Optimizing PH Domain-Based Biosensors for Improved Plasma Membrane PIP3 Measurements in Mammalian Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. DNA Constucts
2.3. Cell Culture
2.4. BRET Measurements
2.5. Confocal Microscopy
2.6. Mathematical and Statistical Analysis
3. Results
3.1. The PM PIP3 Sensing Ability of the GRP1-PH- and Akt-PH-Based Biosensor Mutants Compared to the Wild Type
3.2. Enhancing the PIP3 Affinity of Lipid Selective Mutant GRP1-PH Based Biosensors
3.3. Comparison Between Wild-Type and Mutant Sensors Under Varying Arf6 Activity Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Akt | Protein kinase B |
Ang II | Angiotensin II |
Arf6 | ADP ribosylation factor 6 |
AT1R | Type I angiotensin receptor |
BRET | Bioluminescence resonance energy transfer |
Btk | Bruton’s tyrosine kinase |
DMEM | Dulbecco’s modified Eagle medium |
EGF | Epidermal growth factor |
EGFR | Epidermal growth factor receptor |
GAP | GTPase-activating protein |
GEF | Guanine nucleotide exchange factor |
GRP1 | General receptor for phosphoinositides 1 |
NES | Nuclear export signal |
PH-domain | Pleckstrin homology-domain |
PI | Phosphoinositides |
PI3K | Phosphoinositide 3-kinase |
PIP | Phosphatidylinositol phosphate |
PI4P | Phosphatidylinositol 4-phosphate |
PI(4,5)P2 | Phosphatidylinositol 4,5-bisphosphate |
PIP3 | Phosphatidylinositol 3,4,5-trisphosphate |
PM | Plasma membrane |
RTK | Receptor tyrosine kinase |
WT | Wild type |
References
- Dickson, E.J.; Hille, B. Understanding phosphoinositides: Rare, dynamic, and essential membrane phospholipids. Biochem. J. 2019, 476, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Shewan, A.; Eastburn, D.J.; Mostov, K. Phosphoinositides in cell architecture. Cold Spring Harb. Perspect. Biol. 2011, 3, a004796. [Google Scholar] [CrossRef] [PubMed]
- Posor, Y.; Jang, W.; Haucke, V. Phosphoinositides as membrane organizers. Nat. Rev. Mol. Cell Biol. 2022, 23, 797–816. [Google Scholar] [CrossRef] [PubMed]
- Kutateladze, T.G. Translation of the phosphoinositide code by PI effectors. Nat. Chem. Biol. 2010, 6, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Hammond, G.R.V.; Burke, J.E. Novel roles of phosphoinositides in signaling, lipid transport, and disease. Curr. Opin. Cell Biol. 2020, 63, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Lemmon, M.A. Pleckstrin homology (PH) domains and phosphoinositides. Biochem. Soc. Symp. 2007, 74, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Lemmon, M.A. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 2008, 9, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Ingley, E.; Hemmings, B.A. Pleckstrin homology (PH) domains in signal transduction. J. Cell Biochem. 1994, 56, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Powis, G.; Meuillet, E.J.; Indarte, M.; Booher, G.; Kirkpatrick, L. Pleckstrin Homology [PH] domain, structure, mechanism, and contribution to human disease. Biomed. Pharmacother. 2023, 165, 115024. [Google Scholar] [CrossRef] [PubMed]
- Idevall-Hagren, O.; De Camilli, P. Detection and manipulation of phosphoinositides. Biochim. Biophys. Acta 2015, 1851, 736–745. [Google Scholar] [CrossRef] [PubMed]
- Godi, A.; Di Campli, A.; Konstantakopoulos, A.; Di Tullio, G.; Alessi, D.R.; Kular, G.S.; Daniele, T.; Marra, P.; Lucocq, J.M.; De Matteis, M.A. FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat. Cell Biol. 2004, 6, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Kahn, R.A.; Prestegard, J.H. Interaction of Fapp1 with Arf1 and PI4P at a membrane surface: An example of coincidence detection. Structure 2014, 22, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Bethoney, K.A.; King, M.C.; Hinshaw, J.E.; Ostap, E.M.; Lemmon, M.A. A possible effector role for the pleckstrin homology (PH) domain of dynamin. Proc. Natl. Acad. Sci. USA 2009, 106, 13359–13364. [Google Scholar] [CrossRef] [PubMed]
- Szaszak, M.; Gaborik, Z.; Turu, G.; McPherson, P.S.; Clark, A.J.; Catt, K.J.; Hunyady, L. Role of the proline-rich domain of dynamin-2 and its interactions with Src homology 3 domains during endocytosis of the AT1 angiotensin receptor. J. Biol. Chem. 2002, 277, 21650–21656. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.W.; Mendrola, J.M.; Audhya, A.; Singh, S.; Keleti, D.; DeWald, D.B.; Murray, D.; Emr, S.D.; Lemmon, M.A. Genome-wide analysis of membrane targeting by S. cerevisiae pleckstrin homology domains. Mol. Cell 2004, 13, 677–688. [Google Scholar] [CrossRef] [PubMed]
- Varnai, P.; Bondeva, T.; Tamas, P.; Toth, B.; Buday, L.; Hunyady, L.; Balla, T. Selective cellular effects of overexpressed pleckstrin-homology domains that recognize PtdIns(3,4,5)P3 suggest their interaction with protein binding partners. J. Cell Sci. 2005, 118, 4879–4888. [Google Scholar] [CrossRef] [PubMed]
- Jackson, T.R.; Kearns, B.G.; Theibert, A.B. Cytohesins and centaurins: Mediators of PI 3-kinase-regulated Arf signaling. Trends Biochem. Sci. 2000, 25, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Malaby, A.W.; van den Berg, B.; Lambright, D.G. Structural basis for membrane recruitment and allosteric activation of cytohesin family Arf GTPase exchange factors. Proc. Natl. Acad. Sci. USA 2013, 110, 14213–14218. [Google Scholar] [CrossRef] [PubMed]
- Corbin, J.A.; Dirkx, R.A.; Falke, J.J. GRP1 pleckstrin homology domain: Activation parameters and novel search mechanism for rare target lipid. Biochemistry 2004, 43, 16161–16173. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Haney, R.M.; Vora, M.; Verkhusha, V.V.; Stahelin, R.V.; Kutateladze, T.G. Molecular mechanism of membrane targeting by the GRP1 PH domain. J. Lipid Res. 2008, 49, 1807–1815. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.L.; Srivastava, A.; Pilling, C.; Chase, A.R.; Falke, J.J.; Voth, G.A. Molecular mechanism of membrane binding of the GRP1 PH domain. J. Mol. Biol. 2013, 425, 3073–3090. [Google Scholar] [CrossRef] [PubMed]
- Varnai, P.; Gulyas, G.; Toth, D.J.; Sohn, M.; Sengupta, N.; Balla, T. Quantifying lipid changes in various membrane compartments using lipid binding protein domains. Cell Calcium 2017, 64, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Varnai, P.; Balla, T. Live cell imaging of phosphoinositide dynamics with fluorescent protein domains. Biochim. Biophys. Acta 2006, 1761, 957–967. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L.A.; Honda, A.; Varnai, P.; Brown, F.D.; Balla, T.; Donaldson, J.G. Active Arf6 recruits ARNO/cytohesin GEFs to the PM by binding their PH domains. Mol. Biol. Cell 2007, 18, 2244–2253. [Google Scholar] [CrossRef] [PubMed]
- Truebestein, L.; Hornegger, H.; Anrather, D.; Hartl, M.; Fleming, K.D.; Stariha, J.T.B.; Pardon, E.; Steyaert, J.; Burke, J.E.; Leonard, T.A. Structure of autoinhibited Akt1 reveals mechanism of PIP(3)-mediated activation. Proc. Natl. Acad. Sci. USA 2021, 118, e2101496118. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, M.G.; Fairn, G.D.; Antonescu, C.N. Akt-ing Up Just About Everywhere: Compartment-Specific Akt Activation and Function in Receptor Tyrosine Kinase Signaling. Front. Cell Dev. Biol. 2019, 7, 70. [Google Scholar] [CrossRef] [PubMed]
- Buckles, T.C.; Ziemba, B.P.; Masson, G.R.; Williams, R.L.; Falke, J.J. Single-Molecule Study Reveals How Receptor and Ras Synergistically Activate PI3Kalpha and PIP(3) Signaling. Biophys. J. 2017, 113, 2396–2405. [Google Scholar] [CrossRef] [PubMed]
- Yudushkin, I. Control of Akt activity and substrate phosphorylation in cells. IUBMB Life 2020, 72, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.L.; Wang, Z.G.; Hu, Y.; Xin, Y.; Singaram, I.; Gorai, S.; Zhou, X.; Shim, Y.; Min, J.H.; Gong, L.W.; et al. Quantitative Lipid Imaging Reveals a New Signaling Function of Phosphatidylinositol-3,4-Bisphophate: Isoform- and Site-Specific Activation of Akt. Mol. Cell 2018, 71, 1092–1104 e1095. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.X.; Akbar, M.; Kevala, K.; Kim, H.Y. Phosphatidylserine is a critical modulator for Akt activation. J. Cell Biol. 2011, 192, 979–992. [Google Scholar] [CrossRef] [PubMed]
- Varnai, P.; Balla, T. Visualization of phosphoinositides that bind pleckstrin homology domains: Calcium- and agonist-induced dynamic changes and relationship to myo-[3H] inositol-labeled phosphoinositide pools. J. Cell Biol. 1998, 143, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Varnai, P.; Rother, K.I.; Balla, T. Phosphatidylinositol 3-kinase-dependent membrane association of the Bruton’s tyrosine kinase pleckstrin homology domain visualized in single living cells. J. Biol. Chem. 1999, 274, 10983–10989. [Google Scholar] [CrossRef] [PubMed]
- Toth, J.T.; Gulyas, G.; Hunyady, L.; Varnai, P. Development of Nonspecific BRET-Based Biosensors to Monitor Plasma Membrane Inositol Lipids in Living Cells. Methods Mol. Biol. 2019, 1949, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Damouni, A.; Toth, D.J.; Barsi, S.; Nagy, D.K.; Kasbary, A.; Hunyady, L.; Cserzo, M.; Varnai, P. Differential activation of the inositol 5-phosphatase SHIP2 by EGF and insulin signaling pathways. J. Biol. Chem. 2025, 301, 110275. [Google Scholar] [CrossRef] [PubMed]
- Gulyas, G.; Toth, J.T.; Toth, D.J.; Kurucz, I.; Hunyady, L.; Balla, T.; Varnai, P. Measurement of inositol 1,4,5-trisphosphate in living cells using an improved set of resonance energy transfer-based biosensors. PLoS ONE 2015, 10, e0125601. [Google Scholar] [CrossRef] [PubMed]
- Toth, J.T.; Gulyas, G.; Toth, D.J.; Balla, A.; Hammond, G.R.; Hunyady, L.; Balla, T.; Varnai, P. BRET-monitoring of the dynamic changes of inositol lipid pools in living cells reveals a PKC-dependent PtdIns4P increase upon EGF and M3 receptor activation. Biochim. Biophys. Acta 2016, 1861, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Peters, P.J.; Hsu, V.W.; Ooi, C.E.; Finazzi, D.; Teal, S.B.; Oorschot, V.; Donaldson, J.G.; Klausner, R.D. Overexpression of wild-type and mutant ARF1 and ARF6: Distinct perturbations of nonoverlapping membrane compartments. J. Cell Biol. 1995, 128, 1003–1017. [Google Scholar] [CrossRef] [PubMed]
- Batty, I.H.; van der Kaay, J.; Gray, A.; Telfer, J.F.; Dixon, M.J.; Downes, C.P. The control of phosphatidylinositol 3,4-bisphosphate concentrations by activation of the Src homology 2 domain containing inositol polyphosphate 5-phosphatase 2, SHIP2. Biochem. J. 2007, 407, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Wills, R.C.; Goulden, B.D.; Hammond, G.R.V. Genetically encoded lipid biosensors. Mol. Biol. Cell 2018, 29, 1526–1532. [Google Scholar] [CrossRef] [PubMed]
- Holmes, V.L.; Ricci, M.M.C.; Weckerly, C.C.; Worcester, M.; Hammond, G.R.V. Single-molecule lipid biosensors mitigate inhibition of endogenous effector proteins. J. Cell Biol. 2025, 224, e202412026. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Malaby, A.W.; Famulok, M.; Sabe, H.; Lambright, D.G.; Hsu, V.W. Grp1 plays a key role in linking insulin signaling to glut4 recycling. Dev. Cell 2012, 22, 1286–1298. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damouni, A.; Tóth, D.J.; Schönek, A.; Kasbary, A.; Boros, A.P.; Várnai, P. Optimizing PH Domain-Based Biosensors for Improved Plasma Membrane PIP3 Measurements in Mammalian Cells. Cells 2025, 14, 1125. https://doi.org/10.3390/cells14141125
Damouni A, Tóth DJ, Schönek A, Kasbary A, Boros AP, Várnai P. Optimizing PH Domain-Based Biosensors for Improved Plasma Membrane PIP3 Measurements in Mammalian Cells. Cells. 2025; 14(14):1125. https://doi.org/10.3390/cells14141125
Chicago/Turabian StyleDamouni, Amir, Dániel J. Tóth, Aletta Schönek, Alexander Kasbary, Adél P. Boros, and Péter Várnai. 2025. "Optimizing PH Domain-Based Biosensors for Improved Plasma Membrane PIP3 Measurements in Mammalian Cells" Cells 14, no. 14: 1125. https://doi.org/10.3390/cells14141125
APA StyleDamouni, A., Tóth, D. J., Schönek, A., Kasbary, A., Boros, A. P., & Várnai, P. (2025). Optimizing PH Domain-Based Biosensors for Improved Plasma Membrane PIP3 Measurements in Mammalian Cells. Cells, 14(14), 1125. https://doi.org/10.3390/cells14141125