Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (302)

Search Parameters:
Keywords = digital hydraulics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6893 KiB  
Article
Nose-Wheel Steering Control via Digital Twin and Multi-Disciplinary Co-Simulation
by Wenjie Chen, Luxi Zhang, Zhizhong Tong and Leilei Liu
Machines 2025, 13(8), 677; https://doi.org/10.3390/machines13080677 (registering DOI) - 1 Aug 2025
Viewed by 91
Abstract
The aircraft nose-wheel steering system serves as a critical component for ensuring ground taxiing safety and maneuvering efficiency. However, its dynamic control stability faces significant challenges under complex operational conditions. Existing research predominantly focuses on single-discipline modeling, with insufficient in-depth analysis of the [...] Read more.
The aircraft nose-wheel steering system serves as a critical component for ensuring ground taxiing safety and maneuvering efficiency. However, its dynamic control stability faces significant challenges under complex operational conditions. Existing research predominantly focuses on single-discipline modeling, with insufficient in-depth analysis of the coupling effects between hydraulic system dynamics and mechanical dynamics. Traditional PID controllers exhibit limitations in scenarios involving nonlinear time-varying conditions caused by normal load fluctuations of the landing gear buffer strut during high-speed landing phases, including increased control overshoot and inadequate adaptability to abrupt load variations. These issues severely compromise the stability of high-speed deviation correction and overall aircraft safety. To address these challenges, this study constructs a digital twin model based on real aircraft data and innovatively implements multidisciplinary co-simulation via Simcenter 3D, AMESim 2021.1, and MATLAB R2020a. A fuzzy adaptive PID controller is specifically designed to achieve adaptive adjustment of control parameters. Comparative analysis through co-simulation demonstrates that the proposed mechanical–electrical–hydraulic collaborative control strategy significantly reduces response delay, effectively minimizes control overshoot, and decreases hydraulic pressure-fluctuation amplitude by over 85.2%. This work provides a novel methodology for optimizing steering stability under nonlinear interference scenarios, offering substantial engineering applicability and promotion value. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

32 pages, 15216 KiB  
Article
Leveraging Soil Geography for Land Use Planning: Assessing and Mapping Soil Ecosystem Services Indicators in Emilia-Romagna, NE Italy
by Fabrizio Ungaro, Paola Tarocco and Costanza Calzolari
Geographies 2025, 5(3), 39; https://doi.org/10.3390/geographies5030039 (registering DOI) - 1 Aug 2025
Viewed by 66
Abstract
An indicator-based approach was implemented to assess the contributions of soils in supplying ecosystem services, providing a scalable tool for modeling the spatial heterogeneity of soil functions at regional and local scales. The method consisted of (i) the definition of soil-based ecosystem services [...] Read more.
An indicator-based approach was implemented to assess the contributions of soils in supplying ecosystem services, providing a scalable tool for modeling the spatial heterogeneity of soil functions at regional and local scales. The method consisted of (i) the definition of soil-based ecosystem services (SESs), using available point data and thematic maps; (ii) the definition of appropriate SES indicators; (iii) the assessment and mapping of potential SESs provision for the Emilia-Romagna region (22.510 km2) in NE Italy. Depending on data availability and on the role played by terrain features and soil geography and its complexity, maps of basic soil characteristics (textural fractions, organic C content, and pH) covering the entire regional territory were produced at a 1 ha resolution using digital soil mapping techniques and geostatistical simulations to explicitly consider spatial variability. Soil physical properties such as bulk density, porosity, and hydraulic conductivity at saturation were derived using pedotransfer functions calibrated using local data and integrated with supplementary information such as land capability and remote sensing indices to derive the inputs for SES assessment. Eight SESs were mapped at 1:50,000 reference scale: buffering capacity, carbon sequestration, erosion control, food provision, biomass provision, water regulation, water storage, and habitat for soil biodiversity. The results are discussed and compared for the different pedolandscapes, identifying clear spatial patterns of soil functions and potential SES supply. Full article
Show Figures

Figure 1

27 pages, 6704 KiB  
Article
Dynamic Characteristics of a Digital Hydraulic Drive System for an Emergency Drainage Pump Under Alternating Loads
by Yong Zhu, Yinghao Liu, Qingyi Wu and Qiang Gao
Machines 2025, 13(8), 636; https://doi.org/10.3390/machines13080636 - 22 Jul 2025
Viewed by 218
Abstract
With the frequent occurrence of global floods, the demand for emergency rescue equipment has grown rapidly. The development and technological innovation of digital hydraulic drive systems (DHDSs) for emergency drainage pumps (EDPs) have become key to improving rescue efficiency. However, EDPs are prone [...] Read more.
With the frequent occurrence of global floods, the demand for emergency rescue equipment has grown rapidly. The development and technological innovation of digital hydraulic drive systems (DHDSs) for emergency drainage pumps (EDPs) have become key to improving rescue efficiency. However, EDPs are prone to being affected by random and uncertain loads during operation. To achieve intelligent and efficient rescue operations, a DHDS suitable for EDPs was proposed. Firstly, the configuration and operation mode of the DHDS for EDPs were analyzed. Based on this, a multi-field coupling dynamic simulation platform for the DHDS was constructed. Secondly, the output characteristics of the system under alternating loads were simulated and analyzed. Finally, a test platform for the EDP DHDS was established, and the dynamic characteristics of the system under alternating loads were explored. The results show that as the load torque of the alternating loads increases, the amplitude of the pressure of the motor also increases, the output flow of the hydraulic-controlled proportional reversing valve (HCPRV) changes slightly, and the fluctuation range of the rotational speed of the motor increases. The fluctuation range of the pressure and the rotational speed of the motor are basically not affected by the frequency of alternating loads, but the fluctuation amplitude of the output flow of the HCPRV reduces with the increase in the frequency of alternating loads. This system can respond to changes in load relatively quickly under alternating loads and can return to a stable state in a short time. It has laudable anti-interference ability and output stability. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

14 pages, 2394 KiB  
Article
Digital-Twin-Based Structural Health Monitoring of Dikes
by Marike Bornholdt, Martin Herbrand, Kay Smarsly and Gerhard Zehetmaier
CivilEng 2025, 6(3), 39; https://doi.org/10.3390/civileng6030039 - 18 Jul 2025
Viewed by 372
Abstract
Earthen flood protection structures are planned and constructed with an expected service life of several decades while being exposed to environmental impacts that may lead to structural or hydraulic failure. Current maintenance procedures involve only repairing external damage, leaving internal processes contributing to [...] Read more.
Earthen flood protection structures are planned and constructed with an expected service life of several decades while being exposed to environmental impacts that may lead to structural or hydraulic failure. Current maintenance procedures involve only repairing external damage, leaving internal processes contributing to structural damage often undetected. Through structural health monitoring (SHM), structural deficits can be detected before visible damage occurs. To improve maintenance workflows and support predictive maintenance of dikes, this paper reports on the integration of digital twin concepts with SHM strategies, referred to as “digital-twin-based SHM”. A digital twin concept, including a standard-compliant building information model, is proposed and implemented in terms of a digital twin environment. For integrating monitoring and sensor data into the digital twin environment, a customized webform is designed. A communication protocol links preprocessed sensor data stored on a server with the digital twin environment, enabling model-based visualization and contextualization of the sensor data. As will be shown in this paper, a digital twin environment is set up and managed in the context of SHM in compliance with technical standards and using well-established software tools. In conclusion, digital-twin-based SHM, as proposed in this paper, has proven to advance predictive maintenance of dikes, contributing to the resilience of critical infrastructure against environmental impacts. Full article
(This article belongs to the Section Water Resources and Coastal Engineering)
Show Figures

Figure 1

24 pages, 9520 KiB  
Article
An Integrated Assessment Approach for Underground Gas Storage in Multi-Layered Water-Bearing Gas Reservoirs
by Junyu You, Ziang He, Xiaoliang Huang, Ziyi Feng, Qiqi Wanyan, Songze Li and Hongcheng Xu
Sustainability 2025, 17(14), 6401; https://doi.org/10.3390/su17146401 - 12 Jul 2025
Viewed by 384
Abstract
In the global energy sector, water-bearing reservoir-typed gas storage accounts for about 30% of underground gas storage (UGS) reservoirs and is vital for natural gas storage, balancing gas consumption, and ensuring energy supply stability. However, when constructing the UGS in the M gas [...] Read more.
In the global energy sector, water-bearing reservoir-typed gas storage accounts for about 30% of underground gas storage (UGS) reservoirs and is vital for natural gas storage, balancing gas consumption, and ensuring energy supply stability. However, when constructing the UGS in the M gas reservoir, selecting suitable areas poses a challenge due to the complicated gas–water distribution in the multi-layered water-bearing gas reservoir with a long production history. To address this issue and enhance energy storage efficiency, this study presents an integrated geomechanical-hydraulic assessment framework for choosing optimal UGS construction horizons in multi-layered water-bearing gas reservoirs. The horizons and sub-layers of the gas reservoir have been quantitatively assessed to filter out the favorable areas, considering both aspects of geological characteristics and production dynamics. Geologically, caprock-sealing capacity was assessed via rock properties, Shale Gouge Ratio (SGR), and transect breakthrough pressure. Dynamically, water invasion characteristics and the water–gas distribution pattern were analyzed. Based on both geological and dynamic assessment results, the favorable layers for UGS construction were selected. Then, a compositional numerical model was established to digitally simulate and validate the feasibility of constructing and operating the M UGS in the target layers. The results indicated the following: (1) The selected area has an SGR greater than 50%, and the caprock has a continuous lateral distribution with a thickness range from 53 to 78 m and a permeability of less than 0.05 mD. Within the operational pressure ranging from 8 MPa to 12.8 MPa, the mechanical properties of the caprock shale had no obvious changes after 1000 fatigue cycles, which demonstrated the good sealing capacity of the caprock. (2) The main water-producing formations were identified, and the sub-layers with inactive edge water and low levels of water intrusion were selected. After the comprehensive analysis, the I-2 and I-6 sub-layer in the M 8 block and M 14 block were selected as the target layers. The numerical simulation results indicated an effective working gas volume of 263 million cubic meters, demonstrating the significant potential of these layers for UGS construction and their positive impact on energy storage capacity and supply stability. Full article
Show Figures

Figure 1

19 pages, 3492 KiB  
Article
Transforming Water Education Through Investment in Innovation: A Case Study on the Cost-Benefit of Virtual Reality in Water Education
by Aleksandar Djordjević, Milica Ćirić, Vuk Milošević, Dragan Radivojević, Edwin Zammit, Daren Scerri and Milan Gocić
Water 2025, 17(13), 1998; https://doi.org/10.3390/w17131998 - 3 Jul 2025
Viewed by 369
Abstract
This paper examines the relationship between investment in water education and economic performance, focusing on the context of widening countries (EU Member States and Associated Countries with lower research and innovation performance). Through time-series data and panel regression analysis, the study investigates whether [...] Read more.
This paper examines the relationship between investment in water education and economic performance, focusing on the context of widening countries (EU Member States and Associated Countries with lower research and innovation performance). Through time-series data and panel regression analysis, the study investigates whether increased spending on education correlates with Gross Domestic Product (GDP) growth. While the initial static model indicates a positive but statistically insignificant association, a dynamic model with lagged GDP significantly improves explanatory power, suggesting that educational investments may influence growth with a temporal delay. Complementing the macroeconomic data, the paper analyses how targeted investments in educational innovation, especially in digital technologies such as virtual reality (VR) applications, enhance teaching quality and student engagement. Examples from partner universities involved in the WATERLINE project (Horizon Europe, 101071306) show how custom-built VR modules, aligned with existing hydraulic labs, contribute to advanced water-related skills. The paper also presents a cost-benefit analysis of VR applications in water education, highlighting their economic efficiency compared to traditional laboratory equipment. Additionally, it explores how micro-level innovations in education can generate macroeconomic benefits through widespread adoption and systemic impact. Ultimately, the research highlights the long-term value of education and innovation in strengthening both economic and human capital across diverse regions. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

27 pages, 21889 KiB  
Article
Modulus of Elasticity and Mechanical Properties Assessment of Historical Masonry Elements After Elevated Temperature: Experimental Study and Numerical Analysis
by Ahmet Fazıl Kara, Ferit Cakir and Metehan Calis
Buildings 2025, 15(13), 2324; https://doi.org/10.3390/buildings15132324 - 2 Jul 2025
Viewed by 416
Abstract
Historical masonry structures deteriorate over time, requiring restoration and strengthening. Hydraulic lime-based mortars (HLMs), due to their compatibility with historical materials, are commonly used for this purpose. This study examines the fire resistance of masonry walls constructed with HLMs. Masonry prisms with clay [...] Read more.
Historical masonry structures deteriorate over time, requiring restoration and strengthening. Hydraulic lime-based mortars (HLMs), due to their compatibility with historical materials, are commonly used for this purpose. This study examines the fire resistance of masonry walls constructed with HLMs. Masonry prisms with clay bricks were prepared using HLMs in accordance with material testing standards. Specimens were subjected to high temperatures ranging from 200 °C to 800 °C, followed by flexural–compression tests for mortar and compression tests for masonry prisms. A total of 20 masonry prism specimens, 15 brick specimens, and 15 mortar specimens were tested, including reference specimens at room temperature. Experimental results indicate that masonry prisms, clay bricks, and HLMs progressively lose their mechanical properties as temperature increases. The elastic modulus of masonry prisms was evaluated according to relevant standards, and Finite Element Analysis (FEA) was conducted to validate temperature-dependent material properties. The stress–strain response of M15 HLM masonry prisms was determined, addressing the absence of such data in EN 1996-1-2. Additionally, compression test results were compared with digital image correlation (DIC) analyses to enhance measurement accuracy. This study provides critical insights into the thermal performance of masonry walls with HLMs, contributing to the development of fire-resistant restoration materials. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 2390 KiB  
Article
Surrogate Model of Hydraulic Actuator for Active Motion Compensation Hydraulic Crane
by Lin Xu, Hongyu Nie, Xiangyang Cheng, Qi Wei, Hongyu Chen and Jianfeng Tao
Electronics 2025, 14(13), 2678; https://doi.org/10.3390/electronics14132678 - 2 Jul 2025
Viewed by 303
Abstract
Offshore cranes equipped with active motion compensation (AMC) systems play a vital role in marine engineering tasks such as offshore wind turbine maintenance, subsea operations, and dynamic load positioning under wave-induced disturbances. These systems rely on complex hydraulic actuators whose strongly nonlinear dynamics—often [...] Read more.
Offshore cranes equipped with active motion compensation (AMC) systems play a vital role in marine engineering tasks such as offshore wind turbine maintenance, subsea operations, and dynamic load positioning under wave-induced disturbances. These systems rely on complex hydraulic actuators whose strongly nonlinear dynamics—often described by differential-algebraic equations (DAEs)—impose significant computational burdens, particularly in real-time applications like hardware-in-the-loop (HIL) simulation, digital twins, and model predictive control. To address this bottleneck, we propose a neural network-based surrogate model that approximates the actuator dynamics with high accuracy and low computational cost. By approximately reducing the original DAE model, we obtain a lower-dimensional ordinary differential equations (ODEs) representation, which serves as the foundation for training. The surrogate model includes three hidden layers, demonstrating strong fitting capabilities for the highly nonlinear characteristics of hydraulic systems. Bayesian regularization is adopted to train the surrogate model, effectively preventing overfitting. Simulation experiments verify that the surrogate model reduces the solving time by 95.33%, and the absolute pressure errors for chambers p1 and p2 are controlled within 0.1001 MPa and 0.0093 MPa, respectively. This efficient and scalable surrogate modeling framework possesses significant potential for integrating high-fidelity hydraulic actuator models into real-time digital and control systems for offshore applications. Full article
Show Figures

Figure 1

23 pages, 25599 KiB  
Article
Numerical Simulation and Risk Assessment of Debris Flows in Suyukou Gully, Eastern Helan Mountains, China
by Guorui Wang, Hui Wang, Zheng He, Shichang Gao, Gang Zhang, Zhiyong Hu, Xiaofeng He, Yongfeng Gong and Jinkai Yan
Sustainability 2025, 17(13), 5984; https://doi.org/10.3390/su17135984 - 29 Jun 2025
Viewed by 409
Abstract
Suyukou Gully, located on the eastern slope of the Helan Mountains in northwest China, is a typical debris-flow-prone catchment characterized by a steep terrain, fractured bedrock, and abundant loose colluvial material. The area is subject to intense short-duration convective rainfall events, which often [...] Read more.
Suyukou Gully, located on the eastern slope of the Helan Mountains in northwest China, is a typical debris-flow-prone catchment characterized by a steep terrain, fractured bedrock, and abundant loose colluvial material. The area is subject to intense short-duration convective rainfall events, which often trigger destructive debris flows that threaten the Suyukou Scenic Area. To investigate the dynamics and risks associated with such events, this study employed the FLO-2D two-dimensional numerical model to simulate debris flow propagation, deposition, and hazard distribution under four rainfall return periods (10-, 20-, 50-, and 100-year scenarios). The modeling framework integrated high-resolution digital elevation data (original 5 m DEM resampled to 20 m grid), land-use classification, rainfall design intensities derived from regional storm atlases, and detailed field-based sediment characterization. Rheological and hydraulic parameters, including Manning’s roughness coefficient, yield stress, dynamic viscosity, and volume concentration, were calibrated using post-event geomorphic surveys and empirical formulations. The model was validated against field-observed deposition limits and flow depths, achieving a spatial accuracy within 350 m. Results show that the debris flow mobility and hazard intensity increased significantly with rainfall magnitude. Under the 100-year scenario, the peak discharge reached 1195.88 m3/s, with a maximum flow depth of 20.15 m and velocities exceeding 8.85 m·s−1, while the runout distance surpassed 5.1 km. Hazard zoning based on the depth–velocity (H × V) product indicated that over 76% of the affected area falls within the high-hazard zone. A vulnerability assessment incorporated exposure factors such as tourism infrastructure and population density, and a matrix-based risk classification revealed that 2.4% of the area is classified as high-risk, while 74.3% lies within the moderate-risk category. This study also proposed mitigation strategies, including structural measures (e.g., check dams and channel straightening) and non-structural approaches (e.g., early warning systems and land-use regulation). Overall, the research demonstrates the effectiveness of physically based modeling combined with field observations and a GIS analysis in understanding debris flow hazards and supports informed risk management and disaster preparedness in mountainous tourist regions. Full article
Show Figures

Figure 1

26 pages, 9395 KiB  
Article
Study on Piping Layout Optimization for Chiller-Plant Rooms Using an Improved A* Algorithm and Building Information Modeling: A Case Study of a Shopping Mall in Qingdao
by Xiaoliang Ma, Hongshe Cui, Yan Zhang and Xinyao Wang
Buildings 2025, 15(13), 2275; https://doi.org/10.3390/buildings15132275 - 28 Jun 2025
Viewed by 255
Abstract
Heating, ventilation, and air-conditioning systems account for 40–60% of the energy consumed in commercial buildings, and much of this load originates from sub-optimal piping layouts in chiller-plant rooms. This study presents an automated routing framework that couples Building Information Modeling (BIM) with an [...] Read more.
Heating, ventilation, and air-conditioning systems account for 40–60% of the energy consumed in commercial buildings, and much of this load originates from sub-optimal piping layouts in chiller-plant rooms. This study presents an automated routing framework that couples Building Information Modeling (BIM) with an enhanced A* search to produce collision-free, low-resistance pipelines while simultaneously guiding component selection. The algorithm embeds protective buffer zones around equipment, reserves maintenance corridors through an attention-based cost term, and prioritizes 135° elbows to cut local losses. Generated paths are exported as Industry Foundation Classes (IFC) objects for validation in a BIM digital twin, where hydraulic feedback drives iterative reselection of high-efficiency devices—including magnetic-bearing chillers, cartridge filters and tilted-disc valves—until global pressure drop and life-cycle cost are minimized. In a full-scale shopping-mall retrofit, the method significantly reduces pipeline resistance and operating costs, confirming its effectiveness and replicability for sustainable chiller-plant design. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

20 pages, 5436 KiB  
Article
Hydrologic and Hydraulic Modeling for Flood Risk Assessment: A Case Study of Periyar River Basin, Kerala, India
by S. Renu, Beeram Satya Narayana Reddy, Sanjana Santhosh, Sreelekshmi, V. Lekshmi, S. K. Pramada and Venkataramana Sridhar
Climate 2025, 13(6), 129; https://doi.org/10.3390/cli13060129 - 18 Jun 2025
Viewed by 842
Abstract
Floods pose a substantial threat to both life and property, with their frequency and intensity escalating due to climate change. A comprehensive hydrological and hydraulic modeling approach is essential for understanding flood dynamics and developing effective future flood risk management strategies. The accuracy [...] Read more.
Floods pose a substantial threat to both life and property, with their frequency and intensity escalating due to climate change. A comprehensive hydrological and hydraulic modeling approach is essential for understanding flood dynamics and developing effective future flood risk management strategies. The accuracy of Digital Elevation Models (DEMs) directly impacts the reliability of hydrologic simulations. This study focuses on evaluating the efficacy of two DEMs in hydrological modeling, specifically investigating their potential for daily discharge simulation in the Periyar River Basin, Kerala, India. Recognizing the limitations of the Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) with the available dataset, a novel hybrid model was developed by integrating HEC-HMS outputs with an Artificial Neural Network (ANN). While precipitation, lagged precipitation, and lagged discharge served as inputs to the ANN, the hybrid model also incorporated HEC-HMS simulations as an additional input. The results demonstrated improved performance of the hybrid model in simulating daily discharge. The Hydrologic Engineering Center’s River Analysis System (HEC-RAS) was employed to predict flood inundation areas for both historical and future scenarios in the Aluva region of the Periyar River Basin, which was severely impacted during the 2018 Kerala floods. By integrating hydrological and hydraulic modeling approaches, this study aims to enhance flood prediction accuracy and contribute to the development of effective flood mitigation strategies. Full article
(This article belongs to the Special Issue Extreme Precipitation and Responses to Climate Change)
Show Figures

Figure 1

18 pages, 2517 KiB  
Article
Development of a Novel Digital Pressure Control Valve Applied to Emulsion Pump Station Control and Research on the Performance of Its Dynamic Characteristics
by Peng Xu, Ziming Kou and Jun Zhang
Actuators 2025, 14(6), 295; https://doi.org/10.3390/act14060295 - 17 Jun 2025
Viewed by 367
Abstract
To advance the construction of intelligent mining, electro-hydraulic digital control technology has emerged as a critical direction for the digital transformation of mining machinery. This study proposes a digital control scheme based on the pressure state of the system and the operating state [...] Read more.
To advance the construction of intelligent mining, electro-hydraulic digital control technology has emerged as a critical direction for the digital transformation of mining machinery. This study proposes a digital control scheme based on the pressure state of the system and the operating state of the actuator. The scheme utilises a novel convergence rate sliding film position control method to regulate the system pressure in real time by controlling the pilot valve, which is driven by a permanent magnet synchronous motor (PMSM). Moreover, a prototype of an incremental digital pressure control valve was developed for high-pressure, high water-based working conditions. A simulation model of the valve was established using AMESim/Simulink, and dynamic characteristics under various operating conditions were analyzed. The relative error between simulated and experimental pressure results remained within ±4.7%. Finally, a multi-parameter optimization was conducted using a genetic algorithm. The results demonstrate that the optimized digital pressure control valve achieved a stabilized inlet pressure within 44.8 ms, with a pressure overshoot of 4.1% and a response time of 20.1 ms, exhibiting excellent real-time dynamic pressure regulation capabilities. This study provides a theoretical foundation and practical reference for comprehensive research on pressure control in underground emulsion pump stations. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

14 pages, 9483 KiB  
Article
Optimizing an Urban Water Infrastructure Through a Smart Water Network Management System
by Evangelos Ntousakis, Konstantinos Loukakis, Evgenia Petrou, Dimitris Ipsakis and Spiros Papaefthimiou
Electronics 2025, 14(12), 2455; https://doi.org/10.3390/electronics14122455 - 17 Jun 2025
Viewed by 527
Abstract
Water, an essential asset for life and growth, is under growing pressure due to climate change, overpopulation, pollution, and industrialization. At the same time, water distribution within cities relies on piping networks that are over 30 years old and thereby prone to leaks, [...] Read more.
Water, an essential asset for life and growth, is under growing pressure due to climate change, overpopulation, pollution, and industrialization. At the same time, water distribution within cities relies on piping networks that are over 30 years old and thereby prone to leaks, cracking, and losses. Taking this into account, non-revenue water (i.e., water that is distributed to homes and facilities but not returning revenues) is estimated at almost 50%. To this end, intelligent water management via computational advanced tools is required in order to optimize water usage, to mitigate losses, and, more importantly, to ensure sustainability. To address this issue, a case study was developed in this paper, following a step-by-step methodology for the city of Heraklion, Greece, in order to introduce an intelligent water management system that integrates advanced technologies into the aging water distribution infrastructure. The first step involved the digitalization of the network’s spatial data using geographic information systems (GIS), aiming at enhancing the accuracy and accessibility of water asset mapping. This methodology allowed for the creation of a framework that formed a “digital twin”, facilitating real-time analysis and effective water management. Digital twins were developed upon real-time data, validated models, or a combination of the above in order to accurately capture, simulate, and predict the operation of the real system/process, such as water distribution networks. The next step involved the incorporation of a hydraulic simulation and modeling tool that was able to analyze and calculate accurate water flow parameters (e.g., velocity, flowrate), pressure distributions, and potential inefficiencies within the network (e.g., loss of mass balance in/out of the district metered areas). This combination provided a comprehensive overview of the water system’s functionality, fostering decision-making and operational adjustments. Lastly, automatic meter reading (AMR) devices could then provide real-time data on water consumption and pressure throughout the network. These smart water meters enabled continuous monitoring and recording of anomaly detections and allowed for enhanced control over water distribution. All of the above were implemented and depicted in a web-based environment that allows users to detect water meters, check water consumption within specific time-periods, and perform real-time simulations of the implemented water network. Full article
Show Figures

Figure 1

27 pages, 3064 KiB  
Review
Energy-Efficient Management of Urban Water Distribution Networks Under Hydraulic Anomalies: A Review of Technologies and Challenges
by Bowen Duan, Jinliang Gao, Huizhe Cao and Shiyuan Hu
Energies 2025, 18(11), 2877; https://doi.org/10.3390/en18112877 - 30 May 2025
Viewed by 512
Abstract
Urban water distribution systems face growing challenges from energy inefficiencies caused by hydraulic anomalies, such as pipe aging, bursts, demand variability, and suboptimal pump and valve operations. This review systematically evaluates current technologies for energy-efficient management of WDNs under such conditions, structured around [...] Read more.
Urban water distribution systems face growing challenges from energy inefficiencies caused by hydraulic anomalies, such as pipe aging, bursts, demand variability, and suboptimal pump and valve operations. This review systematically evaluates current technologies for energy-efficient management of WDNs under such conditions, structured around both basic and applied technologies. Basic technologies include real-time monitoring, data acquisition, and hydraulic modeling with CFD simulation. Applied technologies focus on demand forecasting, pressure management for energy optimization, and leakage anomaly detection. Case studies demonstrate the practical value of these approaches. Despite recent advances, challenges persist in data interoperability, real-time optimization complexity, scalability, and forecasting uncertainty. Future research should emphasize adaptive AI algorithms, integration of digital twin platforms with control systems, hybrid optimization frameworks, and renewable energy recovery technologies. This review provides a comprehensive foundation for the development of intelligent, energy-efficient, and resilient urban water distribution systems through integrated, data-driven management strategies. Full article
Show Figures

Figure 1

19 pages, 4233 KiB  
Article
A Modelling Framework for the Hydraulic Simulation of a Water Distribution System Under Data Scarcity: Application in the City of Farsala, Greece
by Pantelis Sidiropoulos, Achilleas Papadomanolakis, Aikaterini Lyra, Nikitas Mylopoulos and Lampros Vasiliades
Appl. Sci. 2025, 15(11), 6124; https://doi.org/10.3390/app15116124 - 29 May 2025
Viewed by 463
Abstract
Access to safe and reliable water is a fundamental requirement for sustainable urban development. However, water distribution systems (WDSs), particularly in small and aging municipalities, face persistent challenges, including infrastructure degradation, population growth, and limited operational data. This study presents a comprehensive hydraulic [...] Read more.
Access to safe and reliable water is a fundamental requirement for sustainable urban development. However, water distribution systems (WDSs), particularly in small and aging municipalities, face persistent challenges, including infrastructure degradation, population growth, and limited operational data. This study presents a comprehensive hydraulic modeling framework for the city of Farsala, Central Greece, an area characterized by significant data scarcity and outdated water network records. A novel methodology was developed that combines AutoCAD-based network digitization, GIS data integration, field surveys, and real-time SCADA telemetry to create a high-fidelity and operational hydraulic model using WaterGEMS software. The model was calibrated and validated using observed pressure and flow data, achieving high performance metrics, including a Nash–Sutcliffe efficiency (NSE) of 0.841 and R2 of 0.90. Extended period simulations (EPS) were conducted to evaluate system behavior over a 24 h cycle, revealing critical insights into pressure distribution, peak demand conditions, and leakage hotspots. The results demonstrate that even under constrained data conditions, it is possible to construct a robust and decision-supportive model, offering valuable guidance for future system upgrades, leakage control strategies, and smart infrastructure planning in similar urban environments. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

Back to TopTop