Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,691)

Search Parameters:
Keywords = drug toxicities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7832 KB  
Article
The Protective Effect and Molecular Mechanism of Tetrandrine on Male Reproductive Damage Caused by Silicon Dioxide
by Hong-Mei Li, Xiao-Qi Zeng, Qing Chang, Yu-Xin Sheng, Ya-Jia Pu, Yi Wang, Bin Cheng, Hong-Hui Li, Jie Xuan, Ling Zhang and Hai-Ming Xu
Toxics 2026, 14(1), 87; https://doi.org/10.3390/toxics14010087 (registering DOI) - 18 Jan 2026
Abstract
The long-term inhalation of free silica dust causes silicosis—a prevalent occupational hazard—yet its systemic effect on male reproductive toxicity remains underexplored. Tetrandrine (Tet) is the only plant-derived anti-silicosis drug approved in China. This study investigates silica (SiO2) -induced male reproductive damage [...] Read more.
The long-term inhalation of free silica dust causes silicosis—a prevalent occupational hazard—yet its systemic effect on male reproductive toxicity remains underexplored. Tetrandrine (Tet) is the only plant-derived anti-silicosis drug approved in China. This study investigates silica (SiO2) -induced male reproductive damage and evaluates Tet’s protective effects. Sixty male C57BL/6 mice (6–8 weeks) were divided into control, SiO2 exposure, and SiO2 + Tet groups. SiO2 was administered via intranasal infusion and Tet via gavage. Mice were sacrificed at day 7 (male reproductive injury model corresponding to the pulmonary inflammation stage) and day 42 (male reproductive injury model corresponding to the pulmonary fibrosis stage). Analyses included sperm morphology, testicular transcriptome sequencing, RT-qPCR, and immunofluorescence. At day 7, SiO2 exposure upregulated testicular inflammatory markers, which were partially mitigated by Tet. At day 42, SiO2 increased sperm deformity and testicular fibrosis markers (fibronectin and vimentin); Tet intervention reduced these abnormalities. Transcriptome analysis revealed distinct gene expression patterns at day 7 versus day 42, indicating time-dependent injury mechanisms. Tetrandrine alleviates silica-induced reproductive damage in male mice, suggesting potential therapeutic applications for occupational silica exposure and expanding the understanding of silica toxicity beyond the respiratory system. Full article
(This article belongs to the Section Reproductive and Developmental Toxicity)
15 pages, 8399 KB  
Article
Magnolol Ameliorates Cisplatin-Induced Acute Kidney Injury with Activation of Nrf2-Associated Antioxidant Responses
by Mi-Gyeong Gwon, Min Hui Park and Jaechan Leem
Curr. Issues Mol. Biol. 2026, 48(1), 96; https://doi.org/10.3390/cimb48010096 (registering DOI) - 17 Jan 2026
Abstract
Cisplatin (CDDP) is a cornerstone chemotherapeutic drug, yet its efficacy is frequently compromised by renal toxicity, primarily manifesting as acute kidney injury (AKI). Magnolol (MG) is a polyphenol from Magnolia officinalis and has been widely documented for its pronounced antioxidant and anti-inflammatory properties. [...] Read more.
Cisplatin (CDDP) is a cornerstone chemotherapeutic drug, yet its efficacy is frequently compromised by renal toxicity, primarily manifesting as acute kidney injury (AKI). Magnolol (MG) is a polyphenol from Magnolia officinalis and has been widely documented for its pronounced antioxidant and anti-inflammatory properties. This study evaluated the renoprotective effects of MG in a murine model of CDDP-induced AKI. Male C57BL/6 mice received MG (20 mg/kg) via daily intraperitoneal injection for four consecutive days, starting one day before a single CDDP injection. MG significantly reduced the serum concentrations of blood urea nitrogen and creatinine. Histopathological assessment revealed attenuated tubular damage and reduced expression of tubular injury markers. MG inhibited pro-inflammatory cytokines at both systemic and renal levels, alleviated endoplasmic reticulum stress, and suppressed activation of mitogen-activated protein kinase signaling pathways. Apoptotic damage was mitigated, as shown by the fewer TUNEL-positive cells and lowered expression of pro-apoptotic markers. In parallel, ferroptotic processes were alleviated through downregulation of pro-ferroptotic proteins and preservation of key antioxidant regulators. Importantly, MG restored nuclear factor erythroid 2-related factor 2 activity and upregulated downstream antioxidant effectors. These findings highlight the multi-targeted renoprotective actions of MG and support its possible utility as a therapeutic agent to prevent CDDP-induced renal injury. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Treatment of Kidney Diseases)
Show Figures

Figure 1

39 pages, 899 KB  
Review
Silver Nanoparticles in Antibacterial Research: Mechanisms, Applications, and Emerging Perspectives
by Hasan Karataş, Furkan Eker, Emir Akdaşçi, Mikhael Bechelany and Sercan Karav
Int. J. Mol. Sci. 2026, 27(2), 927; https://doi.org/10.3390/ijms27020927 (registering DOI) - 16 Jan 2026
Viewed by 28
Abstract
Silver nanoparticles (AgNPs) possess distinct physicochemical characteristics and demonstrate high antibacterial potential that highlights them as promising alternatives against a wide range of pathogens. The immense antibacterial potential of AgNPs is primarily attributed to the release of silver ions that lead to the [...] Read more.
Silver nanoparticles (AgNPs) possess distinct physicochemical characteristics and demonstrate high antibacterial potential that highlights them as promising alternatives against a wide range of pathogens. The immense antibacterial potential of AgNPs is primarily attributed to the release of silver ions that lead to the disruption of bacterial cell membrane, generation of reactive oxygen species (ROS), inhibition of protein synthesis and interference with DNA replication. Variations in AgNPs’ shape, size, and surface characteristics are also considered key factors determining their effectivity as well as specificity. AgNPs are considered potent antibacterial agents, including against antibiotic- and drug-resistant strains. However, inappropriate dosages or unoptimized application of may result in potential toxicity, consisting one of the main drawbacks of the AgNPs’ safer administration. This article reviews the recent literature on the antibacterial potential of AgNPs, focusing on their broad mechanisms of action, applicability, especially in agriculture, biomedical and environmental fields, toxicity and future perspectives. Full article
(This article belongs to the Special Issue Innovative Nanomaterials from Functional Molecules)
28 pages, 2829 KB  
Article
Correlation of Polymer–drug Composition with Micelle Properties, Performance, and Cytotoxicity for the Oligoelectrolyte-mediated pH-triggered Release of Hydrophobic Drugs
by Md. Saddam Hussain, Riya Khetan, Hugo Albrecht, Marta Krasowska and Anton Blencowe
Polymers 2026, 18(2), 247; https://doi.org/10.3390/polym18020247 - 16 Jan 2026
Viewed by 33
Abstract
Polymeric micelles have the potential to improve the efficacy and safety of drug delivery by improving drug solubility, enhancing bioaccumulation and reducing off-target toxicity. Despite excellent safety profiles, a major limitation with polymeric micelles is their inability to rapidly release their payload once [...] Read more.
Polymeric micelles have the potential to improve the efficacy and safety of drug delivery by improving drug solubility, enhancing bioaccumulation and reducing off-target toxicity. Despite excellent safety profiles, a major limitation with polymeric micelles is their inability to rapidly release their payload once they have reached their target, leading to the inadequate delivery of therapeutic doses. To address this limitation, we have developed a novel strategy to impart pH-responsiveness in non-responsive micelles through the co-encapsulation of oligoelectrolytes with drugs. Herein, we investigate the influence of copolymer composition and drug identity in combination with oligoelectrolyte—oligo(2-vinyl pyridine) (OVP)—loading on pH-triggered drug release from micelles and their cytotoxicity. A library of OVP-loaded micelles was prepared using conventional and well-established non-responsive block copolymers. Dynamic light scattering (DLS) was used to monitor the changes in the micelles as a function of pH. Regardless of the copolymer composition, an abrupt decrease in the hydrodynamic diameter (Dh) was observed as the pH was reduced due to OVP expulsion from the core, which was also confirmed by release studies. In general, co-encapsulation of OVP and model drugs (doxorubicin (DOX), gossypol (GP), paclitaxel (PX), and 7-ethyl-10-hydroxycamptothecin (SN38)) in the micelles provided good to excellent encapsulation efficiency percentage (EE%) values. In vitro studies revealed the pH triggered release of drugs from the OVP-loaded micelles regardless of the drug identity, which increased as the OVP loading increased. This general behaviour was observed in all cases, largely independent of the copolymer composition, albeit with subtle differences in the release profile for different drugs. Compared to their blank counterparts, the drug-loaded micelles displayed a slight increase in cytotoxicity against a panel of cancer cell lines, in a dose dependent manner. However, drug- and OVP-loaded micelles displayed a significant increase in cytotoxicity (up to 8-fold increase) that was independent of the copolymer composition. These results demonstrate the versatility of the oligoelectrolyte-mediated approach to furnish non-responsive micelles with a pH-trigger that allows the rapid release of drugs, regardless of the micelle composition or the drug identity. Full article
(This article belongs to the Section Polymer Applications)
18 pages, 3594 KB  
Article
Physiologically Based Pharmacokinetic Modeling of Digoxin in Adult and Pediatric Patients with Heart Failure
by Yicui Zhang, Yao Liu, Hua He and Kun Hao
Pharmaceutics 2026, 18(1), 112; https://doi.org/10.3390/pharmaceutics18010112 - 15 Jan 2026
Viewed by 85
Abstract
Background/Objectives: Digoxin is a cardiotonic agent with a narrow therapeutic window and a high risk of toxicity. The current clinical use is based on an empirically FDA-recommended regimen which has wide dosing ranges, introducing the risk of inappropriate dosing and related adverse [...] Read more.
Background/Objectives: Digoxin is a cardiotonic agent with a narrow therapeutic window and a high risk of toxicity. The current clinical use is based on an empirically FDA-recommended regimen which has wide dosing ranges, introducing the risk of inappropriate dosing and related adverse events. This study aims to develop a physiologically based pharmacokinetic (PBPK) model to characterize digoxin pharmacokinetics in adult and pediatric patients with heart failure, and then to evaluate the FDA-recommended regimen. Methods: The PBPK model was initially developed in healthy adults using PK-Sim®. Then, it was translated to adults with heart failure by incorporating disease factors. Next, it was further translated to pediatrics by scaling age-related parameters. Finally, through two-step translations, the model was used to evaluate current dosing regimens to inform safety and effectiveness based on observing predicted trough concentrations at a steady state. Results: This PBPK model has strong predicting ability, where observed concentrations and key PK metrics (Cmax, AUC0-t) were within 0.5–2.0-fold of predictions in healthy adults, adults with heart failure, neonates, and infants. The model prediction work on the evaluation of recommended dosing regimens from the FDA shows that the current regimen may not achieve the lowest boundary of the therapeutic window (0.5–2 ng/mL) in neonates (0–30 days), whereas infants (1–2 months) and children (<18 years) are generally good within it. Conclusions: This PBPK model explained major physiological and pathological contributors to differences in digoxin pharmacokinetics across populations and showed good performance in pediatric extrapolation. It also pointed out the shortage of empirical dosing regimens for such a drug with a narrow therapeutic window. The model may assist in optimizing the pediatric dosing strategies of digoxin, and suggests that current neonatal dosing regimens need refinement. Full article
Show Figures

Figure 1

24 pages, 1821 KB  
Article
PepScorer::RMSD: An Improved Machine Learning Scoring Function for Protein–Peptide Docking
by Andrea Giuseppe Cavalli, Giulio Vistoli, Alessandro Pedretti, Laura Fumagalli and Angelica Mazzolari
Int. J. Mol. Sci. 2026, 27(2), 870; https://doi.org/10.3390/ijms27020870 - 15 Jan 2026
Viewed by 116
Abstract
Over the past two decades, pharmaceutical peptides have emerged as a powerful alternative to traditional small molecules, offering high potency, specificity, and low toxicity. However, most computational drug discovery tools remain optimized for small molecules and need to be entirely adapted to peptide-based [...] Read more.
Over the past two decades, pharmaceutical peptides have emerged as a powerful alternative to traditional small molecules, offering high potency, specificity, and low toxicity. However, most computational drug discovery tools remain optimized for small molecules and need to be entirely adapted to peptide-based compounds. Molecular docking algorithms, commonly employed to rank drug candidates in early-stage drug discovery, often fail to accurately predict peptide binding poses due to their high conformational flexibility and scoring functions not being tailored to peptides. To address these limitations, we present PepScorer::RMSD, a novel machine learning-based scoring function specifically designed for pose selection and enhancement of docking power (DP) in virtual screening campaigns targeting peptide libraries. The model predicts the root-mean-squared deviation (RMSD) of a peptide pose relative to its native conformation using a curated dataset of protein–peptide complexes (3–10 amino acids). PepScorer::RMSD outperformed conventional, ML-based, and peptide-specific scoring functions, achieving a Pearson correlation of 0.70, a mean absolute error of 1.77 Å, and top-1 DP values of 92% on the evaluation set and 81% on an external test set. Our PLANTS-based workflow was benchmarked against AlphaFold-Multimer predictions, confirming its robustness for virtual screening. PepScorer::RMSD and the curated dataset are freely available in Zenodo Full article
Show Figures

Graphical abstract

36 pages, 3743 KB  
Article
Tri-Layer Composite Nanofiber Wound Dressing Incorporating Glucantime and Silver Nanoparticles for Cutaneous Leishmaniasis Management
by Hilal Topuz, Murat Inal, Atiye Turker, Zisan Toprak, Emrah Sefik Abamor, Sezen Canim Ates and Serap Acar
J. Funct. Biomater. 2026, 17(1), 41; https://doi.org/10.3390/jfb17010041 - 15 Jan 2026
Viewed by 169
Abstract
Cutaneous leishmaniasis is a zoonotic disease caused by Leishmania parasites and leads to chronic, non-healing skin lesions. Although current drugs can control the disease, their use is limited by systemic side effects, low efficacy, and inadequate lesion penetration. Therefore, innovative local delivery systems [...] Read more.
Cutaneous leishmaniasis is a zoonotic disease caused by Leishmania parasites and leads to chronic, non-healing skin lesions. Although current drugs can control the disease, their use is limited by systemic side effects, low efficacy, and inadequate lesion penetration. Therefore, innovative local delivery systems are required to enhance drug penetration and reduce systemic toxicity. To address these challenges, silver nanoparticles (AgNPs) were synthesized using propolis extract through a green synthesis approach, and a tri-layer wound dressing composed of polyvinyl alcohol and gelatin containing synthesized AgNPs and Glucantime was fabricated by electrospinning. Characterization (SEM-EDX, FTIR, TGA) confirmed uniform morphology, chemical structure, and thermal stability; the wound dressing exhibited hydrophilicity, antioxidant activity, and biphasic release. Biological evaluations against Leishmania tropica demonstrated significant antiparasitic activity. Promastigote viability decreased from 76.3% in neat fibers to 31.6% in nanofibers containing AgNPs and 7.9% in tri-layer nanofibers containing both AgNPs and Glucantime. Similarly, the amastigote infection index dropped from 410 in controls to 250 in neat nanofibers, 204 in AgNPs-containing nanofibers, and 22 in tri-layer nanofibers containing AgNPs and Glucantime. The tri-layer nanofibers demonstrated enhanced antileishmanial activity over AgNPs-containing fibers, confirming synergistic efficacy. All nanofibers were biocompatible, supporting their use as a safe platform for cutaneous leishmaniasis treatment. Full article
(This article belongs to the Special Issue Biomaterials for Wound Healing and Tissue Repair)
Show Figures

Graphical abstract

12 pages, 737 KB  
Article
Hitting the Target: Model-Informed Precision Dosing of Tobramycin in Pediatric Patients with Cystic Fibrosis
by Jake M. Brockmeyer, Laura Bio, Carlos Milla and Adam Frymoyer
Pharmaceuticals 2026, 19(1), 150; https://doi.org/10.3390/ph19010150 - 14 Jan 2026
Viewed by 200
Abstract
Background: Tobramycin is a key therapy for pulmonary exacerbations in children and adolescents with cystic fibrosis (CF), yet its variable pharmacokinetics (PK) combined with narrow therapeutic index necessitates therapeutic drug monitoring (TDM) during clinical care to optimize exposure while minimizing toxicity. Model-informed precision [...] Read more.
Background: Tobramycin is a key therapy for pulmonary exacerbations in children and adolescents with cystic fibrosis (CF), yet its variable pharmacokinetics (PK) combined with narrow therapeutic index necessitates therapeutic drug monitoring (TDM) during clinical care to optimize exposure while minimizing toxicity. Model-informed precision dosing (MIPD) is a potentially powerful tool to support dose individualization in clinical care that leverages population PK models and Bayesian forecasting. Herein, we evaluated the performance of an MIPD initiative at our hospital for once-daily tobramycin in pediatric patients with CF. Methods: Tobramycin practices at a single CF center before (2016–2018) and after (2019–2025) implementation of an MIPD initiative in CF patients < 21 years were evaluated. TDM during the pre-MIPD period used traditional log-linear AUC calculations, while the post-MIPD period used a commercial MIPD software platform integrated within the electronic health record. Outcomes included attainment of the target 24 h area-under-the-curve (AUC24 80–120 mg·h/L), number of TDM samples and dose adjustments during the first 7 days of treatment, and rates of acute kidney injury (AKI). Results: A total of 114 treatment courses were analyzed (77 pre-MIPD, 37 post-MIPD). Post-MIPD target attainment was 75.7% at TDM1, 89.2% at TDM2, and 100% at TDM3, significantly higher than pre-MIPD at corresponding cycles. The post-MIPD period required fewer TDM samples (4.2 vs. 7.1; p < 0.001) and dose adjustments (0.7 vs. 1.8; p < 0.001) in the first 7 days. AKI incidence remained low and comparable between periods. Conclusions: Implementation of an MIPD initiative for tobramycin in pediatric patients with CF led to the early attainment of therapeutic AUC24 targets while reducing TDM burden and dose adjustments. Full article
(This article belongs to the Special Issue Pediatric Drug Therapy: Safety, Efficacy, and Personalized Medicine)
Show Figures

Graphical abstract

35 pages, 3066 KB  
Review
Terpenoids: Emerging Natural Modulators for Reversing ABC Transporter-Mediated Multidrug Resistance in Cancer Chemotherapy
by Lanfei Ma, Dina Mahemuti, Yuanhong Lan, Jianxiong Xu, Wenfang Li, Zhengding Su, Jinyao Li, Aytursun Abuduwaili and Ayitila Maimaitijiang
Pharmaceuticals 2026, 19(1), 146; https://doi.org/10.3390/ph19010146 - 14 Jan 2026
Viewed by 94
Abstract
Multidrug resistance (MDR) is a central cause of chemotherapy failure and tumor recurrence and metastasis, and its mechanism involves enhanced drug efflux, target mutation, upregulation of DNA repair and remodeling of the tumor microenvironment. ABC transporter protein (P-gp, MRP, and BCRP)-mediated efflux of [...] Read more.
Multidrug resistance (MDR) is a central cause of chemotherapy failure and tumor recurrence and metastasis, and its mechanism involves enhanced drug efflux, target mutation, upregulation of DNA repair and remodeling of the tumor microenvironment. ABC transporter protein (P-gp, MRP, and BCRP)-mediated efflux of drugs is the most intensively researched aspect of the study, but the first three generations of small-molecule reversal agents were stopped in the clinic because of toxicity or pharmacokinetic defects. Natural products are considered as the fourth generation of MDR reversal agents due to their structural diversity, multi-targeting and low toxicity. In this paper, we systematically summarize the inhibitory activities of monoterpenes, sesquiterpenes, diterpenes and triterpenes against ABC transporter proteins in in vitro and in vivo models and focus on the new mechanism of reversing drug resistance by blocking efflux pumps, modulating signaling pathways such as PI3K-AKT, Nrf2, NF-κB and remodeling the tumor microenvironment. For example, Terpenoids possess irreplaceable core advantages over traditional multidrug resistance (MDR) reversers: Compared with the first three generations of synthetic reversers, natural/semisynthetic terpenoids integrate low toxicity (mostly derived from edible medicinal plants, half-maximal inhibitory concentration IC50 > 50 μM), high target specificity (e.g., oleanolic acid specifically inhibits the ATP-binding cassette (ABC) transporter subtype ABCC1 without cross-reactivity with ABCB1), and multi-mechanistic synergistic effects (e.g., β-caryophyllene simultaneously mediates the dual effects of “ABCB1 efflux inhibition + apoptotic pathway activation”). These unique characteristics enable terpenoids to effectively circumvent key limitations of traditional synthetic reversers, such as high toxicity and severe drug–drug interactions. Among them, lupane-type derivative BBA and euphane-type sooneuphanone D (triterpenoids), as well as dihydro-β-agarofuran-type compounds and sesquiterpene lactone Conferone (sesquiterpenoids), have emerged as the core lead compounds with the greatest translational potential in current MDR reverser research, attributed to their potent in vitro and in vivo MDR reversal activity, low toxicity, and excellent druggable modifiability. At the same time, we point out bottlenecks, such as low bioavailability, insufficient in vivo evidence, and unclear structure–activity relationship and put forward a proposal to address these bottlenecks. At the same time, the bottlenecks of low bioavailability, insufficient vivo evidence and unclear structure–activity relationship have been pointed out, and future research directions such as nano-delivery, structural optimization and combination strategies have been proposed to provide theoretical foundations and potential practical pathways for the clinical translation research of terpenoid compounds, whose clinical application still requires further in vivo validation and translational research support. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

17 pages, 1011 KB  
Review
Biomolecular Condensates in Disease: Decoding the Material State and Engineering Precision Modulators
by Biwei Han, Boxian Li, Xingyue Wang and Liang Wang
Int. J. Mol. Sci. 2026, 27(2), 837; https://doi.org/10.3390/ijms27020837 - 14 Jan 2026
Viewed by 84
Abstract
The recognition of liquid–liquid phase separation (LLPS) as a widespread organizing principle has revolutionized our view of cellular biochemistry. By forming biomolecular condensates, cells spatially orchestrate reactions without membranes. However, the dysregulation of this precise physical organization is emerging as a driver of [...] Read more.
The recognition of liquid–liquid phase separation (LLPS) as a widespread organizing principle has revolutionized our view of cellular biochemistry. By forming biomolecular condensates, cells spatially orchestrate reactions without membranes. However, the dysregulation of this precise physical organization is emerging as a driver of diverse pathologies, collectively termed “Condensatopathies.” Unlike traditional proteinopathies defined by static aggregates, these disorders span a dynamic spectrum of material state dysfunctions, from the failure to assemble essential compartments to the formation of aberrant, toxic phases. While research has largely focused on neurodegeneration and cancer, the impact of condensate dysfunction likely extends across broad physiological landscapes. A central unresolved challenge lies in deciphering the “molecular grammar” that governs the transition from functional fluids to pathological solids and, critically, visualizing these transitions in situ. This “material science” perspective presents a profound conundrum for drug discovery: how to target the collective physical state of a protein ensemble rather than a fixed active site. This review navigates the evolving therapeutic horizon, examining the limitations of current pharmacological approaches in addressing the complex “condensatome.” Moving beyond inhibition, we propose that the future of intervention lies in “reverse-engineering” the biophysical codes of phase separation. We discuss how deciphering these principles enables the creation of programmable molecular tools—such as synthetic peptides and state-specific degraders—designed to precisely modulate or dismantle pathological condensates, paving the way for a new era of precision medicine governed by soft matter physics. Full article
Show Figures

Figure 1

28 pages, 2594 KB  
Review
From Algorithm to Medicine: AI in the Discovery and Development of New Drugs
by Ana Beatriz Lopes, Célia Fortuna Rodrigues and Francisco A. M. Silva
AI 2026, 7(1), 26; https://doi.org/10.3390/ai7010026 - 14 Jan 2026
Viewed by 271
Abstract
The discovery and development of new drugs is a lengthy, complex, and costly process, often requiring 10–20 years to progress from initial concept to market approval, with clinical trials representing the most resource-intensive stage. In recent years, Artificial Intelligence (AI) has emerged as [...] Read more.
The discovery and development of new drugs is a lengthy, complex, and costly process, often requiring 10–20 years to progress from initial concept to market approval, with clinical trials representing the most resource-intensive stage. In recent years, Artificial Intelligence (AI) has emerged as a transformative technology capable of reshaping the entire pharmaceutical research and development (R&D) pipeline. The purpose of this narrative review is to examine the role of AI in drug discovery and development, highlighting its contributions, challenges, and future implications for pharmaceutical sciences and global public health. A comprehensive review of the scientific literature was conducted, focusing on published studies, reviews, and reports addressing the application of AI across the stages of drug discovery, preclinical development, clinical trials, and post-marketing surveillance. Key themes were identified, including AI-driven target identification, molecular screening, de novo drug design, predictive toxicity modelling, and clinical monitoring. The reviewed evidence indicates that AI has significantly accelerated drug discovery and development by reducing timeframes, costs, and failure rates. AI-based approaches have enhanced the efficiency of target identification, optimized lead compound selection, improved safety predictions, and supported adaptive clinical trial designs. Collectively, these advances position AI as a catalyst for innovation, particularly in promoting accessible, efficient, and sustainable healthcare solutions. However, substantial challenges remain, including reliance on high-quality and representative biomedical data, limited algorithmic transparency, high implementation costs, regulatory uncertainty, and ethical and legal concerns related to data privacy, bias, and equitable access. In conclusion, AI represents a paradigm shift in pharmaceutical research and drug development, offering unprecedented opportunities to improve efficiency and innovation. Addressing its technical, ethical, and regulatory limitations will be essential to fully realize its potential as a sustainable and globally impactful tool for therapeutic innovation. Full article
(This article belongs to the Special Issue Transforming Biomedical Innovation with Artificial Intelligence)
Show Figures

Figure 1

16 pages, 366 KB  
Review
Emerging Applications of Triazole Antifungal Drugs
by Luiz Ricardo Soldi, Ana Paula de Lima Oliveira and Marcelo José Barbosa Silva
Int. J. Mol. Sci. 2026, 27(2), 817; https://doi.org/10.3390/ijms27020817 - 14 Jan 2026
Viewed by 85
Abstract
Patients with leukemia are at heightened risk for invasive fungal infections (IFIs) due to profound immunosuppression caused by both the malignancy and its treatment. Chemotherapy-induced neutropenia, mucosal barrier disruption, and impaired innate and adaptive immune responses create a highly permissive environment for opportunistic [...] Read more.
Patients with leukemia are at heightened risk for invasive fungal infections (IFIs) due to profound immunosuppression caused by both the malignancy and its treatment. Chemotherapy-induced neutropenia, mucosal barrier disruption, and impaired innate and adaptive immune responses create a highly permissive environment for opportunistic fungal pathogens. Antifungal prophylaxis, particularly in acute myeloid leukemia (AML), has become a cornerstone in reducing IFI-related morbidity and mortality. This review outlines the immunopathogenic mechanisms underlying susceptibility to IFI and discusses current evidence on the optimal timing and therapeutic strategies for antifungal intervention. The clinical utility of key antifungal agents, namely, posaconazole, isavuconazole, and voriconazole, is critically evaluated. We also examine the potential role of emerging agents such as opelconazole, which enables targeted pulmonary delivery and prolonged epithelial retention, representing a promising approach to IFI prevention. Drug-specific considerations, including pharmacokinetics, drug–drug interactions, toxicity profiles, and cost-effectiveness, are analyzed in the context of clinical decision-making. Finally, we emphasize the importance of tailoring antifungal strategies based on leukemia subtype, immunosuppressive status, and individual patient factors to optimize outcomes and support antifungal stewardship in hematologic malignancies. Full article
(This article belongs to the Collection Feature Papers in Molecular Pharmacology)
Show Figures

Graphical abstract

18 pages, 13816 KB  
Article
Synergistic Overexpression of Sox9, TGFβ1, and Col II Induces Functional Chondrogenesis in hUC-MSCs Using a 3D Culture Approach
by Shumaila Khalid, Sobia Ekram, Faiza Ramzan, Asmat Salim and Irfan Khan
Organoids 2026, 5(1), 3; https://doi.org/10.3390/organoids5010003 - 14 Jan 2026
Viewed by 77
Abstract
Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) possess the potential for chondrogenic differentiation, offering a promising alternative source for cartilage regeneration. To address the limited availability and expansion capacity of autologous chondrocytes, we investigated the effect of co-overexpression of Sox9, TGFβ1, and type [...] Read more.
Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) possess the potential for chondrogenic differentiation, offering a promising alternative source for cartilage regeneration. To address the limited availability and expansion capacity of autologous chondrocytes, we investigated the effect of co-overexpression of Sox9, TGFβ1, and type II collagen (Col II) on the chondrogenic differentiation of hUC-MSCs using both 2D and 3D pellet culture systems. Following transfection, the cells exhibited a chondrocyte-like morphology and a marked downregulation of the stemness marker Stro-1. After 21 days in a 3D pellet culture system, the cells formed cartilage-like tissue characterized by the strong expression of chondrocyte-specific genes (Sox9, TGFβ1, Col II, Aggrecan) along with the significant secretion of sulfated glycosaminoglycans (sGaGs). These effects were attributed to enhanced cell–cell contact and extracellular matrix interactions promoted by the 3D environment. Our findings suggest that genetically modified hUC-MSCs cultured in a 3D pellet system represent a robust in vitro model for cartilage regeneration, with potential applications in transplantation and drug toxicity screening. Full article
Show Figures

Figure 1

21 pages, 1013 KB  
Article
Alterations in Adenylate Nucleotide Metabolism and Associated Lipid Peroxidation and Protein Oxidative Damage in Rat Kidneys Under Combined Acetaminophen Toxicity and Protein Deficiency
by Oksana M. Voloshchuk, Halyna P. Kopylchuk, Maria S. Ursatyy, Karolina A. Kovalchuk and Oleksii Skorokhod
Antioxidants 2026, 15(1), 105; https://doi.org/10.3390/antiox15010105 - 13 Jan 2026
Viewed by 199
Abstract
Acetaminophen (APAP) overdose is a major cause of acute liver failure and can be fatal, often without early symptoms. Protein deficiency, arising from illness or inadequate diet, impairs growth, immunity, and tissue repair. Both conditions can harm the kidneys, yet the impact of [...] Read more.
Acetaminophen (APAP) overdose is a major cause of acute liver failure and can be fatal, often without early symptoms. Protein deficiency, arising from illness or inadequate diet, impairs growth, immunity, and tissue repair. Both conditions can harm the kidneys, yet the impact of energy imbalance on renal physiology remains unclear. In this study, APAP toxicity and a low-protein diet induced behavioral suppression and tissue damage, as evidenced by reduced whole-body, liver, and kidney weights in rats. In kidney mitochondria of rats exposed to only toxic APAP doses, ATP levels declined sharply while ADP and AMP increased. AMP deaminase and ATPases’ activities rose about twofold and 1.5-fold, respectively, whereas cytosolic 5′-nucleotidase activity fell nearly threefold, suggesting compensatory responses to disrupted energy balance. The strongest reductions in ATP and the greatest increases in AMP and ATPase activity occurred in APAP-intoxicated rats fed a low-protein diet. This combination also intensified lipid peroxidation and oxidative protein damage, evidenced by elevated TBARS, reduced protein SH-groups, and increased protein carbonyls. Overall, APAP intoxication with protein deficiency disrupts renal energy metabolism, leading to mitochondrial dysfunction and structural kidney injury. Nutritional status therefore critically influences drug-induced nephrotoxicity, and antioxidant strategies may help prevent damage under metabolic stress. Full article
Show Figures

Figure 1

44 pages, 10841 KB  
Article
Study on Dual-Targeted Liposomes Containing Curcumin-Copper Chelate in the Treatment of Triple-Negative Breast Cancer
by Lina Wu, Xueli Guo and Pan Guo
Pharmaceuticals 2026, 19(1), 135; https://doi.org/10.3390/ph19010135 - 13 Jan 2026
Viewed by 162
Abstract
Background: Triple-negative breast cancer (TNBC) remains primarily treated with chemotherapy due to the lack of effective therapeutic targets, but this approach carries significant systemic toxicity and a high risk of drug resistance. Curcumin (Cur), despite its multifaceted antitumor activity, faces limitations in [...] Read more.
Background: Triple-negative breast cancer (TNBC) remains primarily treated with chemotherapy due to the lack of effective therapeutic targets, but this approach carries significant systemic toxicity and a high risk of drug resistance. Curcumin (Cur), despite its multifaceted antitumor activity, faces limitations in clinical application due to poor water solubility and weak targeting properties. This study aims to develop a folate/mitochondria dual-targeted curcumin–copper chelate liposome (Cu-Cur DTLPs) formulation that enables copper accumulation within tumor cells and induces copper-mediated cell death, thereby providing an effective and relatively low-toxicity therapeutic strategy for triple-negative breast cancer. Methods: Curcumin–copper chelates (Cu-Cur) were first synthesized and characterized using mass spectrometry, NMR, and infrared spectroscopy. Subsequently, dual-targeted liposomes (Cu-Cur DTLPs) were prepared via the thin-film dispersion method, with systematic evaluation of particle size, zeta potential, encapsulation efficiency, and in vitro release profiles. In vitro cytotoxicity was assessed against 4T-1 and MDA-MB-231 cells using the MTT assay. In a 4T-1 tumor-bearing BALB/c mouse model, comprehensive evaluation of targeting efficiency, antitumor efficacy, and mechanisms of action was conducted via in vivo imaging, tumor volume monitoring, immunohistochemistry (detecting FDX1 and DLAT proteins), and TUNEL staining. Results: Cu-Cur DTLPs with a uniform particle size of approximately 104.4 nm were successfully synthesized. In vitro and in vivo studies demonstrated that compared to free curcumin and conventional liposomes, Cu-Cur DTLPs significantly enhanced drug accumulation in tumor tissues and exhibited effective tumor growth inhibition. Mechanistic studies confirmed that this formulation specifically accumulates copper ions within tumor cells, upregulates FDX1, promotes DLAT oligomerization, and induces mitochondrial dysfunction, thereby driving copper death. TUNEL staining ruled out apoptosis as the primary mechanism. Safety evaluation revealed no significant toxicity in major organs. Conclusions: The Cu-Cur DTLPs developed in this study effectively induce copper-mediated death in TNBC through a dual-targeted delivery system, significantly enhancing antitumor activity with favorable safety profiles. This establishes a highly promising novel nanotherapeutic strategy for TNBC treatment. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

Back to TopTop