Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (518)

Search Parameters:
Keywords = dipole magnet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2177 KiB  
Article
Study on the Regulation Mechanism of Silane Coupling Agents’ Molecular Structure on the Rheological Properties of Fe3O4/CNT Silicone Oil-Based Magnetic Liquids
by Wenyi Li, Xiaotong Zeng, Shiyu Yang, Bingxue Wang, Xiangju Tian and Weihao Shen
J. Compos. Sci. 2025, 9(8), 423; https://doi.org/10.3390/jcs9080423 - 7 Aug 2025
Abstract
Silicone oil-based magnetic liquids containing carbon nanotubes (CNTs) were prepared using an in situ chemical coprecipitation method. The surface modification of Fe3O4/CNT composite particles was carried out by using three silane coupling agents: γ-aminopropyltriethoxysilane (550), γ-methacryloxypropyltrimethoxysilane (570), and phenyltrimethoxysilane [...] Read more.
Silicone oil-based magnetic liquids containing carbon nanotubes (CNTs) were prepared using an in situ chemical coprecipitation method. The surface modification of Fe3O4/CNT composite particles was carried out by using three silane coupling agents: γ-aminopropyltriethoxysilane (550), γ-methacryloxypropyltrimethoxysilane (570), and phenyltrimethoxysilane (7030). Infrared Spectroscopy (IR), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD) were used to confirm the successful doping of CNTs and the effective coating of the coupling agents. The rheological behavior of the magnetic liquids was systematically studied using an Anton Paar Rheometer. The results show that viscosity decreases exponentially with increasing temperature (fitting the Arrhenius equation), increases and tends to saturate with rising magnetic field intensity, and exhibits shear-thinning characteristics with increasing shear rate. Among the samples, Fe3O4@7030 has the best visco-thermal performance due to the benzene ring structure, which reduces the symmetry of the molecular chains. In contrast, Fe3O4@570 shows the most significant magneto-viscous effect (viscosity variation of 161.4%) as a result of the long-chain structure enhancing the steric hindrance of the magnetic dipoles. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

11 pages, 5939 KiB  
Article
Low-Cost Phased Array with Enhanced Gain at the Largest Deflection Angle
by Haotian Wen, Hansheng Su, Yan Wen, Xin Ma and Deshuang Zhao
Electronics 2025, 14(15), 3111; https://doi.org/10.3390/electronics14153111 - 5 Aug 2025
Viewed by 58
Abstract
This paper presents a low-cost 1-bit phased array operating at 17 GHz (Ku band) with an enhanced scanning gain at the largest deflection angle to extend the beam coverage for ground target detection. The phased array is designed using 16 (2 × 8) [...] Read more.
This paper presents a low-cost 1-bit phased array operating at 17 GHz (Ku band) with an enhanced scanning gain at the largest deflection angle to extend the beam coverage for ground target detection. The phased array is designed using 16 (2 × 8) radiation-phase reconfigurable dipoles and a fixed-phase feeding network, achieving 1-bit beam steering via a direct current (DC) bias voltage of ±5 V. Measurement results demonstrate a peak gain of 9.2 dBi at a deflection angle of ±37°, with a 3 dB beamwidth of 94° across the scanning plane. Compared with conventional phased array radars with equivalent peak gains, the proposed design achieves a 16% increase in the detection range at the largest deflection angle. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

19 pages, 4169 KiB  
Article
Magnetic Coil’s Performance Optimization with Nonsmooth Search Algorithms
by Igor Reznichenko, Primož Podržaj and Aljoša Peperko
Mathematics 2025, 13(15), 2490; https://doi.org/10.3390/math13152490 - 2 Aug 2025
Viewed by 252
Abstract
This research is concerned with design optimization of control systems. Our case study deals with magnetic levitation, in which an essential part is a solenoid. Its dimensions, along with controller parameters, form the optimization variables. We present a novel way of writing the [...] Read more.
This research is concerned with design optimization of control systems. Our case study deals with magnetic levitation, in which an essential part is a solenoid. Its dimensions, along with controller parameters, form the optimization variables. We present a novel way of writing the explicit expression of the solenoid’s force acting on a magnetic dipole, as well as its first derivatives. Numerical tests using non-gradient search algorithms show the difference in optimal designs provided by these methods. Since such optimization depends on output signals, a comparison of step response analysis methods is presented. Full article
(This article belongs to the Special Issue Advances in Metaheuristic Optimization Algorithms)
Show Figures

Figure 1

19 pages, 8049 KiB  
Article
Determination of the Magnetic Field Coordinates of BMM Sensors Under a Collapsed Rock Mass Array for Assessing Ore Body Contour Displacement
by Andrey O. Shigin, Danil S. Kudinov, Ekaterina A. Kokhonkova and Vyacheslav V. Romanov
Geosciences 2025, 15(8), 292; https://doi.org/10.3390/geosciences15080292 - 1 Aug 2025
Viewed by 169
Abstract
This article analyzes the operating principle of the BMM sensor emitter in order to improve the accuracy of the wireless determination of the BMM sensor coordinates under a massif of destroyed rock in the context of the problem of determining the shift of [...] Read more.
This article analyzes the operating principle of the BMM sensor emitter in order to improve the accuracy of the wireless determination of the BMM sensor coordinates under a massif of destroyed rock in the context of the problem of determining the shift of rocks during gold ore mining. Using numerical simulations, FEM has been developed to develop digital models reflecting individual cases of the propagation of the magnetic field of the emitter located in various geological conditions and positions relative to the rock surface and the vertical axis. The accuracy of determining the coordinates of the radio beacon in the rock has been analyzed, and data on the deviation of the coordinates of the peaks of the magnetic field strength from the radio beacon axis have been obtained in cases of a heterogeneous composition of the rock massif, the influence of the deviation of the emitter axis angle from the vertical, the influence of the unevenness of the collapse relief, and the influence of the superposition of fields from different radiation sources. A study has been carried out to determine the direction of the radio beacon search based on the resulting vector of the emitter’s magnetic field strength. Full article
(This article belongs to the Topic Advances in Mining and Geotechnical Engineering)
Show Figures

Figure 1

15 pages, 4646 KiB  
Article
A Wideband Magneto-Electric (ME) Dipole Antenna Enabled by ME Resonance and Aperture-Coupled Excitation
by Hyojin Jang, Seyeon Park, Junghyeon Kim, Kyounghwan Kim and Sungjoon Lim
Micromachines 2025, 16(8), 853; https://doi.org/10.3390/mi16080853 - 24 Jul 2025
Viewed by 375
Abstract
In this study, we propose a novel wideband aperture-coupled magneto-electric (ME) dipole antenna that achieves enhanced bandwidth by simultaneously leveraging ME resonance and aperture-coupled excitation. Building upon the conventional ME dipole architecture, the antenna integrates a pair of horizontal metal patches forming the [...] Read more.
In this study, we propose a novel wideband aperture-coupled magneto-electric (ME) dipole antenna that achieves enhanced bandwidth by simultaneously leveraging ME resonance and aperture-coupled excitation. Building upon the conventional ME dipole architecture, the antenna integrates a pair of horizontal metal patches forming the electric dipole and a pair of vertical metal patches forming the magnetic dipole. A key innovation is the aperture-coupled feeding mechanism, where electromagnetic energy is transferred from a tapered microstrip line to the dipole structure through a slot etched in the ground plane. This design not only excites the characteristic ME resonances effectively but also significantly improves impedance matching, delivering a markedly broader impedance bandwidth. To validate the proposed concept, a prototype antenna was fabricated and experimentally characterized. Measurements show an impedance bandwidth of 84.48% (3.61–8.89 GHz) for S11 ≤ −10 dB and a maximum in-band gain of 7.88 dBi. The antenna also maintains a stable, unidirectional radiation pattern across the operating band, confirming its potential for wideband applications such as 5G wireless communications. Full article
(This article belongs to the Special Issue RF Devices: Technology and Progress)
Show Figures

Figure 1

12 pages, 5751 KiB  
Article
Chaos of Charged Particles in Quadrupole Magnetic Fields Under Schwarzschild Backgrounds
by Qihan Zhang and Xin Wu
Universe 2025, 11(7), 234; https://doi.org/10.3390/universe11070234 - 16 Jul 2025
Viewed by 172
Abstract
A four-vector potential of an external test electromagnetic field in a Schwarzschild background is described in terms of a combination of dipole and quadrupole magnetic fields. This combination is an interior solution of the source-free Maxwell equations. Such external test magnetic fields cause [...] Read more.
A four-vector potential of an external test electromagnetic field in a Schwarzschild background is described in terms of a combination of dipole and quadrupole magnetic fields. This combination is an interior solution of the source-free Maxwell equations. Such external test magnetic fields cause the dynamics of charged particles around the black hole to be nonintegrable, and are mainly responsible for chaotic dynamics of charged particles. In addition to the external magnetic fields, some circumstances should be required for the onset of chaos. The effect of the magnetic fields on chaos is shown clearly through an explicit symplectic integrator and a fast Lyapunov indicator. The inclusion of the quadrupole magnetic fields easily induces chaos, compared with that of the dipole magnetic fields. This result is because the Lorentz forces from the quadrupole magnetic fields are larger than those from the dipole magnetic fields. In addition, the Lorentz forces act as attractive forces, which are helpful for bringing the occurrence of chaos in the nonintegrable case. Full article
Show Figures

Figure 1

13 pages, 900 KiB  
Hypothesis
Beyond Classical Multipoles: The Magnetic Metapole as an Extended Field Source
by Angelo De Santis and Roberto Dini
Foundations 2025, 5(3), 25; https://doi.org/10.3390/foundations5030025 - 14 Jul 2025
Viewed by 204
Abstract
We introduce the concept of the magnetic metapole—a theoretical extension of classical multipole theory involving a fractional j pole count (related to the harmonic degree n as j = 2n). Defined by a scalar potential with colatitudinal dependence and no radial [...] Read more.
We introduce the concept of the magnetic metapole—a theoretical extension of classical multipole theory involving a fractional j pole count (related to the harmonic degree n as j = 2n). Defined by a scalar potential with colatitudinal dependence and no radial variation, the metapole yields a magnetic field that decays as 1/r and is oriented along spherical surfaces. Unlike classical multipoles, the metapole cannot be described as a point source; rather, it corresponds to an extended or filamentary magnetic distribution as derived from Maxwell’s equations. We demonstrate that pairs of oppositely oriented metapoles (up/down) can, at large distances, produce magnetic fields resembling those of classical monopoles. A regularized formulation of the potential resolves singularities for the potential and the field. When applied in a bounded region, it yields finite field energy, enabling practical modeling applications. We propose that the metapole can serve as a conceptual and computational framework for representing large-scale magnetic field structures particularly where standard dipole-based models fall short. This construct may have utility in both geophysical and astrophysical contexts, and it provides a new tool for equivalent source modeling and magnetic field decomposition. Full article
(This article belongs to the Section Physical Sciences)
Show Figures

Figure 1

14 pages, 1472 KiB  
Article
Ionospheric Response to the Extreme Geomagnetic Storm of 10–11 May 2024 Based on Total Electron Content Observations in the Central Asian and East Asian Regions
by Galina Gordiyenko, Feza Arikan, Yuriy Litvinov and Murat Zhiganbaev
Atmosphere 2025, 16(7), 854; https://doi.org/10.3390/atmos16070854 - 14 Jul 2025
Viewed by 300
Abstract
The ionospheric response to the major geomagnetic storm (SYM-H = −518 nT) of 10–11 May 2024 was investigated using total electron content (TEC) observations from the Central Asian (CAR) and East Asian (EAR) regions. In the CAR region, shortly after the storm sudden [...] Read more.
The ionospheric response to the major geomagnetic storm (SYM-H = −518 nT) of 10–11 May 2024 was investigated using total electron content (TEC) observations from the Central Asian (CAR) and East Asian (EAR) regions. In the CAR region, shortly after the storm sudden commencement (SC) (17:05 UT on 10 May), during a rapid decrease in SYM-H, a significant TEC decrease (~70%) and a subsequent formation of a prolonged TEC depletion phase on 11 May were observed. The duration of the phase’s maximum intensity seemed to agree with the duration of southward interplanetary magnetic field (IMF) Bz activity. The total duration of the negative phase exceeded 3 days and correlated with the duration of the Auroral Electrojet (AE) index activity. The ionospheric response in the EAR region differed significantly, exhibiting a secondary, deeper TEC decrease (termed “phase 2”) on 12 May, which occurred during a period of reduced AE and IMF Bz activity. The analysis of latitudinal TEC variations in the EAR region revealed that “phase 2” occurred across a geographic latitude range of 31.4° N to 43.9° N (approximately 21° N to 34° N dipole latitude). These results are discussed in the context of potential longitudinal variations in thermospheric composition and meridional circulation during the geomagnetic storm. Full article
(This article belongs to the Special Issue Ionospheric Disturbances and Space Weather)
Show Figures

Figure 1

14 pages, 1991 KiB  
Article
Chemical Manipulation of the Collective Superspin Dynamics in Heat-Generating Superparamagnetic Fluids: An AC-Susceptibility Study
by Cristian E. Botez and Alex D. Price
Crystals 2025, 15(7), 631; https://doi.org/10.3390/cryst15070631 - 9 Jul 2025
Viewed by 217
Abstract
We use Co doping to alter the magnetic relaxation dynamics in superparamagnetic nanofluids made of 18 nm average diameter Fe3O4 nanoparticles immersed in Isopar M. Ac-susceptibility data recorded at different frequencies and temperatures, χ″vs. T|f, reveals a major [...] Read more.
We use Co doping to alter the magnetic relaxation dynamics in superparamagnetic nanofluids made of 18 nm average diameter Fe3O4 nanoparticles immersed in Isopar M. Ac-susceptibility data recorded at different frequencies and temperatures, χ″vs. T|f, reveals a major (~100 K) increase in the superspin blocking temperature of the Co0.2Fe2.8O4-based fluid (CFO) compared to its Fe3O4 counterpart (FO). We ascribe this behavior to the strengthening of the interparticle magnetic dipole interactions upon Co doping, as demonstrated by the relative χ″-peak temperature variation per frequency decade Φ=TT·log(f), which decreases from Φ~0.15 in FO to Φ~0.025 in CFO. In addition, χ″vs. T|f datasets from the CFO fluid reveal two magnetic events at temperatures Tp1 = 240 K and Tp2 = 275 K, both above the fluid’s freezing point (TF = 197 K). We demonstrate that the physical rotation of the nanoparticles within the fluid, the Brown mechanism, is entirely responsible for the collective superspin relaxation observed at Tp1, whereas the Néel mechanism, the superspin flip across an energy barrier within the particle, is dominant at Tp2. We confirm this finding through fits of models that describe the temperature dependence of the relaxation time via the two mechanisms: τB(T)=3η0VHkBTexpEkBTT0 and τNT=τ0expEBkBTT0. The best fits yield γ0=3η0VHkB = 1.5 × 10−8 s·K, E′/kB = 7 03 K, and T0′ = 201 K for the Brown relaxation, and EB/kB = 2818 K and T0 = 143 K for the Néel relaxation. Full article
(This article belongs to the Special Issue Innovations in Magnetic Composites: Synthesis to Application)
Show Figures

Figure 1

14 pages, 6545 KiB  
Article
Dynamics and Confinement Characteristics of the Last Closed Surface in a Levitated Dipole Configuration
by Zhao Wang, Teng Liu, Shuyi Liu, Junjie Du and Guoshu Zhang
Symmetry 2025, 17(7), 1057; https://doi.org/10.3390/sym17071057 - 4 Jul 2025
Viewed by 278
Abstract
Based on the magnetic configuration of the China Astro-Torus-1 (CAT-1) levitated dipole device, this study investigated the confinement performance of common discharge gas ions under E × B transverse transport conditions induced by electric fields. By adjusting L-coil parameters to shift the inject [...] Read more.
Based on the magnetic configuration of the China Astro-Torus-1 (CAT-1) levitated dipole device, this study investigated the confinement performance of common discharge gas ions under E × B transverse transport conditions induced by electric fields. By adjusting L-coil parameters to shift the inject location, it was found that when the loss boundary is in the outer weak-field region, most particles with large Larmor radii are lost after colliding with the wall, for particles with large pitch angles, the strongly anisotropic magnetic field causes particles across a broad range of energies to be lost through the X-point into the divertor. The study demonstrates that for particle kinetic energies between 100 and 300 eV, the CAT-1 device exhibits a loss cone angle θloss of approximately 58°, indicating favorable confinement performance. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

13 pages, 3040 KiB  
Article
Design and Development of Dipole Magnet for MIR/THz Free Electron Laser Beam Dumps and Spectrometers
by Ekkachai Kongmon, Kantaphon Damminsek, Nopadon Khangrang, Sakhorn Rimjaem and Chitrlada Thongbai
Particles 2025, 8(3), 66; https://doi.org/10.3390/particles8030066 - 25 Jun 2025
Viewed by 837
Abstract
This study presents the design and development of electromagnetic dipole magnets for use as beam dumps and spectrometers in the MIR and THz free-electron laser (FEL) beamlines at the PBP-CMU Electron Linac Laboratory (PCELL). The magnets were optimized to achieve a 60-degree bending [...] Read more.
This study presents the design and development of electromagnetic dipole magnets for use as beam dumps and spectrometers in the MIR and THz free-electron laser (FEL) beamlines at the PBP-CMU Electron Linac Laboratory (PCELL). The magnets were optimized to achieve a 60-degree bending angle for electron beams with energies up to 30 MeV, without requiring water cooling. Using CST EM Studio for 3D magnetic field simulations and ASTRA for particle tracking, the THz dipole (with 414 turns) and MIR dipole (with 600 turns) generated magnetic fields of 0.1739 T and 0.2588 T, respectively, while both operating at currents below 10 A. Performance analysis confirmed effective beam deflection, with the THz dipole showing that it was capable of handling beam energies up to 20 MeV and the MIR dipole could handle up to 30 MeV. The energy measurement at the spectrometer screen position was simulated, taking into account transverse beam size, fringe fields, and space charge effects, using ASTRA. The energy resolution, defined as the ratio of energy uncertainty to the mean energy, was evaluated for selected cases. For beam energies of 16 MeV and 25 MeV, resolutions of 0.2% and 0.5% were achieved with transverse beam sizes of 1 mm and 4 mm, respectively. All evaluated cases maintained energy resolutions below 1%, confirming the spectrometer’s suitability for high-precision beam diagnostics. Furthermore, the relationship between the initial and measured energy spread errors, taking into account a camera resolution of 0.1 mm/pixel, was evaluated. Simulations across various beam energies (10–16 MeV for the THz dipole and 20–25 MeV for the MIR dipole) confirmed that the measurement error in energy spread decreases with smaller RMS transverse beam sizes. This trend was consistent across all tested energies and magnet configurations. To ensure accurate energy spread measurements, a small initial beam size is recommended. Specifically, for beams with a narrow initial energy spread, a transverse beam size below 1 mm is essential. Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
Show Figures

Figure 1

16 pages, 8215 KiB  
Article
Assessment of a Translating Fluxmeter for Precision Measurements of Super-FRS Dipole Magnets
by Pawel Kosek, Anthony Beaumont and Melvin Liebsch
Metrology 2025, 5(2), 37; https://doi.org/10.3390/metrology5020037 - 17 Jun 2025
Viewed by 234
Abstract
In particle physics experiments, fragment separators utilize dipole magnets to distinguish and isolate specific isotopes based on their mass-to-charge ratio as particles traverse the dipole’s magnetic field. Accurate fragment selection relies on precise knowledge of the magnetic field generated by the dipole magnets, [...] Read more.
In particle physics experiments, fragment separators utilize dipole magnets to distinguish and isolate specific isotopes based on their mass-to-charge ratio as particles traverse the dipole’s magnetic field. Accurate fragment selection relies on precise knowledge of the magnetic field generated by the dipole magnets, necessitating dedicated measurement instrumentation to characterize the field in the constructed magnets. This study presents measurements of the two first-of-series dipole magnets (Type II—11 degrees bending angle—and Type III—9.5 degrees bending angle) for the Superconducting Fragment Separator that is being built in Darmstadt, Germany. Stringent field quality requirements necessitated a novel measurement system—the so-called translating fluxmeter. It is based on a PCB coil array installed on a moving trolley that scans the field while passing through the magnet aperture. While previous publications have discussed the design of the moving fluxmeter and the characterization of its components, this article presents the results of a measurement campaign conducted using the new system. The testing campaign was supplemented with conventional methods, including integral field measurements using a single stretched wire system and three-dimensional field mapping with a Hall probe. We provide an overview of the working principle of the translating fluxmeter system and validate its performance by comparing the results with those obtained using conventional magnetic measurement methods. Full article
(This article belongs to the Special Issue Advances in Magnetic Measurements)
Show Figures

Figure 1

15 pages, 803 KiB  
Article
Field-Induced Ferroaxiality in Antiferromagnets with Magnetic Toroidal Quadrupole
by Satoru Hayami
Condens. Matter 2025, 10(2), 35; https://doi.org/10.3390/condmat10020035 - 14 Jun 2025
Viewed by 682
Abstract
Magnetic toroidal multipoles have recently emerged as key descriptors of unconventional cross-correlation phenomena in antiferromagnetic systems. Among them, the rank-2 magnetic toroidal quadrupole, which is characterized as a time-reversal-odd polar tensor, has been theoretically associated with a variety of cross-correlation phenomena arising from [...] Read more.
Magnetic toroidal multipoles have recently emerged as key descriptors of unconventional cross-correlation phenomena in antiferromagnetic systems. Among them, the rank-2 magnetic toroidal quadrupole, which is characterized as a time-reversal-odd polar tensor, has been theoretically associated with a variety of cross-correlation phenomena arising from the time-reversal symmetry breaking. In this study, we investigate the interplay between magnetic toroidal quadrupoles and electric toroidal dipoles in antiferromagnets, with a particular focus on magnetic field-induced ferroaxiality. Through symmetry analysis and microscopic model calculations, we demonstrate that ferroaxiality can be induced by an external magnetic field, depending on both the field direction and the type of the magnetic toroidal quadrupole. We classify all magnetic point groups that possess magnetic toroidal quadrupoles and identify various candidate materials based on the MAGNDATA database. Our findings reveal a route to coupling spin and lattice degrees of freedom via toroidal multipoles. Full article
(This article belongs to the Section Magnetism)
Show Figures

Figure 1

19 pages, 1773 KiB  
Article
A New Model to Describe the Effective Magnetic Properties of Magnetorheological Elastomers
by Kewen Jing, Haitao Li, Henggao Xiang and Xianghe Peng
Physics 2025, 7(2), 21; https://doi.org/10.3390/physics7020021 - 10 Jun 2025
Viewed by 686
Abstract
The macroscopic magnetic properties of magnetorheological elastomers (MREs) are influenced by their microstructure, yet limited investigations has been conducted on this subject to date. In this paper, a microstructure-based model is proposed to investigate the magnetization response of MREs. The dipole theory is [...] Read more.
The macroscopic magnetic properties of magnetorheological elastomers (MREs) are influenced by their microstructure, yet limited investigations has been conducted on this subject to date. In this paper, a microstructure-based model is proposed to investigate the magnetization response of MREs. The dipole theory is employed to compute the local magnetic field, and a fitting equation derived from finite element analysis is used to correct the magnetic field. The Fröhlich–Kennelly equation is applied to describe the nonlinear magnetic properties of the particle material. Based on experimental observations, a body-centered tetragonal (BCT) model is established to describe the magnetization properties of anisotropic MREs. The proposed model is validated by comparison with experimental data and can be utilized to predict the effective susceptibility of MREs. The effects of particle volume fraction, the direction of the external magnetic field, and the shape of the MRE samples can also be analyzed using this model. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

10 pages, 1763 KiB  
Communication
Multi-Mode Coupling Enabled Broadband Coverage for Terahertz Biosensing Applications
by Dongyu Hu, Mengya Pan, Yanpeng Shi and Yifei Zhang
Biosensors 2025, 15(6), 368; https://doi.org/10.3390/bios15060368 - 7 Jun 2025
Viewed by 570
Abstract
Terahertz (THz) biosensing faces critical challenges in balancing high sensitivity and broadband spectral coverage, particularly under miniaturized device constraints. Conventional quasi-bound states in the continuum (QBIC) metasurfaces achieve high quality factor (Q) but suffer from narrow bandwidth, while angle-scanning strategies for broadband detection [...] Read more.
Terahertz (THz) biosensing faces critical challenges in balancing high sensitivity and broadband spectral coverage, particularly under miniaturized device constraints. Conventional quasi-bound states in the continuum (QBIC) metasurfaces achieve high quality factor (Q) but suffer from narrow bandwidth, while angle-scanning strategies for broadband detection require complex large-angle illumination. Here, we propose a symmetry-engineered, all-dielectric metasurface that leverages multipolar interference coupling to overcome this limitation. By introducing angular perturbation, the metasurface transforms the original magnetic dipole (MD)-dominated QBIC resonance into hybridized, multipolar modes. It arises from the interference coupling between MD, toroidal dipole (TD), and magnetic quadrupole (MQ). This mechanism induces dual counter-directional, frequency-shifted, resonance branches within angular variations below 16°, achieving simultaneous 0.42 THz broadband coverage and high Q of 499. Furthermore, a derived analytical model based on Maxwell equations and mode coupling theory rigorously validates the linear relationship between frequency splitting interval and incident angle with the Relative Root Mean Square Error (RRMSE) of 1.4% and the coefficient of determination (R2) of 0.99. This work establishes a paradigm for miniaturized THz biosensors, advancing applications in practical molecular diagnostics and multi-analyte screening. Full article
(This article belongs to the Special Issue Photonics for Bioapplications: Sensors and Technology—2nd Edition)
Show Figures

Figure 1

Back to TopTop