Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (887)

Search Parameters:
Keywords = dry-land agriculture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 12645 KB  
Article
Spatio-Temporal Dynamics of Land Use and Land Cover Change and Ecosystem Service Value Assessment in Citarum Watershed, Indonesia: A Multi-Scenario and Multi-Scale Approach
by Irmadi Nahib, Yudi Wahyudin, Widiatmaka Widiatmaka, Suria Darma Tarigan, Wiwin Ambarwulan, Fadhlullah Ramadhani, Bono Pranoto, Nunung Puji Nugroho, Turmudi Turmudi, Darmawan Listya Cahya, Mulyanto Darmawan, Suprajaka Suprajaka, Jaka Suryanta and Bambang Winarno
Resources 2026, 15(2), 24; https://doi.org/10.3390/resources15020024 (registering DOI) - 31 Jan 2026
Abstract
Rapid land use and land cover (LULC) changes in densely populated watersheds pose serious challenges to the sustainability of ecosystem services (ES), yet their spatially explicit economic consequences remain insufficiently understood. This study analyzes the spatio-temporal dynamics of LULC and ecosystem service values [...] Read more.
Rapid land use and land cover (LULC) changes in densely populated watersheds pose serious challenges to the sustainability of ecosystem services (ES), yet their spatially explicit economic consequences remain insufficiently understood. This study analyzes the spatio-temporal dynamics of LULC and ecosystem service values (ESVs) in the Citarum Watershed, Indonesia, one of the country’s most critical and intensively transformed watersheds. Multi-temporal Landsat imagery from 2003, 2013, and 2023 was classified using a Random Forest algorithm, while future LULC conditions for 2043 were projected using a Multi-layer Perceptron–Markov Chain (MLP–MC) model under three scenarios: Business-as-Usual (BAU), Protecting Paddy Field (PPF), and Protecting Forest Area (PFA). ESVs were quantified at multiple spatial scales (county, 250 m grids, and 100 m grids) using both the Traditional Benefit Transfer (TBT) method and a Spatial Benefit Transfer (SBT) approach that integrates biophysical indicators with socio-economic variables. The contribution of LULC transitions to ESV dynamics was further assessed using the Ecosystem Service Change Intensity (ESCI) index. The results reveal substantial historical forest and shrubland losses, alongside rapid expansion of settlements and dryland agriculture, indicating intensifying anthropogenic pressure on watershed functions. Scenario analysis shows continued degradation under BAU, limited mitigation under PPF, and improved forest retention under PFA; although settlement expansion persists across all scenarios. Total ESV declined from USD 2641.33 million in 2003 to USD 1585.01 million in 2023, representing a cumulative loss of 46.13%. Projections indicate severe ESV losses under BAU and PPF by 2043, while PFA substantially reduces, but does not eliminate economic degradation. ESCI results identify forest and shrubland conversion to settlements and dryland agriculture as the dominant drivers of ESV decline. These findings demonstrate that integrating multi-scenario LULC modeling with spatially explicit ESV assessment provides a more robust basis for ecosystem-based spatial planning and supports sustainable watershed management under increasing development pressure. Full article
21 pages, 3650 KB  
Article
Coordinated Water–Nitrogen Management for Sustainable Fragrant Pear Production in Arid Regions: Organ Nutrition Regulation and 15N Utilization Optimization
by Li Zhao, Fangyuan Zhou, Xinlin He, Quanli Zong, Yuan Wang, Yanjie Li, Muhammad Arsalan Farid and Chunxia Wang
Horticulturae 2026, 12(2), 144; https://doi.org/10.3390/horticulturae12020144 - 27 Jan 2026
Viewed by 111
Abstract
The combined challenges of water scarcity and inefficient nitrogen use pose substantial barriers to sustainable agricultural development. Optimizing the coordinated regulation of water and nitrogen resources in fruit trees is essential for promoting water-saving agriculture in drylands. To establish a water and nitrogen [...] Read more.
The combined challenges of water scarcity and inefficient nitrogen use pose substantial barriers to sustainable agricultural development. Optimizing the coordinated regulation of water and nitrogen resources in fruit trees is essential for promoting water-saving agriculture in drylands. To establish a water and nitrogen collaborative management model for efficient resource utilization, this study conducted a 3-year field experiment examining different irrigation amount (W1: 4500 m3·ha−1, W2: 6000 m3·ha−1, and W3: 7500 m3·ha−1) and nitrogen application rates (N1: 200 kg·ha−1, N2: 300 kg·ha−1, and N3: 400 kg·ha−1), coupled with 15N isotopic labeling, to evaluate the impact of water and nitrogen regulation on the following: (i) the spatial distribution patterns of water and nitrogen in the root zone soil, (ii) dynamic characteristics of water and nitrogen across organs, and (iii) 15N absorption and utilization. The findings revealed that 20–80 cm depth was the key zone for water and nitrogen absorption by roots of pear. The W2 treatment met the optimal irrigation requirement for young pear tree roots and exhibited the optimal dynamic characteristics of water and nitrogen among the newly formed organs. At the end of the growth period, N3 treatment had the highest nitrogen content and the root system was the main organ for nitrogen absorption and storage. Water-saving irrigation coupled with optimized nitrogen application synergistically enhanced the nitrogen accumulation efficiency in fragrant pear. The W2N2 treatment exhibited the highest 15N absorption and utilization rate (40.79%), effectively promoting nitrogen absorption and assimilation, reducing nitrogen losses, and offering valuable insights for advancing sustainable practices in the fruit and forestry industries. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

18 pages, 1675 KB  
Article
γ-PGA Enhances Zea mays L. Seedling Growth by Fertile Rhizosphere Establishment and Osmotic Modulation in Saline Soil
by Xin Li, Weiming Shi, Herbert J. Kronzucker, Xiaodong Ding and Yilin Li
Agronomy 2026, 16(3), 317; https://doi.org/10.3390/agronomy16030317 - 27 Jan 2026
Viewed by 268
Abstract
Soil salinization is a major threat to agricultural sustainability. Poly-gamma-glutamic acid (γ-PGA), a biopolymer produced by microbial fermentation, has received attention as a biostimulant due to its positive effects on crop performance. However, the function of γ-PGA in crop salt stress tolerance and [...] Read more.
Soil salinization is a major threat to agricultural sustainability. Poly-gamma-glutamic acid (γ-PGA), a biopolymer produced by microbial fermentation, has received attention as a biostimulant due to its positive effects on crop performance. However, the function of γ-PGA in crop salt stress tolerance and its effect on the rhizosphere are unclear. This study explores the effects of γ-PGA application on rhizosphere soil nutrients and the soil–physical environment and examines the salt tolerance response of maize seedlings grown in saline–alkali soil under such an application regime. The results show a significant promotion of maize seedling growth and of nutrient accumulation with γ-PGA application under salt stress; plant dry weight, stem diameter, and plant height increased 121%, 39.5%, 18.4%, respectively, and shoot accumulation of nitrogen, phosphorus, potassium, and carbon increased by 1.38, 2.11, 1.50, and 1.36 times, respectively, under an optimal-concentration γ-PGA treatment (5.34 mg kg−1 (12 kg ha−1)) compared with the control. γ-PGA treatment significantly decreased rhizospheric pH and soil electrical conductivity and significantly increased nutrient availability in the rhizosphere, especially available nitrogen (AN) and available potassium (AK). Compared with the control, AN, available phosphorus (AP), and AK increased by 13.9%, 7.70%, and 17.7%, respectively, under an optimal concentration treatment with γ-PGA. γ-PGA application also significantly increased the activities of urease, acid phosphatase, alkaline phosphatase, dehydrogenase, and cellulose in rhizosphere soil by 35.5–39.3%, 35.4–39.3%, 5.59–8.85%, 18.9–19.8%, and 19.2–47.0%, respectively. γ-PGA application significantly decreased Na+ concentration and increased K+ concentration in shoots, resulting in a lowering of the Na+/K+ ratio by 30.5% and an increase in soluble sugar and soluble protein contents. Therefore, rhizosphere application of water-soluble and biodegradable γ-PGA facilitates the creation of an optimized rhizospheric environment for maize seedling and overcomes osmotic and ionic stresses, offering possibilities for future use in drip-irrigation systems in the cultivation of crops on saline-alkali land. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

25 pages, 8880 KB  
Article
On the Peculiar Hydrological Behavior of Sediments Trapped Behind the Terraces of Petra, Jordan
by Catreena Hamarneh and Nizar Abu-Jaber
Land 2026, 15(2), 212; https://doi.org/10.3390/land15020212 - 26 Jan 2026
Viewed by 203
Abstract
The archaeological terraces of Petra (southern Jordan) have long been recognized for their role in agriculture and flood mitigation. Despite the dominance of fine-grained sediments behind many terrace walls, these systems exhibit high infiltration capacity and remarkable resistance to erosion. This study investigates [...] Read more.
The archaeological terraces of Petra (southern Jordan) have long been recognized for their role in agriculture and flood mitigation. Despite the dominance of fine-grained sediments behind many terrace walls, these systems exhibit high infiltration capacity and remarkable resistance to erosion. This study investigates the hydrological behavior of terrace-trapped sediments through detailed soil texture, aggregate stability, salinity, and chemical analyses across eight representative sites in and around Petra. Grain-size distributions derived from dry and wet sieving, supplemented by laser diffraction, reveal that dry sieving substantially overestimates sand content due to aggregation of fine particles into unstable peds. Wet analyses demonstrate that many terrace soils are clay- or sandy-clay-dominated yet remain highly permeable. Chemical indicators (nitrate, phosphate, potassium, pH, and salinity) further suggest that terracing enhances downward water movement and salt leaching irrespective of clay content. The nature of the terrace settings and their sediment structure (especially the coarse-grained framework) exerts a stronger control on hydrological functioning than texture alone. The results have direct implications for understanding ancient land management in Petra and for informing sustainable terracing practices in modern arid and semi-arid landscapes, as they are effective both in harvesting water and reducing sediment mobilization. Full article
(This article belongs to the Special Issue Archaeological Landscape and Settlement (Third Edition))
Show Figures

Figure 1

15 pages, 1964 KB  
Article
Assessing an Agrivoltaic System Pilot in a Small-Scale Solar Farm: A Case Study in the Colombian Tropical Dry Forest
by Carlos M. Burgos-De La Cruz, Brayan J. Anaya, Diego C. Duran, Diego F. Tirado and Leonardo Velasco
Sustainability 2026, 18(3), 1197; https://doi.org/10.3390/su18031197 - 24 Jan 2026
Viewed by 348
Abstract
Agrivoltaic systems, which integrate solar energy generation with agricultural production, offer a promising solution to optimize land use efficiency. This work presents a case study for the assessment of an agrivoltaic pilot project in a small-scale solar farm operated by SOLENIUM in San [...] Read more.
Agrivoltaic systems, which integrate solar energy generation with agricultural production, offer a promising solution to optimize land use efficiency. This work presents a case study for the assessment of an agrivoltaic pilot project in a small-scale solar farm operated by SOLENIUM in San Diego (Cesar, Colombia), located in the Colombian tropical dry forest. The project evaluated environmental conditions, selected melon and watermelon as shade-tolerant crops, and assessed technical challenges, including mechanization constraints. Preliminary results indicated that agrivoltaic systems can maintain agricultural productivity while generating renewable energy, with photosynthetically active radiation measurements averaging 1342 μmol/m2/s in cultivation areas. This case study demonstrates the viability of agrivoltaic systems as a scalable model for sustainable rural development in the Colombian tropical dry forest. Full article
Show Figures

Figure 1

18 pages, 2758 KB  
Article
Synergistic Effects of Coal Gasification Slag-Based Soil Conditioner and Vermicompost on Soil–Microbe–Plant Systems Under Saline–Alkali Stress
by Hang Yang, Longfei Kang, Qing Liu, Qiang Li, Feng Ai, Kaiyu Zhang, Xinzhao Zhao and Kailang Ding
Sustainability 2026, 18(3), 1180; https://doi.org/10.3390/su18031180 - 23 Jan 2026
Viewed by 178
Abstract
Soil salinization remains a critical constraint on global land sustainability, severely limiting agricultural output and ecosystem resilience. To address this issue, a field trial was implemented to investigate the interactive benefits of vermicompost (VC) and a novel soil conditioner derived from coal gasification [...] Read more.
Soil salinization remains a critical constraint on global land sustainability, severely limiting agricultural output and ecosystem resilience. To address this issue, a field trial was implemented to investigate the interactive benefits of vermicompost (VC) and a novel soil conditioner derived from coal gasification slag-based soil conditioner (CGSS) in mitigating saline–alkali stress. The perennial forage grass Leymus chinensis, valued for its ecological robustness and economic potential under adverse soil conditions, served as the test species. Five treatments were established: CK (unamended), T1 (CGSS alone), T2 (VC alone), T3 (CGSS:VC = 1:1), T4 (CGSS:VC = 1:2), and T5 (CGSS:VC = 2:1). Study results indicate that the combined application of CGSS and VC outperformed individual amendments, with the T4 treatment demonstrating the most effective results. Compared to CK, T4 reduced soil electrical conductivity (EC) by 12.00% and pH by 5.17% (p < 0.05), while markedly enhancing key fertility indicators—including soil organic matter and the availability of nitrogen, phosphorus, and potassium. Thus, these improvements translated into superior growth of L. chinensis, reflected in significantly greater dry biomass, expanded leaf area, and increased plant height. Additionally, the T4 treatment increased soil microbial richness (Chao1 index) by 21.5% and elevated the relative abundance of the Acidobacteria functional group by 16.9% (p < 0.05). Hence, T4 treatment (CGSS: 15,000 kg·ha−1; VC: 30,000 kg·ha−1) was identified as the optimal remediation strategy through a fuzzy comprehensive evaluation that integrated multiple soil and plant indicators. From an economic perspective, the T4 treatment (corresponding to a VC-CGSS application ratio of 2: 1) exhibits a lower cost compared to other similar soil conditioners and organic fertilizer combinations for saline–alkali soil remediation. This study not only offers a practical and economically viable approach for reclaiming degraded saline–alkali soils but also advances the circular utilization of coal-based solid waste. Furthermore, it deepens our understanding of how integrated soil amendments modulate the soil–microbe–plant nexus under abiotic stress. Full article
Show Figures

Figure 1

13 pages, 380 KB  
Article
Effect of Vegetation Cover and Height on Soil and Plant Properties Across Managed and Unmanaged Agricultural Land in a Temperate Climate
by Sito-Obong U. Udofia, Lisa K. Williams, Alison P. Wills, Wing K. P. Ng, Tim Bevan and Matt J. Bell
Climate 2026, 14(2), 32; https://doi.org/10.3390/cli14020032 - 23 Jan 2026
Viewed by 151
Abstract
The aim of the study was to investigate the effect of vegetation cover and height on soil and plant nutrients across managed and unmanaged agricultural land in a temperate climate. Fresh soil and vegetation samples were collected during the years 2023 and 2024 [...] Read more.
The aim of the study was to investigate the effect of vegetation cover and height on soil and plant nutrients across managed and unmanaged agricultural land in a temperate climate. Fresh soil and vegetation samples were collected during the years 2023 and 2024 from 125 different land parcels in the southwest of the UK. Land was either managed for grazing and/or feed production or not managed for agricultural use, and had a range of grass, crop, legume, herb, and flower species. A linear mixed model was used to assess the effect of vegetation height (in cm) and cover (tonnes of dry matter per hectare) on soil and plant nutrients. The results showed plant dry matter (DM) digestibility, acid detergent fibre (ADF), water-soluble carbohydrate, and oil contents increased with vegetation height, and soil DM and neutral detergent fibre (NDF) decreased with vegetation height. The ratio of soil-to-plant OM reduced and ADF increased with increasing vegetation cover. Interactions between vegetation height and cover (i.e., density) were found for the ratio of soil-to-plant OM, ADF, NDF, DM, DM digestibility, oil, water-soluble carbohydrate, and crude protein nutrients. Measuring the interaction between soil and plant properties showed soil OM stocks increased and soil pH decreased with increased vegetation cover across agricultural land. Full article
Show Figures

Figure 1

30 pages, 5027 KB  
Article
Evaluation of Groundwater Quality for Drinking and Irrigation Purposes Using Entropy-Weighted WQI, Pollution Index, and Multivariate Statistical Analysis in the Maze Zenti Catchment, Southern Ethiopia
by Yonas Oyda, Samuel Dagalo Hatiye and Muralitharan Jothimani
Geosciences 2026, 16(1), 50; https://doi.org/10.3390/geosciences16010050 - 21 Jan 2026
Viewed by 341
Abstract
Population growth and agricultural expansion are threatening groundwater resources in the Maze Zenti catchment, Southern Ethiopia. This study evaluated groundwater suitability for drinking and irrigation by analyzing 30 samples using an integrated approach. This approach included GIS-based IDW interpolation, hydrochemical characterization, drinking water [...] Read more.
Population growth and agricultural expansion are threatening groundwater resources in the Maze Zenti catchment, Southern Ethiopia. This study evaluated groundwater suitability for drinking and irrigation by analyzing 30 samples using an integrated approach. This approach included GIS-based IDW interpolation, hydrochemical characterization, drinking water quality index, entropy weight, pollution index of groundwater, multivariate statistics, Piper, Gibbs, and Wilcox diagrams, ANOVA, and irrigation indices based on WHO standards. The correlation matrix revealed strong associations between Na+-TDS (r = 0.77) and Na+-Ca2+ (r = 0.68), indicating mineral dissolution, ion exchange, and agricultural inputs as key factors. Weak correlations were found for NO3 and F, reflecting localized anthropogenic and geogenic influences. Component analysis identified four components explaining 78.2% (wet season) and 81.2% (dry season) of the variance, highlighting mineralization and anthropogenic inputs. Hydrochemical facies were mainly Ca-Mg-HCO3 with some localized Na-HCO3, suggesting that rock–water interactions are the primary source of geochemical control. Drinking water quality assessment showed that, during the wet season, 52.8% of the catchment had excellent water quality, 45.8% was good, and 1.4% was poor–very poor. In the dry season, 51.6% was excellent, 47.4% was good, 0.8% was poor, and 0.2% was very poor. The results of the entropy-weighted analysis indicated seasonal improvement, with excellent areas increasing from 13.1% to 31.4% and poor zones decreasing from 7.5% to 3.4%. Irrigation indices (Na%, PI, MAR, SAR) and Wilcox analysis (86.4% C2S1) suggested low sodicity and salinity hazards. This study provides the first integrated seasonal mapping of drinking and irrigation water quality, entropy-weighted water quality, and pollution index for the Maze Zenti catchment, establishing a hydrogeochemical baseline. Overall, groundwater in the area is generally suitable for drinking and irrigation. However, localized monitoring and sustainable land-use practices are recommended to mitigate contamination risks. Full article
Show Figures

Figure 1

18 pages, 3256 KB  
Article
Macroaggregate–Microaggregate Interactions Drive Soil Carbon and Nitrogen Stabilization Under Rotational Tillage in Dryland Farming
by Sha Yang, Zhigang Wang, Jin Tong, Jing Xu, Juan Bai, Xingxing Qiao, Meichen Feng, Lujie Xiao, Xiaoyan Song, Meijun Zhang, Guangxin Li, Fahad Shafiq, Jiancheng Zhang, Chao Wang and Wude Yang
Agriculture 2026, 16(2), 264; https://doi.org/10.3390/agriculture16020264 - 21 Jan 2026
Viewed by 135
Abstract
Soil total carbon (TC) and total nitrogen (TN) are key indicators of soil fertility and ecosystem stability, particularly in dryland agroecosystems. However, how rotational tillage combined with straw return affects aggregate formation and aggregate-associated TC and TN stabilization remains insufficiently understood. In this [...] Read more.
Soil total carbon (TC) and total nitrogen (TN) are key indicators of soil fertility and ecosystem stability, particularly in dryland agroecosystems. However, how rotational tillage combined with straw return affects aggregate formation and aggregate-associated TC and TN stabilization remains insufficiently understood. In this study, we aimed to clarify how rotational tillage affects aggregate structure, stability, and the spatial distribution of TC and TN, thereby revealing internal processes driving nutrient stabilization in dryland farming systems. A long-term field experiment was conducted at the Shenfeng site of Shanxi Agricultural University, China, including three rotational tillage systems with straw return: T1 (two years of no tillage (NT) + one year of deep tillage (DT)), T2 (two years of conventional tillage (CT) + one year of DT), and T3 (two years of DT + one year of CT). Soil aggregates were separated into total mechanical aggregate (TMA), 0.25–2 mm MA, and 2–10 mm MA, and they were further fractionated into water-stable aggregates (WM, Wm, and Wf) for TC and TN analysis. The results showed that aggregate stability, TC, and TN were positively correlated and decreased with soil depth, indicating strong surface enrichment. TC was mainly enriched in 0.25–2 mm MA, whereas TN was concentrated in 2–10 mm MA, and water-stable macroaggregates (WM) acted as the dominant reservoirs for RC and RN. Relative to the 2016 baseline (CK), TC in 2022 tended to be higher under rotational tillage with straw return, while NT-containing systems better maintained TN across the 0–60 cm profile. Among the treatments, T1 provided the most balanced performance, with a higher MWD and GMD, lower D, and improved aggregate-associated TC and TN retention. These findings suggest that rotational tillage with straw return, particularly the NT–NT–DT sequence, can support aggregate stability and is associated with improved aggregate-mediated TC and TN retention in the Loess Plateau dryland winter wheat system. Full article
(This article belongs to the Topic Sustainable Energy Systems)
Show Figures

Figure 1

19 pages, 3154 KB  
Article
Subsurface Irrigation Depth Affects High-Yield Triticum aestivum Cultivation in Saline-Alkali Soils: Evidence from Soil–Microbe–Crop Interaction
by Tieqiang Wang, Hanbo Wang, Kai Guo, Xiaobin Li, Weidong Li, Zhenxing Yan and Wenbin Chen
Agronomy 2026, 16(2), 245; https://doi.org/10.3390/agronomy16020245 - 20 Jan 2026
Viewed by 247
Abstract
Drip irrigation burial depth is a critical management factor for saline-alkali agriculture, yet its mechanisms of influencing crop productivity through soil–microbe–plant interactions remain poorly understood. To explore the regulatory effects of drip irrigation burial depth on the growth and rhizosphere microenvironment of dryland [...] Read more.
Drip irrigation burial depth is a critical management factor for saline-alkali agriculture, yet its mechanisms of influencing crop productivity through soil–microbe–plant interactions remain poorly understood. To explore the regulatory effects of drip irrigation burial depth on the growth and rhizosphere microenvironment of dryland wheat in saline-alkali soil, three treatments (no irrigation control, CK; 5 cm shallow-buried drip irrigation, T5; 25 cm deep-buried drip irrigation, T25) were set up, with soil physicochemical properties, microbial community characteristics, and crop yield analyzed. The results showed that drip irrigation significantly improved soil environment and yield, and T25 exhibited superior comprehensive benefits: soil electrical conductivity was reduced by 63%, organic matter content increased by 44%, and water-salt status was significantly optimized; meanwhile, microbial community structure was altered and root nutrient uptake capacity was enhanced, ultimately achieving a yield of 5347.1 kg ha−1, 55.0% higher than CK. In conclusion, 25 cm deep-buried drip irrigation may provide advantages for wheat cultivation primarily through improved water distribution, desalination, and soil structure enhancement. Full article
Show Figures

Figure 1

27 pages, 32077 KB  
Article
Winter Cereal Re-Sowing and Land-Use Sustainability in the Foothill Zones of Southern Kazakhstan Based on Sentinel-2 Data
by Asset Arystanov, Janay Sagin, Gulnara Kabzhanova, Dani Sarsekova, Roza Bekseitova, Dinara Molzhigitova, Marzhan Balkozha, Elmira Yeleuova and Bagdat Satvaldiyev
Sustainability 2026, 18(2), 1053; https://doi.org/10.3390/su18021053 - 20 Jan 2026
Viewed by 151
Abstract
Repeated sowing of winter cereals represents one of the adaptive dryland approaches to make more sustainable the rainfed agriculture activities in southern Kazakhstan. This study conducted a multi-year reconstruction of crop transitions using Sentinel-2 imagery for 2018–2025, based on the combined analysis of [...] Read more.
Repeated sowing of winter cereals represents one of the adaptive dryland approaches to make more sustainable the rainfed agriculture activities in southern Kazakhstan. This study conducted a multi-year reconstruction of crop transitions using Sentinel-2 imagery for 2018–2025, based on the combined analysis of Normalized Difference Vegetation Index (NDVI) temporal profiles and the Plowed Land Index (PLI), enabling the creation of a field-level harmonized classification set. The transition “spring crop → winter crop” was used as a formal indicator of repeated winter sowing, from which annual repeat layers and an integrated metric, the R-index, were derived. The results revealed a pronounced spatial concentration of repeated sowing in foothill landscapes, where terrain heterogeneity and locally elevated moisture availability promote the recurrent return of winter cereals. Comparison of NDVI composites for the peak spring biomass period (1–20 May) showed a systematic decline in NDVI with increasing R-index, indicating the cumulative effect of repeated soil exploitation and the sensitivity of winter crops to climatic constraints. Precipitation analysis for 2017–2024 confirmed the strong influence of autumn moisture conditions on repetition phases, particularly in years with extreme rainfall anomalies. These findings demonstrate the importance of integrating multi-year satellite observations with climatic indicators for monitoring the resilience of agricultural systems. The identified patterns highlight the necessity of implementing nature-based solutions, including contour–strip land management and the development of protective shelterbelts, to enhance soil moisture retention and improve the stability of regional agricultural landscapes. Full article
(This article belongs to the Special Issue Land Use Strategies for Sustainable Development)
Show Figures

Figure 1

25 pages, 11789 KB  
Article
Impact of Climate and Land Cover Dynamics on River Discharge in the Klambu Dam Catchment, Indonesia
by Fahrudin Hanafi, Lina Adi Wijayanti, Muhammad Fauzan Ramadhan, Dwi Priakusuma and Katarzyna Kubiak-Wójcicka
Water 2026, 18(2), 250; https://doi.org/10.3390/w18020250 - 17 Jan 2026
Viewed by 323
Abstract
This study examines the hydrological response of the Klambu Dam Catchment in Central Java, Indonesia, to climatic and land cover changes from 2000–2023, with simulations extending to 2040. Utilizing CHIRPS satellite data calibrated with six ground stations, monthly precipitation and temperature datasets were [...] Read more.
This study examines the hydrological response of the Klambu Dam Catchment in Central Java, Indonesia, to climatic and land cover changes from 2000–2023, with simulations extending to 2040. Utilizing CHIRPS satellite data calibrated with six ground stations, monthly precipitation and temperature datasets were analyzed and projected via linear regression aligned with IPCC scenarios, revealing a marginal temperature decline of 0.21 °C (from 28.25 °C in 2005 to 28.04 °C in 2023) and a 17% increase in rainfall variability. Land cover assessments from Landsat imagery highlighted drastic changes: a 73.8% reduction in forest area and a 467.8% increase in mixed farming areas, alongside moderate fluctuations in paddy fields and settlements. The Thornthwaite-Mather water balance method simulated monthly discharge, validated against observed data with Pearson correlations ranging from 0.5729 (2020) to 0.9439 (2015). Future projections using Cellular Automata-Markov modeling indicated stable volumetric flow but a temporal shift, including a 28.1% decrease in April rainfall from 2000 to 2040, contracting the wet season and extending dry spells. These shifts pose significant threats to agricultural and aquaculture activities, potentially exacerbating water scarcity and economic losses. The findings emphasize integrating dynamic land cover data, climate projections, and empirical runoff corrections for climate-resilient watershed management. Full article
(This article belongs to the Special Issue Water Management and Geohazard Mitigation in a Changing Climate)
Show Figures

Figure 1

25 pages, 5495 KB  
Article
Coupling Modeling Approaches for the Assessment of Runoff Quality in an Urbanizing Catchment
by Lihoun Teang, Kim N. Irvine, Lloyd H. C. Chua and Muhammad Usman
Hydrology 2026, 13(1), 35; https://doi.org/10.3390/hydrology13010035 - 16 Jan 2026
Viewed by 288
Abstract
The impacts of land use on stormwater runoff quality and Best Management Practices to mitigate these impacts have been investigated since the 1970s, yet challenges remain in providing a modeling approach that concomitantly considers contributions from different land use types. In densely developed [...] Read more.
The impacts of land use on stormwater runoff quality and Best Management Practices to mitigate these impacts have been investigated since the 1970s, yet challenges remain in providing a modeling approach that concomitantly considers contributions from different land use types. In densely developed urban areas, a buildup/washoff approach is often applied, while in rural areas, some type of erosion modeling is employed, as the processes of detachment, entrainment, and transport are fundamentally different. This study presents a coupled modeling approach within PCSWMM, integrating exponential buildup/washoff for impervious surfaces with the Modified Universal Soil Loss Equation (MUSLE) for pervious areas, including construction sites, to characterize water quality in the large mixed urban–rural Sparrovale catchment in Geelong, Australia. The watershed includes an innovative cascading system of 12 online NbS wetlands along one of the main tributaries, Armstrong Creek, to manage runoff quantity and quality, as well as 16 offline NbS wetlands that are tributary to the online system. A total of 78 samples for Total Suspended Solids (TSS), Total Phosphorus (TP), and Total Nitrogen (TN) were collected from six monitoring sites along Armstrong Creek during wet- and dry-weather events between May and July 2024 for model validation. The data were supplemented with six other catchment stormwater quality datasets collected during earlier studies, which provided an understanding of water quality status for the broader Geelong region. Results showed that average nutrient concentrations across all the sites ranged from 0.44 to 2.66 mg/L for TP and 0.69 to 5.7 mg/L for TN, spanning from within to above the ecological threshold ranges for eutrophication risk (TP: 0.042 to 1 mg/L, TN: 0.3 to 1.5 mg/L). In the study catchment, upstream wetlands reduced pollutant levels; however, downstream wetlands that received runoff from agriculture, residential areas, and, importantly, construction sites, showed a substantial increase in sediment and nutrient concentration. Water quality modeling revealed washoff parameters primarily influenced concentrations from established urban neighborhoods, whereas erosion parameters substantially impacted total pollutant loads for the larger system, demonstrating the importance of integrated modeling for capturing pollutant dynamics in heterogeneous, urbanizing catchments. The study results emphasize the need for spatially targeted management strategies to improve stormwater runoff quality and also show the potential for cascading wetlands to be an important element of the Nature-based Solution (NbS) runoff management system. Full article
(This article belongs to the Special Issue Advances in Urban Hydrology and Stormwater Management)
Show Figures

Figure 1

20 pages, 7204 KB  
Article
Climate-Based Natural Suitability Index (CNSI) for Blueberry Cultivation in China: Spatiotemporal Evolution and Influencing Factors
by Yixuan Feng, Jing Chen, Jiayi Liu, Xinchun Wang, Jinying Li, Ying Wang, Junnan Wu, Lin Wu and Yanan Li
Agronomy 2026, 16(2), 211; https://doi.org/10.3390/agronomy16020211 - 15 Jan 2026
Viewed by 252
Abstract
Blueberries (Vaccinium spp.) are highly sensitive to winter chilling fulfillment, growing degree days above 7 °C (GDD7), and water balance (WB). By integrating a climate-based natural suitability index (CNSI), three-dimensional kernel density estimation, traditional and spatial Markov chains, and optimal geographic detector [...] Read more.
Blueberries (Vaccinium spp.) are highly sensitive to winter chilling fulfillment, growing degree days above 7 °C (GDD7), and water balance (WB). By integrating a climate-based natural suitability index (CNSI), three-dimensional kernel density estimation, traditional and spatial Markov chains, and optimal geographic detector analysis, this study examines the spatiotemporal evolution and driving mechanisms of blueberry climatic suitability realization in 19 major producing provinces in China during 2008–2023. Results show that CNSI exhibits a stable and moderately right-skewed distribution, with partial convergence and a narrowing interprovincial gap. Suitability realization is highest in the middle and lower Yangtze River rice-growing belt, whereas the northern dryland belt and the southern subtropical mountainous belt show persistent mismatches between climatic potential and production advantages. Markov results reveal path dependence and moderate mobility, with “low–low lock-in” and “high–high club” phenomena reinforced under neighborhood effects. GeoDetector results indicate that effective facility irrigation and fertilizer input are dominant factors explaining spatial variation in CNSI, while comprehensive transportation accessibility and agricultural labor act as stable complements. Interaction analysis suggests that multi-factor synergies, particularly irrigation-centered combinations, yield strong dual-factor enhancement and near-nonlinear enhancement. These findings highlight the importance of aligning climatic suitability with adaptive infrastructure investment and region-specific management to promote sustainable production-share advantages in China’s blueberry industry. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

18 pages, 4153 KB  
Article
Straw Biochar Optimizes 15N Distribution and Nitrogen Use Efficiency in Dryland Foxtail Millet
by Zhiwen Cui, Jiling Bai, Fang Gao, Qiyun Ji, Xiaolin Wang, Panpan Zhang and Xiong Zhang
Agriculture 2026, 16(2), 157; https://doi.org/10.3390/agriculture16020157 - 8 Jan 2026
Viewed by 270
Abstract
The combined application of straw biochar and nitrogen fertilizer is an increasingly studied strategy to enhance soil fertility and crop yield. Optimizing the biochar-nitrogen interaction could be a choice for increasing nitrogen use efficiency (NUE) and reducing nitrogen loss in dryland agriculture. However, [...] Read more.
The combined application of straw biochar and nitrogen fertilizer is an increasingly studied strategy to enhance soil fertility and crop yield. Optimizing the biochar-nitrogen interaction could be a choice for increasing nitrogen use efficiency (NUE) and reducing nitrogen loss in dryland agriculture. However, the mechanisms by which it regulates nitrogen allocation and absorption in foxtail millet (Setaria italica) are still limited in terms of mechanical understanding. Based on preliminary experiments, the optimal biochar-nitrogen interaction for soil nutrient absorption was identified. A field experiment was conducted with six treatments in an arid region of northwestern China: N1C1 (N1: 130 kg ha−1 + C1: 100 kg ha−1, control group), N2C4 (N2: 195 kg ha−1 + C4: 250 kg ha−1), N3C1 (N3: 260 kg ha−1 + C1: 100 kg ha−1), N3C2 (N3: 260 kg ha−1 + C2: 150 kg ha−1), N3C3 (N3: 260 kg ha−1 + C3: 200 kg ha−1), and N3C4 (N3: 260 kg ha−1 + C4: 250 kg ha−1). The results demonstrated that the biochar–nitrogen ratio significantly influenced topsoil total nitrogen, microbial biomass carbon (SMBC), and microbial biomass nitrogen (SMBN). All biochar-to-nitrogen combinations sharply increased soil total nitrogen by 133.11–151.52% compared to pre-sowing levels, providing a fundamental base for microbial-driven nitrogen transformation. Low nitrogen addition is more conducive to biomass accumulation, with N2C4 significantly increasing by 62.82%. Although a high biochar-to-nitrogen ratio reduced leaf relative chlorophyll content (SPAD) by 5.72–16.18% and net photosynthetic rate (Pn) by 16.09–52.65% at the heading stage, these did not compromise final yield. Importantly, N2C4, N3C1, and N3C4 significantly increased spike 15N abundance by 71.45%, 13.21%, and 19.43%, respectively. N2C4 grain production increases by 53.77–110.57% in two years and was positively correlated with spike 15N abundance, reflecting high nitrogen partial factor productivity. In conclusion, a reasonable biochar-nitrogen interaction enhances nitrogen allocation and grain yield by stimulating microbial activity and strengthening soil–plant synergy, the certified strategy effectively supports sustainable dryland agriculture by simultaneously increasing productivity and improving soil health. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Graphical abstract

Back to TopTop