and sustainability. In this study, we investigated the WEF system in Northeast China by constructing a comprehensive indicator system encompassing resource endowment and utilization efficiency. The coupling coordination degree (CCD) of the WEF system was quantitatively assessed from 2001 to 2022. An obstacle degree model was employed to identify key constraints, while grey relational analysis was used to evaluate the driving influence of individual indicators. Furthermore, a co-evolution model based on logistic growth and competition–cooperation dynamics was developed to simulate system interactions. The results reveal the following: (1) the regional WEF-CCD increased from 0.627 in 2001 to 0.769 in 2022, reaching the intermediate coordination level, with the CCDs of the food, water, and energy subsystems rising from 0.39 to 0.62, 0.38 to 0.60, and 0.40 to 0.55, respectively, highlighting that the food subsystem had the most stable and significant improvement; (2) Jilin Province attained the highest WEF-CCD, 0.850, in 2022, while that for Heilongjiang remained the lowest, at 0.715, indicating substantial interprovincial disparities; (3) key indicators, such as food self-sufficiency rate, electricity generation, and ecological water use, functioned as both core constraints and major drivers of system performance; (4) co-evolution modeling revealed that the food subsystem exhibited the fastest growth, followed by water and energy (α3  > α1 >  α2 > 0), with mutual promotion between water and energy subsystems and inhibitory effects from the food subsystem, ultimately converging toward a stable equilibrium state; and (5) interprovincial co-evolution modeling indicated that Jilin leads in WEF system development, followed by Liaoning and Heilongjiang, with predominantly cooperative interactions among provinces driving convergence toward a stable and coordinated equilibrium despite structural asymmetries. This study proposes a transferable, multi-method analytical framework for evaluating WEF coordination, offering practical insights into bottlenecks, key drivers, and co-evolutionary dynamics for sustainable resource governance. Full article
Show Figures

Figure 1

16 pages, 2230 KiB  
Article
Three-Dimensional-Printed Biomimetic Scaffolds for Investigating Osteoblast-Like Cell Interactions in Simulated Microgravity: An In Vitro Platform for Bone Tissue Engineering Research
by Eleonora Zenobi, Giulia Gramigna, Elisa Scatena, Luca Panizza, Carlotta Achille, Raffaella Pecci, Annalisa Convertino, Costantino Del Gaudio, Antonella Lisi and Mario Ledda
J. Funct. Biomater. 2025, 16(8), 271; https://doi.org/10.3390/jfb16080271 - 24 Jul 2025
Abstract
Three-dimensional cell culture systems are relevant in vitro models for studying cellular behavior. In this regard, this present study investigates the interaction between human osteoblast-like cells and 3D-printed scaffolds mimicking physiological and osteoporotic bone structures under simulated microgravity conditions. The objective is to [...] Read more.
Three-dimensional cell culture systems are relevant in vitro models for studying cellular behavior. In this regard, this present study investigates the interaction between human osteoblast-like cells and 3D-printed scaffolds mimicking physiological and osteoporotic bone structures under simulated microgravity conditions. The objective is to assess the effects of scaffold architecture and dynamic culture conditions on cell adhesion, proliferation, and metabolic activity, with implications for osteoporosis research. Polylactic acid scaffolds with physiological (P) and osteoporotic-like (O) trabecular architectures were 3D-printed by means of fused deposition modeling technology. Morphometric characterization was performed using micro-computed tomography. Human osteoblast-like SAOS-2 and U2OS cells were cultured on the scaffolds under static and dynamic simulated microgravity conditions using a rotary cell culture system (RCCS). Scaffold biocompatibility, cell viability, adhesion, and metabolic activity were evaluated through Bromodeoxyuridine incorporation assays, a water-soluble tetrazolium salt assay, and an enzyme-linked immunosorbent assay of tumor necrosis factor-α secretion. Both scaffold models supported osteoblast-like cell adhesion and growth, with an approximately threefold increase in colonization observed on the high-porosity O scaffolds under dynamic conditions. The dynamic environment facilitated increased surface interaction, amplifying the effects of scaffold architecture on cell behavior. Overall, sustained cell growth and metabolic activity, together with the absence of detectable inflammatory responses, confirmed the biocompatibility of the system. Scaffold microstructure and dynamic culture conditions significantly influence osteoblast-like cell behavior. The combination of 3D-printed scaffolds and a RCCS bioreactor provides a promising platform for studying bone remodeling in osteoporosis and microgravity-induced bone loss. These findings may contribute to the development of advanced in vitro models for biomedical research and potential countermeasures for bone degeneration. Full article
(This article belongs to the Special Issue Functional Biomaterial for Bone Regeneration)
Show Figures

Graphical abstract

13 pages, 573 KiB  
Review
Developmental Programming and Postnatal Modulations of Muscle Development in Ruminants
by Kiersten Gundersen and Muhammad Anas
Biology 2025, 14(8), 929; https://doi.org/10.3390/biology14080929 - 24 Jul 2025
Abstract
Prenatal and postnatal skeletal muscle development in ruminants is coordinated by interactions between genetic, nutritional, epigenetic, and endocrine factors. This review focuses on the influence of maternal nutrition during gestation on fetal myogenesis, satellite cell dynamics, and myogenic regulatory factors expression, including MYF5 [...] Read more.
Prenatal and postnatal skeletal muscle development in ruminants is coordinated by interactions between genetic, nutritional, epigenetic, and endocrine factors. This review focuses on the influence of maternal nutrition during gestation on fetal myogenesis, satellite cell dynamics, and myogenic regulatory factors expression, including MYF5, MYOD1, and MYOG. Studies in sheep and cattle indicate that nutrient restriction or overnutrition alters muscle fiber number, the cross-sectional area, and the transcriptional regulation of myogenic genes in offspring. Postnatally, muscle hypertrophy is primarily mediated by satellite cells, which are activated via PAX7, MYOD, and MYF5, and regulated through mechanisms such as CARM1-induced chromatin remodeling and miR-31-mediated mRNA expression. Hormonal signaling via the GH–IGF1 axis and thyroid hormones further modulate satellite cell proliferation and protein accretion. Genetic variants, such as myostatin mutations in Texel sheep and Belgian Blue cattle, enhance muscle mass but may compromise reproductive efficiency. Nutritional interventions, including the plane of nutrition, supplementation strategies, and environmental stressors such as heat and stocking density, significantly influence muscle fiber composition and carcass traits. This review provides a comprehensive overview of skeletal muscle programming in ruminants, tracing the developmental trajectory from progenitor cell differentiation to postnatal growth and maturation. These insights underscore the need for integrated approaches combining maternal diet optimization, molecular breeding, and precision livestock management to enhance muscle growth, meat quality, and production sustainability in ruminant systems. Full article
Show Figures

Figure 1

19 pages, 7670 KiB  
Article
Atomic-Scale Mechanisms of Stacking Fault Tetrahedra Formation, Growth, and Transformation in Aluminum via Vacancy Aggregation
by Xiang-Shan Kong, Zi-Yang Cao, Zhi-Yong Zhang and Tian-Li Su
Metals 2025, 15(8), 829; https://doi.org/10.3390/met15080829 - 24 Jul 2025
Abstract
Stacking fault tetrahedra (SFTs) are typically considered improbable in high stacking fault energy metals like aluminum. Using molecular statics and dynamics simulations, we reveal the formation, growth, and transformation of SFTs in aluminum via vacancy aggregation. Three types—perfect, truncated, and defective SFTs—are characterized [...] Read more.
Stacking fault tetrahedra (SFTs) are typically considered improbable in high stacking fault energy metals like aluminum. Using molecular statics and dynamics simulations, we reveal the formation, growth, and transformation of SFTs in aluminum via vacancy aggregation. Three types—perfect, truncated, and defective SFTs—are characterized by their structure, formation energy, and binding energy across a range of vacancy cluster sizes. Formation energies of perfect and truncated SFTs follow a scaling relation; beyond a critical size, truncated SFTs become thermodynamically favored, indicating a size-dependent transformation pathway. Binding energy and structure evolution exhibit quasi-periodic behavior, where vacancies initially adsorb at the vertices or the midpoints of the edges of a perfect SFT, then aggregate along one facet, triggering fault nucleation and a binding energy jump as the system reconstructs into a new perfect SFT. Molecular dynamics simulations further confirm the SFT nucleation and growth via vacancy aggregation, consistent with thermodynamic predictions. SFTs exhibit notable thermal mobility, enabling coalescence and evolution into vacancy-type dislocation loops. BCC-like V5 clusters are identified as potential nucleation precursors. These findings explain the nanoscale, low-temperature nature of SFTs in aluminum and offer new insights into defect evolution and control in FCC metals. Full article
(This article belongs to the Section Computation and Simulation on Metals)
Show Figures

Graphical abstract

20 pages, 2737 KiB  
Technical Note
Obtaining the Highest Quality from a Low-Cost Mobile Scanner: A Comparison of Several Pipelines with a New Scanning Device
by Marek Hrdina, Juan Alberto Molina-Valero, Karel Kuželka, Shinichi Tatsumi, Keiji Yamaguchi, Zlatica Melichová, Martin Mokroš and Peter Surový
Remote Sens. 2025, 17(15), 2564; https://doi.org/10.3390/rs17152564 - 23 Jul 2025
Viewed by 40
Abstract
The accurate measurement of the tree diameter is vital for forest inventories, urban tree quality assessments, the management of roadside and railway vegetation, and various other applications. It also plays a crucial role in evaluating tree growth dynamics, which are closely linked to [...] Read more.
The accurate measurement of the tree diameter is vital for forest inventories, urban tree quality assessments, the management of roadside and railway vegetation, and various other applications. It also plays a crucial role in evaluating tree growth dynamics, which are closely linked to tree health, structural stability, and vulnerability. Although a range of devices and methodologies are currently under investigation, the widespread adoption of laser scanners remains constrained by their high cost. This study therefore aimed to compare high-end laser scanners (Trimble TX8 and GeoSLAM ZEB Horizon) with cost-effective alternatives, represented by the Apple iPhone 14 Pro and the LA03 scanner developed by mapry Co., Ltd. (Tamba, Japan). It further sought to evaluate the feasibility of employing these more affordable devices, even for small-scale forest owners or managers. Given the growing availability of 3D-based forest inventory algorithms, a selection of such processing pipelines was used to assess the practical potential of the scanning devices. The tested low-cost device produced moderate results, achieving a tree detection rate of up to 78% and a relative root mean square error (rRMSE) of 19.7% in diameter at breast height (DBH) estimation. However, performance varied depending on the algorithms applied. In contrast, the high-end mobile laser scanning (MLS) and terrestrial laser scanning (TLS) systems outperformed the low-cost alternative across all metrics, with tree detection rates reaching up to 99% and DBH estimation rRMSEs as low as 5%. Nevertheless, the low-cost device may still be suitable for scanning small sample plots at a reduced cost and could potentially be deployed in larger quantities to support broader forest inventory initiatives. Full article
Show Figures

Figure 1

25 pages, 1889 KiB  
Review
Biosynthesis Strategies and Application Progress of Mandelic Acid Based on Biomechanical Properties
by Jingxin Yin, Yi An and Haijun Gao
Microorganisms 2025, 13(8), 1722; https://doi.org/10.3390/microorganisms13081722 - 23 Jul 2025
Viewed by 72
Abstract
Mandelic acid (MA), as an important chiral aromatic hydroxy acid, is widely used in medicine, the chemical industry, and agriculture. With the continuous growth of market demand, traditional chemical synthesis methods are increasingly inadequate to meet the requirements of green and sustainable development [...] Read more.
Mandelic acid (MA), as an important chiral aromatic hydroxy acid, is widely used in medicine, the chemical industry, and agriculture. With the continuous growth of market demand, traditional chemical synthesis methods are increasingly inadequate to meet the requirements of green and sustainable development due to issues such as complex processes, poor stereoselectivity, numerous byproducts, and serious environmental pollution. MA synthesis strategies based on biocatalytic technology have become a research hotspot due to their high efficiency, environmental friendliness, and excellent stereoselectivity. Significant progress has been made in enzyme engineering modifications, metabolic pathway design, and process optimization. Importantly, biomechanical research provides a transformative perspective for this field. By analyzing the mechanical response characteristics of microbial cells in bioreactors, biomechanics facilitates the regulation of relevant environmental factors during the fermentation process, thereby improving synthesis efficiency. Molecular dynamics simulations are also employed to uncover stability differences in enzyme–substrate complexes, providing a structural mechanics basis for the rational design of highly catalytically active enzyme variants. These biomechanic-driven approaches lay the foundation for the future development of intelligent, responsive biosynthesis systems. The deep integration of biomechanics and synthetic biology is reshaping the process paradigm of green MA manufacturing. This review will provide a comprehensive summary of the applications of MA and recent advances in its biosynthesis, with a particular focus on the pivotal role of biomechanical characteristics. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

19 pages, 5670 KiB  
Article
Significant Impact of Growth Medium on Itraconazole Susceptibility in Azole-Resistant Versus Wild-Type Trichophyton indotineae, rubrum, and quinckeanum Isolates
by Luisa Krauße, Anke Burmester, Silke Uhrlaß, Mario Fabri, Pietro Nenoff, Jörg Tittelbach and Cornelia Wiegand
Int. J. Mol. Sci. 2025, 26(15), 7090; https://doi.org/10.3390/ijms26157090 - 23 Jul 2025
Viewed by 59
Abstract
Azole resistance in dermatophytes, particularly Trichophyton indotineae, has become a growing global concern. Current antifungal susceptibility testing protocols (EUCAST, CLSI) have limitations in reproducibility and sensitivity. This study aimed to evaluate how medium composition, incubation temperature, and spore concentration influence itraconazole susceptibility [...] Read more.
Azole resistance in dermatophytes, particularly Trichophyton indotineae, has become a growing global concern. Current antifungal susceptibility testing protocols (EUCAST, CLSI) have limitations in reproducibility and sensitivity. This study aimed to evaluate how medium composition, incubation temperature, and spore concentration influence itraconazole susceptibility testing across various dermatophyte species. Thirty-eight clinical isolates representing Trichophyton, Microsporum, and Epidermophyton species were tested using a microplate laser nephelometry system (MLN). IC50 values for itraconazole were determined in three different media (Sabouraud glucose (SG), RPMI-based (RG), and RG supplemented with casein (RGC)) at 28 °C and 34 °C. Effects of spore concentration on growth dynamics and lag phase were also analyzed. SG medium provided clear phenotypic separation between resistant and sensitive isolates. In contrast, RG and RGC showed overlapping IC50 values. Lower spore concentrations revealed underlying growth differences, which were masked at higher inoculum levels. Temperature and media composition significantly affected IC50 outcomes. Genotypic analysis confirmed resistance-associated Erg11B point mutations and genomic amplifications in T. indotineae, particularly in combination with Erg1 mutations, forming distinct subpopulations. SG medium combined with reduced spore concentrations offered improved differentiation of resistant versus sensitive strains. These findings support the development of more accurate susceptibility testing protocols and highlight the need to establish species-specific ECOFF values for dermatophytes. Full article
(This article belongs to the Special Issue Advances in Research on Antifungal Resistance)
Show Figures

Figure 1

42 pages, 3781 KiB  
Article
Modeling Regional ESG Performance in the European Union: A Partial Least Squares Approach to Sustainable Economic Systems
by Ioana Birlan, Adriana AnaMaria Davidescu, Catalina-Elena Tita and Tamara Maria Nae
Mathematics 2025, 13(15), 2337; https://doi.org/10.3390/math13152337 - 22 Jul 2025
Viewed by 179
Abstract
This study aims to evaluate the sustainability performance of EU regions through a comprehensive and data-driven Environmental, Social, Governance (ESG) framework, addressing the increasing demand for regional-level analysis in sustainable finance and policy design. Leveraging Partial Least Squares (PLS) regression and cluster analysis, [...] Read more.
This study aims to evaluate the sustainability performance of EU regions through a comprehensive and data-driven Environmental, Social, Governance (ESG) framework, addressing the increasing demand for regional-level analysis in sustainable finance and policy design. Leveraging Partial Least Squares (PLS) regression and cluster analysis, we construct composite ESG indicators that adjust for economic size using GDP normalization and LOESS smoothing. Drawing on panel data from 2010 to 2023 and over 170 indicators, we model the determinants of ESG performance at both the national and regional levels across the EU-27. Time-based ESG trajectories are assessed using Compound Annual Growth Rates (CAGR), capturing resilience to shocks such as the COVID-19 pandemic and geopolitical instability. Our findings reveal clear spatial disparities in ESG performance, highlighting the structural gaps in governance, environmental quality, and social cohesion. The model captures patterns of convergence and divergence across EU regions and identifies common drivers influencing sustainability outcomes. This paper introduces an integrated framework that combines PLS regression, clustering, and time-based trend analysis to assess ESG performance at the subnational level. The originality of this study lies in its multi-layered approach, offering a replicable and scalable model for evaluating sustainability with direct implications for green finance, policy prioritization, and regional development. This study contributes to the literature by applying advanced data-driven techniques to assess ESG dynamics in complex economic systems. Full article
Show Figures

Figure 1

17 pages, 3088 KiB  
Article
Optimal Distribution Planning of Solar Plants and Storage in a Power Grid with High Penetration of Renewables
by Pere Colet, Benjamín A. Carreras, José Miguel Reynolds-Barredo and Damià Gomila
Energies 2025, 18(15), 3891; https://doi.org/10.3390/en18153891 - 22 Jul 2025
Viewed by 106
Abstract
Integrating variable renewable energy sources such as solar power into existing power grids presents major planning and reliability challenges. This study introduces an approach to optimize the placement of solar plants and allocation of storage in grids with high share of these variable [...] Read more.
Integrating variable renewable energy sources such as solar power into existing power grids presents major planning and reliability challenges. This study introduces an approach to optimize the placement of solar plants and allocation of storage in grids with high share of these variable energy sources by using a simulation framework that captures system-wide emergent behaviors. Unlike traditional engineering models focused on detailed component-level dynamics, a modified ORNL-PSERC-Alaska model based on self-organized criticality is used to reproduce the statistical features of blackouts, including cascading failures and long-range correlations. A distinctive feature of this approach is the explicit inclusion of key ingredients that shape these statistics, such as the transmission grid structure, generation and consumer buses, power flow balance, periodic dispatches, system failures, secular demand growth, demand fluctuations, and variability of renewable energy sources. When applied to the Balearic Islands grid, this method identifies generation and storage layouts that minimize storage requirements while maintaining reliability levels comparable to conventional power systems. The results offer a complementary systems-level perspective for planning resilient and efficient renewable energy integration. Full article
Show Figures

Figure 1

16 pages, 2512 KiB  
Article
Optimizing PH Domain-Based Biosensors for Improved Plasma Membrane PIP3 Measurements in Mammalian Cells
by Amir Damouni, Dániel J. Tóth, Aletta Schönek, Alexander Kasbary, Adél P. Boros and Péter Várnai
Cells 2025, 14(14), 1125; https://doi.org/10.3390/cells14141125 - 21 Jul 2025
Viewed by 159
Abstract
Phosphoinositide-binding pleckstrin homology (PH) domains interact with both phospholipids and proteins, often complicating their use as specific lipid biosensors. In this study, we introduced specific mutations into the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-specific PH domains of protein kinase B (Akt) and general receptor [...] Read more.
Phosphoinositide-binding pleckstrin homology (PH) domains interact with both phospholipids and proteins, often complicating their use as specific lipid biosensors. In this study, we introduced specific mutations into the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-specific PH domains of protein kinase B (Akt) and general receptor for phosphoinositides 1 (GRP1) that disrupt protein-mediated interactions while preserving lipid binding, in order to enhance biosensor specificity for PIP3, and evaluated their impact on plasma membrane (PM) localization and lipid-tracking ability. Using bioluminescence resonance energy transfer (BRET) and confocal microscopy, we assessed the localization of PH domains in HEK293A cells under different conditions. While Akt-PH mutants showed minimal deviations from the wild type, GRP1-PH mutants exhibited significantly reduced PM localization both at baseline and after stimulation with epidermal growth factor (EGF), insulin, or vanadate. We further developed tandem mutant GRP1-PH domain constructs to enhance PM PIP3 avidity. Additionally, our investigation into the influence of ADP ribosylation factor 6 (Arf6) activity on GRP1-PH-based biosensors revealed that while the wild-type sensors were Arf6- dependent, the mutants operated independently of Arf6 activity level. These optimized GRP1-PH constructs provide a refined biosensor system for accurate and selective detection of dynamic PIP3 signaling, expanding the toolkit for dissecting phosphoinositide-mediated pathways. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

Back to TopTop