polymers-logo

Journal Browser

Journal Browser

Aqueous Foam of Surfactant–Polymer Composites: Properties and Applications

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 145

Special Issue Editor


E-Mail Website
Guest Editor
School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China
Interests: aqueous foam; surfactants; polymers; molecular dynamics simulation; dust control; fire fighting

Special Issue Information

Dear Colleagues,

Aqueous foam is widely used in the fields of dust control, fire fighting, mineral flotation, oil recovery, daily chemical products, etc. Polymers are often added to surfactant solutions to improve the properties of aqueous foam, such as foaming ability, foam stability, foam fluidity, foam viscoelasticity, etc. Different application fields have different requirements for foam performance. In addition, due to the large number of surfactants and polymers, the interaction between different surfactant and polymer molecules at the gas–liquid interface of foam film can differ significantly, resulting in different properties. Therefore, selecting an appropriate formula to meet the requirements of aqueous foam in various applications is a challenge. 

This Special Issue of Polymers invites contributions that explore the formation and stability mechanisms of aqueous foam, the interaction between surfactant and polymers, and the properties and applications of aqueous foam of surfactant–polymer composites. Topics include, but are not limited to, the following research areas: aqueous foam; surfactants; polymers; foaming ability; foam stability; foam fluidity; foam viscoelasticity; molecular dynamics simulation; interaction between surfactants and polymers; aqueous foam applications.

Dr. Chaohang Xu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • aqueous foam
  • surfactants
  • polymers
  • foaming ability
  • foam stability
  • foam fluidity
  • foam viscoelasticity
  • molecular dynamics simulation
  • interaction between surfactants and polymers
  • aqueous foam applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 1357 KiB  
Article
A Novel Experimental Method and Setup to Quantify Evaporation-Induced Foaming Behavior of Polymer Solutions
by Xiaoyi Qiu, Zhaoqi Cui, Ming Zhao, Jie Jiang, Wenze Guo, Ling Zhao, Zhenhao Xi and Weikang Yuan
Polymers 2025, 17(15), 2025; https://doi.org/10.3390/polym17152025 - 24 Jul 2025
Abstract
This study provides a novel experimental setup and methodology for the quantitative investigation of evaporation-induced foaming behaviors in a polymer/small-molecule solution system (PSMS). In traditional dynamic test methods, it is difficult to precisely describe the evaporation-induced foaming process of a multicomponent solution because [...] Read more.
This study provides a novel experimental setup and methodology for the quantitative investigation of evaporation-induced foaming behaviors in a polymer/small-molecule solution system (PSMS). In traditional dynamic test methods, it is difficult to precisely describe the evaporation-induced foaming process of a multicomponent solution because the concentration of light components in solution continuously decreases during ebullition, causing undesired changes in foaming behavior. In this study, a precisely controlled condensation reflux module was introduced into the setup to maintain pressure, temperature, and concentration of the PSMS at constant levels during the entire ebullition process, allowing dynamic test methods to quantify the evaporation-induced foamability. With this newly proposed device, experimental data of typical PSMS, polyolefin elastomer (POE)/n-hexane solution system, were obtained and modeled to illustrate the foam growth profile, thereby characterizing the dynamic foaming process based on a logistic growth function. The corresponding dimensionless number Σevap was calculated to evaluate evaporation-induced foam stability by analyzing the foam growth profile under varying pressure, concentration, and energy input levels. Furthermore, given that the PSMS represents a highly non-ideal system, the bubble nucleation rate J was modified in this work by introducing a correction coefficient δ to account for the non-ideal effects of macromolecules present in solutions. Additionally, another correction coefficient λ was incorporated into the Gibbs free energy term to adjust for supersaturation of liquid during nucleation. The experiment’s data align well with the modified bubble nucleation rate mechanism proposed herein. Full article
Back to TopTop