Magnetic Coil’s Performance Optimization with Nonsmooth Search Algorithms
Abstract
1. Introduction
2. Materials and Methods
2.1. Magnetic Levitation
2.2. Inductance and Self-Capacitance
2.3. Control System Modeling
2.4. Design Optimization: Problem Statement
2.5. Formulation of the Optimization Problem for a Magnetic Levitation System
2.6. Nonsmooth Optimization Search Algorithms
3. Results and Discussion
4. Conclusions
- Obtaining a novel way of writing the analytical formulas for the interaction force of a multilayered solenoid with a magnetic dipole, as well as its first derivatives. The influence of the coil’s dimensions on its inductance, resistance, and self-capacitance was addressed. This allowed us to create an accurate model of a magnetic levitation system capable of high-precision calculations.
- A numerical solution to the problem was proposed using five nonsmooth search algorithms. Based on the values of the objective function, the best results were achieved by PSO, the genetic algorithm and surrogate optimization. The test results show that a smaller inner radius is beneficial for the step response performance of a magnetic levitation system.
- The step response output characteristics were chosen as the basis for optimization. Numerical tests showed that step response analysis takes up a considerable amount of computation time during the optimization process. Unlike our previous work, here we were able to compare the computational times for transfer functions of the form (30). All of the five nonsmooth search methods yielded the advantage in computational time from using the approach developed in [35]. With this method of step response analysis, we were able to achieve an up to 69% reduction in the signal processing time. Therefore, the optimization process described in this work is useful for solving problems that rely on step response characteristics.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kochenderfer, M.J.; Wheeler, T.A. Algorithms for Optimization; The MIT Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Arora, J. Introduction to Optimum Design, 3rd ed.; Academic Press: Waltham, MA, USA, 2012. [Google Scholar]
- Belegundu, A.D.; Chandrupatla, T.R. Optimization Concepts and Applications in Engineering, 2nd ed.; Cambridge University Press: New York, NY, USA, 2011. [Google Scholar]
- Boeringer, D.W.; Werner, D.H. Particle swarm optimization versus genetic algorithms for phased array synthesis. IEEE Trans. Antennas Propag. 2004, 52, 771–779. [Google Scholar] [CrossRef]
- Robinson, J.; Rahmat-Samii, Y. Particle swarm optimization in electromagnetics. IEEE Trans. Antennas Propag. 2004, 52, 397–407. [Google Scholar] [CrossRef]
- Geng, J.; Jin, R. Design UWB antenna by binary coding optimization method. In Antenna Optimization and Design Based on Binary Coding; Modern Antenna; Springer: Singapore, 2022; Chapter 7. [Google Scholar] [CrossRef]
- Rolla, J.; Reynolds, B.; Weiler, J.; Connolly, A.; Debolt, R.; Machtay, A.; Sipe, B.; Wells, D. Design of 3D antenna geometries using genetic algorithms. Interplanet. Netw. Prog. Rep. 2023, 42–234, 1–26. [Google Scholar]
- Zang, T.; Xiao, G. Synthesis of shaped-beam radiation patterns with efficient optimization algorithm. IEEE Open J. Antennas Propag. 2025, 6, 694–704. [Google Scholar] [CrossRef]
- Jiménez, A.; Muñoz, A. Very-large-scale integration (VLSI) implementation and performance comparison of multiplier topologies for fixed- and floating-point numbers. Appl. Sci. 2025, 15, 4621. [Google Scholar] [CrossRef]
- Ślot, K.; Łuczak, P.; Kapusta, P.; Hausman, S.; Rantala, A.; Flak, J. Very-large-scale integration-friendly method for vital activity detection with frequency-modulated continuous wave radars. Sensors 2025, 25, 2151. [Google Scholar] [CrossRef]
- Zozulya, V. Nonsmooth optimization algorithms in some problems of fracture dynamics. Intell. Inf. Manag. 2010, 2, 637–646. [Google Scholar] [CrossRef]
- Su, R.; Tangaramvong, S.; Van, T.H.; Chaiwongnoi, A.; Song, C. Binary comprehensive learning particle swarm optimization approach for optimal design of nonlinear steel structures with standard sizes. Buildings 2023, 13, 1988. [Google Scholar] [CrossRef]
- Pillay, T.L.; Saha, A.K. A review of metaheuristic optimization techniques for effective energy conservation in buildings. Energies 2024, 17, 1547. [Google Scholar] [CrossRef]
- Aiello, G.; Alfonzetti, S.; Dilettoso, E.; Salerno, N. Improving the accuracy of the integral equation in the hybrid FEM-DBCI method for open boundary electrostatic problems. IEEE Trans. Magn. 2006, 42, 579–582. [Google Scholar] [CrossRef]
- Borghi, C.A.; Fabbri, M.; Di Barba, P.; Savini, A. Loney’s solenoid multi-objective optimization problem. IEEE Trans. Magn. 1999, 35, 1706–1709. [Google Scholar] [CrossRef]
- Borghi, C.A.; Fabbri, M.; Di Barba, P.; Savini, A. A comparative study of Loney’s solenoid by different techniques of global optimization. Int. J. Appl. Electromagn. Mech. 1999, 10, 417–423. [Google Scholar] [CrossRef]
- Coelho, L.D.S.; Alotto, P. Tribes optimization algorithm applied to the Loney’s solenoid. IEEE Trans. Magn. 2009, 45, 1526–1529. [Google Scholar] [CrossRef]
- Martinez, J.; Babic, S.; Akyel, C. On evaluation of inductance, DC resistance, and capacitance of coaxial inductors at low frequencies. IEEE Trans. Magn. 2014, 50, 1–12. [Google Scholar] [CrossRef]
- Grover, F.W. Inductance Calculations: Working Formulas and Tables; D. Van Nostrand: Princeton, NJ, USA, 2004; Available online: https://books.google.si/books?id=K3KHi9lIltsC (accessed on 11 June 2025).
- Duffy, R.M.; Netterfield, R.P. Design of Faraday rotators and modulators. Rev. Sci. Instrum. 1984, 55, 743. [Google Scholar] [CrossRef]
- Irfan, M.; Dogan, O.M.; Dogan, N.; Bingolbali, A. Selection field generation using permanent magnets and electromagnets for a magnetic particle imaging scanner. Alex. Eng. J. 2022, 61, 7685–7696. [Google Scholar] [CrossRef]
- Chou, C.-Y.; Ferrage, F.; Aubert, G.; Sakellariou, D. Simple method for the generation of multiple homogeneous field volumes inside the bore of superconducting magnets. Sci. Rep. 2015, 5, 12200. [Google Scholar] [CrossRef] [PubMed]
- Basharat, M.; Ding, M.; Cai, H.; Li, Y.; Fang, J. Design and analysis of multilayer solenoid coil for Faraday modulator. MATEC Web Conf. 2017, 114, 04004. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, X.; Liu, X.; He, C. An Analytical Model for Predicting the Self-Capacitance of Multi-Layer Circular-Section Induction Coils. IEEE Trans. Magn. 2018, 54, 1–7. [Google Scholar] [CrossRef]
- Kamath, K.P.; Vijay, G.S.; Bekinal, S.I.; Doddamani, M. Power amplifiers and their feedback mechanisms for AMB—A comprehensive review. IEEE Access 2023, 11, 132893–132915. [Google Scholar] [CrossRef]
- Sotelo, G.G.; De Oliveira, R.A.H.; Costa, F.S.; Dias, D.H.N.; De Andrade, R.; Stephan, R.M. A full scale superconducting magnetic levitation (MagLev) vehicle operational line. IEEE Trans. Appl. Supercond. 2014, 25, 1–5. [Google Scholar] [CrossRef]
- Peng, T.; Peng, H.; Li, R. Deep learning based model predictive controller on a magnetic levitation ball system. ISA Trans. 2024, 149, 348–364. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Li, C.; Zhou, J.; Wei, W.; Wu, Z. Vibration suppression control and anti-eccentric load correction mechanism of magnetic levitation decoupling platform. Mech. Syst. Signal Process. 2025, 225, 112314. [Google Scholar] [CrossRef]
- Kagami, R.M.; Freire, R.Z.; Reynoso-Meza, G. Multiobjective robust PI synthesis in plants with uncertain poles. IFAC-PapersOnLine 2024, 58–7, 174–179. [Google Scholar] [CrossRef]
- Yoneda, R.; Moriguchi, Y.; Kuroda, M.; Kawaguchi, N. Servo control of a current-controlled attractive-force-type magnetic levitation system using fractional-order LQR control. Fractal Fract. 2024, 8, 458. [Google Scholar] [CrossRef]
- Grandinetti, J.; Zhong, Y.; Peng, Y.; Jia, X. Design and construction of gradient coils for an MRI-guided small animal radiation platform. Heliyon 2024, 10, e26251. [Google Scholar] [CrossRef]
- Wu, K.; Zhu, X.; Anderson, S.W.; Zhang, X. Wireless, customizable coaxially shielded coils for magnetic resonance imaging. Sci. Adv. 2024, 10, eadn5195. [Google Scholar] [CrossRef]
- Zhu, X.; Xing, M.; Ye, J.; Liu, X.; Ren, Z. Design and optimization of a novel solenoid with high magnetic uniformity. Sci. Rep. 2024, 14, 24650. [Google Scholar] [CrossRef]
- Reznichenko, I.; Podržaj, P. Design methodology for a magnetic levitation system based on a new multi-objective optimization algorithm. Sensors 2023, 23, 979. [Google Scholar] [CrossRef]
- Reznichenko, I.; Podržaj, P.; Peperko, A. Variable time step algorithm for transient response analysis for control and optimization. Fractal Fract. 2024, 8, 710. [Google Scholar] [CrossRef]
- Tipler, P.A.; Mosca, G. Physics for Scientists and Engineers, 6th ed.; W.H. Freeman and Company: New York, NY, USA, 2008. [Google Scholar]
- Serway, R.A.; Jewett, J.W. Physics for Scientists and Engineers with Modern Physics, 9th ed.; Brooks/Cole: Boston, MA, USA, 2014. [Google Scholar]
- Maheedhar, M.; Deepa, T. Design and performance analysis of a nonlinear magnetic levitation system using PID controller optimized with COOT algorithm. IEEE Access 2023, 11, 104606–104621. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, Z.; Yin, S.; Long, Z. Real-time performance optimization of electromagnetic levitation systems and the experimental validation. IEEE Trans. Ind. Electron. 2023, 70, 3035–3044. [Google Scholar] [CrossRef]
- Doetsch, G. Introduction to the Theory and Application of the Laplace Transformation; Springer: Berlin/Heidelberg, Germany, 1974. [Google Scholar]
- Bateman, H.; Erdelyi, A. Tables of Integral Transforms; McGraw-Hill Book Company: New York, NY, USA, 1954; Volume 1. [Google Scholar]
- Boyd, S.; Vandenberghe, L. Convex Optimization, 7th ed.; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Wilde, D.J. Principles of Optimal Design; Cambridge University Press: New York, NY, USA, 2017. [Google Scholar]
- Arora, R.K. Optimization: Algorithms and Applications; Taylor and Francis/CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Podlubny, I. Fractional-order systems and PIλDμ controllers. IEEE Trans. Autom. Control 1999, 44, 208–214. [Google Scholar] [CrossRef]
- MathWorks. Control System Toolbox User’s Guide; MathWorks: Natick, MA, USA, 2018; Available online: https://www.mathworks.com/help/control/ (accessed on 6 June 2025).
- Siciliano, B.; Khatib, O. (Eds.) Springer Handbook of Robotics; Springer: Berlin, Germany, 2008; Available online: https://books.google.si/books?id=Xpgi5gSuBxsC (accessed on 17 May 2025).
- Rockafeller, T. Nonsmooth optimization. In Mathematical Programming: State of the Art; Birge, J.R., Murty, K.G., Eds.; University of Michigan Press: Ann Arbor, MI, USA, 1994; pp. 248–258. Available online: https://sites.math.washington.edu/~rtr/papers/rtr153-NonsmoothOptimization.pdf (accessed on 12 June 2025).
- Kolda, T.G.; Lewis, R.M.; Torczon, V. Optimization by direct search: New perspectives on some classical and modern methods. SIAM Rev. 2003, 45, 385–482. [Google Scholar] [CrossRef]
- Gardeux, V.; Omran, M.G.H.; Chelouah, R.; Siarry, P.; Glover, F. Adaptive pattern search for large-scale optimization. Appl. Intell. 2017, 47, 319–330. [Google Scholar] [CrossRef]
- Meza, J.C.; Judson, R.S.; Faulkner, T.R.; Treasurywala, A.M. A comparison of a direct search method and a genetic algorithm for conformational searching. J. Comput. Chem. 1996, 17, 1142–1151. [Google Scholar] [CrossRef]
- Rudolph, G. Convergence analysis of canonical genetic algorithms. IEEE Trans. Neural Netw. 1994, 5, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Basak, S.; Peters, R.A. Particle swarm optimization: A survey of historical and recent developments with hybridization perspectives. Mach. Learn. Knowl. Extr. 2018, 1, 157–191. [Google Scholar] [CrossRef]
- Clerc, M.; Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [Google Scholar] [CrossRef]
- Forrester, A.I.J.; Sobester, A.; Keane, A.J. Engineering Design via Surrogate Modelling: A Practical Guide; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; de Freitas, N. Taking the human out of the loop: A review of Bayesian optimization. Proc. IEEE 2016, 104, 148–175. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Suman, B.; Kumar, P. A survey of simulated annealing as a tool for single and multiobjective optimization. J. Oper. Res. Soc. 2006, 57, 1143–1160. [Google Scholar] [CrossRef]
- Hajek, B. Cooling schedules for optimal annealing. Math. Oper. Res. 1988, 13, 311–329. Available online: https://www.jstor.org/stable/3689827 (accessed on 20 April 2025). [CrossRef]
- MathWorks. Global Optimization Toolbox User’s Guide; MathWorks: Natick, MA, USA, 2024; Available online: https://www.mathworks.com/help/gads/index.html (accessed on 2 May 2025).
Alg. Type | Lower/Upper Bounds | Linear Ineq. Constr. | |||
---|---|---|---|---|---|
Pattern search | Yes | No | Yes | Yes | Yes |
Genetic alg. | No | Yes | No | Yes | Yes |
PSO | No | Yes | No | Yes | No |
Surrogate optim. | Yes | No | No | Yes | Yes |
Simul. anneal. | Yes | No | Yes | Yes | No |
Alg. Type | cm | cm | cm | mm | % | s. | ||||
---|---|---|---|---|---|---|---|---|---|---|
Pattern search | 8.5 | 2.5 | 1.1 | 0.56 | 126 | 20 | 10 | 15 | 2.54 | 0.18 |
Genetic alg. | 2.6 | 5.4 | 1.6 | 0.65 | 43.7 | 132 | 3.9 | 7 | 1.2 | 0.13 |
PSO | 7.4 | 5.9 | 1.5 | 0.65 | 61.4 | 53.5 | 8.9 | 7.3 | 0.21 | 0.12 |
Surrog. opt. | 3.8 | 7.5 | 3 | 1.4 | 95.3 | 98.8 | 9.4 | 8.3 | 0.76 | 0.12 |
Simul. ann. | 4.4 | 3.4 | 1.2 | 0.47 | 112 | 121 | 5 | 21.1 | 0.58 | 0.25 |
Alg. Type | N | , s. | , s. | |||
---|---|---|---|---|---|---|
Pattern search | 0.12 | 455 | 48.7 | 5.63 | 7.1% | 68.3% |
Genetic algorithm | 0.13 | 433 | 46.4 | 5.29 | 14.3% | 69.4% |
PSO | 0.12 | 455 | 32.5 | 3.05 | 10% | 69.5% |
Surrogate optim. | 0.12 | 455 | 46.7 | 4.73 | 12.2% | 64.9% |
Simul. annealing | 0.25 | 456 | 46.7 | 5.21 | 13.7% | 67.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reznichenko, I.; Podržaj, P.; Peperko, A. Magnetic Coil’s Performance Optimization with Nonsmooth Search Algorithms. Mathematics 2025, 13, 2490. https://doi.org/10.3390/math13152490
Reznichenko I, Podržaj P, Peperko A. Magnetic Coil’s Performance Optimization with Nonsmooth Search Algorithms. Mathematics. 2025; 13(15):2490. https://doi.org/10.3390/math13152490
Chicago/Turabian StyleReznichenko, Igor, Primož Podržaj, and Aljoša Peperko. 2025. "Magnetic Coil’s Performance Optimization with Nonsmooth Search Algorithms" Mathematics 13, no. 15: 2490. https://doi.org/10.3390/math13152490
APA StyleReznichenko, I., Podržaj, P., & Peperko, A. (2025). Magnetic Coil’s Performance Optimization with Nonsmooth Search Algorithms. Mathematics, 13(15), 2490. https://doi.org/10.3390/math13152490