Leveraging Soil Geography for Land Use Planning: Assessing and Mapping Soil Ecosystem Services Indicators in Emilia-Romagna, NE Italy
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area: Geology, Pedolandscapes, Climate, and Land Use
2.2. Soil Data
2.3. Soil Functions and SES Assessment
2.4. Mapping Soil Properties and Ecosystem Services at Regional Scale
2.4.1. DSM of Soil Properties in the Emilia-Romagna Plain
2.4.2. DSM of Soil Properties in the Emilia-Romagna Apennines
3. Results and Discussion
3.1. Maps of Basic and Derived Soil Properties
3.2. Maps of Soil-Based Ecosystem Services at Regional Scale
3.2.1. Buffering Capacity (BUF)
3.2.2. Carbon Sequestration (CST)
3.2.3. Food Production (PRO)
3.2.4. Water Regulation (WAR)
3.2.5. Water Content at Field Capacity (WAS)
3.2.6. Biomass Provision (BIOMASS)
3.2.7. Habitat for Soil Organisms (BIO)
3.2.8. Erosion Control (ERSCRL)
3.3. Application of the SES Maps to Support Spatial Planning on a Local Scale
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BIO | Habitat for Biodiversity |
BIOMASS | Biomass production |
BUF | Buffering capacity |
CLC | CORINE Land Cover |
CST | Carbon sequestration |
DSM | Digital soil mapping |
ERSCRL | Erosion control |
LCC | Land Capability Class |
LULC | Land Use Land Cover class |
MLA | Machine Learning Algorithm |
NDVI | Normalized Difference Vegetation Index |
PRO | Food production |
PTF | Pedotransfer function |
PUG | General Urban Plan |
QBSar | Soil Biological Quality |
QRF | Quantile Random Forest |
RER | Regione Emilia-Romagna |
RUSLE | Revised Universal Soil Loss Equation |
SD | Standard deviation |
SES | Soil-based ecosystem service |
SGS | Sequeantial Gaussian Simulation |
SOM | Soil organic matter |
WAR | Water regulation |
WAS | Water storage |
References
- Baveye, P.C.; Baveye, J.; Gowdy, J. Soil “Ecosystem” Services and Natural Capital: Critical Appraisal of Research on Uncertain Ground. Front. Environ. Sci. 2016, 4, 41. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, M.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1987, 387, 253–260. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruel, J.; et al. The value of the world’s ecosystem services and natural capital 1. Ecol. Econ. 1998, 25, 3–15. [Google Scholar] [CrossRef]
- MEA. Millenium Ecosystem Assessment, Ecosystem and Human Well-Being: A framework for Assessment; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Klingebiel, A.A.; Montgomery, P.H. Land-capability classification. Soil Conservation Service. In Agriculture Handbook No. 210; USA Department of Agriculture: Washington, DC, USA, 1961. [Google Scholar]
- FAO. A Framework for Land Evaluation, Soils Bulletin 32; Food and Agricultural Organization of the United Nations: Rome, Italy, 1976. [Google Scholar]
- FAO. Report on the Agro-Ecological Zones project. Volume. 1, Methodology and Results for Africa. In FAO World Soil Resources Report 48/1–4; Food and Agricultural Organization of the United Nations: Rome, Italy, 1978. [Google Scholar]
- FAO. Report on the Agro-Ecological Zones project. Volume 2, Methodology and Results for Southwest Asia. In FAO World Soil Resources Report 48/1–4; Food and Agricultural Organization of the United Nations: Rome, Italy, 1979. [Google Scholar]
- FAO. Report on the Agro-Ecological Zones project. Volume 3, Methodology and Results for South and Central America. In FAO World Soil Resources Report 48/1–4; Food and Agricultural Organization of the United Nations: Rome, Italy, 1980. [Google Scholar]
- FAO. Report on the Agro-Ecological Zones project. Volume 4, Methodology and Results for Southeast Asia. In FAO World Soil Resources Report 48/1–4; Food and Agri-cultural Organization of the United Nations: Rome, Italy, 1981. [Google Scholar]
- Ernstson, H. The social production of ecosystem services: A framework for studying environmental justice and ecological complexity in urbanized landscapes. Landsc. Urban Plan. 2013, 109, 7–17. [Google Scholar] [CrossRef]
- Adams, V.M.; Pressey, R.L.; Stoeckl, N. Navigating trade-offs in land-use planning: Integrating human well-being into objective setting. Ecol. Soc. 2014, 19, 53. [Google Scholar] [CrossRef]
- Almagro, M.; de Vente, J.; Boix-Fayos, C.; García-Franco, N.; de Melgares Aguilar, J.; González, D.; Solé-Benet, A.; Martínez-Mena, M. Sustainable land management practices as providers of several ecosystem services under rainfed Mediterranean agroecosystems. Mitig. Adapt. Strateg. Glob. Change 2016, 21, 1029–1043. [Google Scholar] [CrossRef]
- Forouzangohar, M.; Crossman, N.D.; MacEwan, R.J.; Wallace, D.D.; Bennett, L.T. Ecosystem Services in Agricultural Landscapes: A Spatially Explicit Approach to Support Sustainable Soil Management. Sci. World J. 2014, 2014, 483298. [Google Scholar] [CrossRef]
- Dominati, E.; Mackay, A.; Green, S.; Patterson, M. A soil change-based methodology for the quantification and valuation of ecosystem services from agro-ecosystems: A case study of pastoral agriculture in New Zealand. Ecol. Econ. 2014, 100, 119–129. [Google Scholar] [CrossRef]
- Drobnik, T.; Greiner, L.; Keller, A.; Grêt-Regamey, A. Soil quality indicators—From soil functions to ecosystem services. Ecol. Indic. 2018, 94, 151–169. [Google Scholar] [CrossRef]
- Fossey, M.; Angers, D.; Bustany, C.; Cudennec, C.; Durand, P.; Gascuel-Odoux, C.; Jaffrezic, A.; Pérès, G.; Besse, C.; Walter, C. A Framework to Consider Soil Ecosystem Services in Territorial Planning. Front. Environ. Sci. 2020, 8, 28. [Google Scholar] [CrossRef]
- Scammacca, O.; Montagne, D.; Asins-Velis, S.; Bondi, G.; Borůvka, L.; Buttafuoco, G.; Cadero, A.; Calzolari, C.; Cousin, I.; Czuba, M.; et al. Assessing and mapping changes in soil ecosystem services and soil threats in agroecosystems through scenario-based approaches—A systematic review. Sci. Total Environ. 2025, 966, 178646. [Google Scholar] [CrossRef] [PubMed]
- Medina-Roldán, E.; Lorenzetti, R.; Calzolari, C.; Ungaro, F. Disentangling soil-based ecosystem services synergies, trade-offs, multifunctionality, and bundles: A case study at regional scale (NE Italy) to support environmental planning. Geoderma 2024, 448, 116962. [Google Scholar] [CrossRef]
- Kiessé, T.S.; Lemercier, B.; Corson, M.S.; Ellili-Bargaoui, Y.; Afassi, J.; Walter, C. Assessing dependence between soil ecosystem services as a function of weather and soil: Application of vine copula modelling. Environ. Model. Softw. 2024, 172, 105920. [Google Scholar] [CrossRef]
- Logsdon, R.A.; Chaubey, I. A quantitative approach to evaluating ecosystem services. Ecol. Model. 2013, 257, 57–65. [Google Scholar] [CrossRef]
- Shoyama, K.; Kamiyama, C.; Morimoto, J.; Ooba, M.; Okuro, T. A review of modelling approaches for ecosystem services assessment in the Asian region. Ecosyst. Serv. 2017, 26, 316–328. [Google Scholar] [CrossRef]
- Pulleman, M.; Creamer, R.; Hamer, U.; Helder, J.; Pelosi, C.; Pérès, G.; Rutgers, M. Soil biodiversity; biological indicators and soil ecosystem services—An overview of European approaches. Curr. Opin. Environ. Sustain. 2012, 4, 529–538. [Google Scholar] [CrossRef]
- Calzolari, C.; Ungaro, F.; Filippi, N.; Guermandi, M.; Malucelli, F.; Marchi, N.; Staffilani, F.; Tarocco, P. A methodological framework to assess the multiplicity of ecosystem services of soils at regional scale. Geoderma 2016, 261, 190–203. [Google Scholar] [CrossRef]
- de Paul Obade, V.; Lal, R. Towards a standard technique for soil quality assessment. Geoderma 2016, 265, 96–102. [Google Scholar] [CrossRef]
- del Río-Mena, T.; Willemen, L.; Tesfamariam, G.T.; Beukes, O.; Nelson, A. Remote sensing for mapping ecosystem services to support evaluation of ecological restoration interventions in an arid landscape. Ecol. Indic. 2020, 113, 106182. [Google Scholar] [CrossRef]
- Anayu, Y.Z.; Conrad, C.; Nauss, T.; Wegmann, M.; Koellner, T. Quantifying and mapping ecosystem services supplies and demands: A review of remote sensing applications. Environ. Sci. Technol. 2012, 46, 8529–8541. [Google Scholar] [CrossRef]
- Chen, N.; Li, H.; Wang, L. A GIS-based approach for mapping direct use value of ecosystem services at a county scale: Management implications. Ecol. Econ. 2009, 68, 2768–2776. [Google Scholar] [CrossRef]
- Schwartz, C.; Klebl, F.; Ungaro, F.; Bellingrath-Kimura, S.D.; Piorr, A. Comparing participatory mapping and a spatial biophysical assessment of ecosystem service cold spots in agricultural landscapes. Ecol. Indic. 2022, 145, 109700. [Google Scholar] [CrossRef]
- García-Nieto, A.P.; Quintas-Soriano, C.; García-Llorente, M.; Palomo, I.; Montes, C.; Martín-López, B. Collaborative mapping of ecosystem services: The role of stakeholders׳ profiles. Ecosyst. Serv. 2015, 13, 141–152. [Google Scholar] [CrossRef]
- Barraclough, A.D.; Cusens, J.; Måren, I.E. Mapping stakeholder networks for the co-production of multiple ecosystem services: A novel mixed-methods approach. Ecosyst. Serv. 2022, 56, 101461. [Google Scholar] [CrossRef]
- Förster, J.; Barkmann, J.; Fricke, R.; Hotes, S.; Kleyer, M.; Kobbe, S.; Kübler, D.; Rumbaur, C.; Siegmund-Schultze, M.; Seppelt, R.; et al. Assessing ecosystem services for informing land-use decisions: A problem-oriented approach. Ecol. Soc. 2015, 20, 31. [Google Scholar] [CrossRef]
- Burkhard, B.; Santos-Martin, F.; Nedkov, S.; Maes, J. An operational framework for integrated Mapping and Assessment of Ecosystems and their Services (MAES). One Ecosyst. 2018, 3, e22831. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Semmens, D.J.; Waage, S.; Winthrop, R. A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosyst. Serv. 2013, 5, 27–39. [Google Scholar] [CrossRef]
- Villa, F. Bridging Scales and Paradigms in Natural Systems Modeling. In Metadata and Semantic Research. MTSR 2010; Communications in Computer and Information Science; Sánchez-Alonso, S., Athanasiadis, I.N., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 108. [Google Scholar] [CrossRef]
- Villa, F.; Bagstad, K.J.; Voigt, B.; Johnson, G.W.; Portela, R.; Honzák, M.; Batker, D. A Methodology for Adaptable and Robust Ecosystem Services Assessment. PLoS ONE 2014, 9, e91001. [Google Scholar] [CrossRef] [PubMed]
- Natural Capital Project. Database of Publications Using InVEST and Other Natural Capital Project Software, Stanford Digital Repository. Available online: https://purl.stanford.edu/bb284rg5424 (accessed on 23 April 2025).
- Jackson, B.; Pagella, T.; Sinclair, F.; Orellana, B.; Henshaw, A.; Reynolds, B.; Mcintyre, N.; Wheater, H.; Eycott, A. Polyscape: A GIS mapping framework providing efficient and spatially explicit landscape-scale valuation of multiple ecosystem services. Landsc. Urban Plan. 2013, 112, 74–88. [Google Scholar] [CrossRef]
- Sharps, K.; Masante, D.; Thomas, A.; Jackson, B.; Redhead, J.; May, L.; Prosser, H.; Cosby, B.; Emmett, B.; Jones, L. Comparing strengths and weaknesses of three ecosystem services modelling tools in a diverse UK river catchment. Sci. Total Environ. 2017, 584, 118–130. [Google Scholar] [CrossRef]
- Peh, K.S.-H.; Balmford, A.; Bradbury, R.B.; Brown, C.; Butchart, S.H.M.; Hughes, F.M.R.; Stattersfield, A.; Thomas, D.H.L.; Walpole, M.; Bayliss, J.; et al. TESSA: A toolkit for rapid assessment of ecosystem services at sites of biodiversity conservation importance. Ecosyst. Serv. 2013, 5, 51–57. [Google Scholar] [CrossRef]
- Sherrouse, B.C.; Semmens, D.J.; Ancona, Z.H. Social Values for Ecosystem Services (SolVES): Open-source spatial modelling of cultural services. Environ. Model. Softw. 2022, 148, 022. [Google Scholar] [CrossRef]
- Poggio, L.; de Sousa, L.M.; Batjes, N.H.; Heuvelink, G.B.M.; Kempen, B.; Ribeiro, E.; Rossiter, D. SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. Soil 2021, 7, 217–240. [Google Scholar] [CrossRef]
- Pahlavan-Rad, M.R.; Khormali, F.; Toomanian, N.; Brungard, C.W.; Kiani, F.; Komaki, C.B.; Bogaert, P. Legacy soil maps as a covariate in digital soil mapping: A case study from Northern Iran. Geoderma 2016, 279, 141–148. [Google Scholar] [CrossRef]
- Suleymanov, A.; Richer-de-Forges, A.C.; Saby, N.P.A.; Arrouays, D.; Martin, M.P.; Bispo, A. National-scale digital soil mapping performances are related to covariates and sampling density: Lessons from France. Geoderma Reg. 2024, 37, e00801. [Google Scholar] [CrossRef]
- Destika Cahyana, D.; Sulaeman, Y.; Darmawan, B.B.; Mulyanto, B. Improving digital soil mapping in Bogor, Indonesia using parent material information. Geoderma Reg. 2023, 33, e00627. [Google Scholar] [CrossRef]
- Liu, T.L.; Juang, K.W.; Lee, D.Y. Interpolating Soil Properties Using Kriging Combined with Categorical Information of Soil Maps. Soil Sci. Soc. Am. J. 2006, 70, 1200–1209. [Google Scholar] [CrossRef]
- Hengl, T.; Toomanian, N.; Reuter, H.I.; Malakouti, M.J. Methods to interpolate soil categorical variables from profile observations: Lessons from Iran. Geoderma 2007, 140, 417–427. [Google Scholar] [CrossRef]
- Ungaro, F.; Staffilani, F.; Tarocco, P. 2010. Assessing and mapping topsoil organic carbon stock at regional scale: A scorpan kriging approach conditional on soil map delineation and land use. Land Degrad. Dev. 2010, 21, 565–581. [Google Scholar] [CrossRef]
- Calzolari, C.; Ungaro, F.; Maienza, A.; Marchi, N.; Tarocco, P. Guidelines for Assessing Soil Ecosystem Services in Urban Environment and Their Management—LIFE15 ENV/IT/000225 Guidelines Action B1.3; European Commission: CORDIS, Belgium, 2018. [CrossRef]
- Antolini, G.; Pavan, V.; Tomozeiu, R.; Marletto, V. Atlante Idroclimatico dell’Emilia-Romagna 1961–2015; Arpae: Bologna, Italy, 2017; ISBN 978-88-87854-44-2. [Google Scholar]
- Regione Emilia-Romagna. Carta Dei Suoli Della Regione Emilia-Romagna in Scala 1: 50.000. Edizione 2021. Available online: https://geo.regione.emilia-romagna.it/gstatico/documenti/dati_pedol/carta_suoli_50k.pdf (accessed on 22 May 2025).
- Regione Emilia-Romagna. Carta Della Capacità D’uso Dei Suoli Ai Fini Agricoli E Forestali Della Regione Emilia-Romagna. 2021. Available online: https://geo.regione.emilia-romagna.it/gstatico/documenti/dati_pedol/CAPACITA_USO.pdf (accessed on 22 May 2025).
- Staffilani, F. Carta Dell’erosione Idrica Attuale Della Regione Emilia-Romagna. Note Illustrative, Edizione 2019. Available online: https://mappegis.regione.emilia-romagna.it/gstatico/documenti/dati_pedol/NOTE_ILLUSTRATIVE_EROSIONE.pdf (accessed on 22 May 2025).
- Calzolari, C.; Ungaro, F. Predicting shallow water table depth at regional scale from rainfall and soil data. J. Hydrol. 2012, 414–415, 374–387. [Google Scholar] [CrossRef]
- MEA. Millennium Ecosystem Assessment: Ecosystems and Human Well-Being 5; Island Press: Washington, DC, USA, 2005; Available online: https://www.millenniumassessment.org/documents/document.356.aspx.pdf (accessed on 22 May 2025).
- Haines-Young, R.; Potschin, M.B. Common International Classification of Ecosystem Services (CICES), V5.1 and Guidance on the Application of the Revised Structure; Fabis Consulting: Barton, UK, 2018; Available online: https://cices.eu/content/uploads/sites/8/2018/01/Guidance-V51-01012018.pdf (accessed on 22 May 2025).
- Dominati, E.; Patterson, M.; Mackay, A. A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol. Econ. 2010, 69, 1858–1868. [Google Scholar] [CrossRef]
- Ungaro, F.; Calzolari, C. Carta Dei Servizi Ecosistemici Dei Suoli Della Regione Emilia-Romagna Scala 1:50.000, Note Illustrative 2023, 2nd ed.; Regione Emilia-Romagna, Direzione Generale cura del Territorio e Dell’ambiente, Area Geologia, Suoli e Sismica: Emilia-Romagna, Italy, 2023. [Google Scholar] [CrossRef]
- Menta, C.; Conti, F.D.; Pinto, S.; Bodini, A. Soil Biological Quality index (QBS-ar): 15 years of application at global scale. Ecol. Indic. 2018, 85, 773–780. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Ungaro, F.; Calzolari, C.; Busoni, E. Development of pedotransfer functions using a group method of data handling for the soil of the Pianura Padano-Veneta region of North Italy: Water retention properties. Geoderma 2005, 124, 293–317. [Google Scholar] [CrossRef]
- Ungaro, F.; Calzolari, C.; Pistocchi, A.; Malucelli, F. Modelling the impact of increasing soil sealing on runoff coefficients at regional scale: A hydropedological approach. J. Hydrol. Hydromech. 2014, 62, 33–42. [Google Scholar] [CrossRef]
- Tarocco, P.; Calzolari, C.; Ungaro, F. Siti Locali Rappresentativi Dei Suoli Della Pianura E Della Collina Emiliano-Romagnola, Note Illustrative; Regione Emilia-Romagna, Direzione Generale cura del Territorio e Dell’Ambiente, Area Geologia, Suoli E Sismica: Emilia-Romagna, Italy, 2021; Available online: https://mappegis.regione.emilia-romagna.it/gstatico/documenti/dati_pedol/SITI_BENCHMARK_RER.pdf (accessed on 15 July 2025).
- Wu, J.; Feng, Z.; Gao, Y.; Peng, J. Hotspot and relationship identification in multiple landscape services: A case study on an area with intensive human activities. Ecol. Indic. 2013, 29, 529–537. [Google Scholar] [CrossRef]
- McBratney, A.B.; Mendonça Santos, M.L.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Statios, 2000. WinGslib Version 1.3. Statios Software and Services, San Francisco, CA. Available online: http://www.statios.com/Quick/gslib.html (accessed on 20 July 2025).
- Deutsch, C.V.; Journel, A.G. GSLIB, Geostatistical Software Library and User’s Guide, 2nd ed.; Oxford University press: New York, NY, USA, 1998; p. 369. [Google Scholar]
- Pebesma, E.J. Multivariable geostatistics in S: The gstat package. Comput. Geosci. 2004, 30, 683–691. [Google Scholar] [CrossRef]
- Gräler, B.; Pebesma, E.; Heuvelink, G. Spatio-Temporal Interpolation using gstat. R J. 2016, 8, 204–218. Available online: https://journal.r-project.org/archive/2016/RJ-2016-014/index.html (accessed on 20 July 2025). [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Cpmputing. R Foudation for Statistical Computing, Vuennam Austria. 2024. Available online: https://www.R-project.org/ (accessed on 29 May 2025).
- Omuto, C.T.; Vargas, R.R.; El Mobarak, A.M.; Mohamed, N.; Viatkin, K.; Yigini, Y. Mapping of Salt-Affected Soils: Technical Manual; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by Randomforest. R News 2002, 2, 18–22. Available online: https://cran.r-project.org/doc/Rnews/Rnews_2002-3.pdf (accessed on 20 July 2025).
- Meinshausen, N.; Michel, L. Quantile Regression Forests. Package ‘Quantregforest’ Version 1.3-7.1. 2024. Available online: https://github.com/lorismichel/quantregForest (accessed on 29 May 2025).
- Willmott, C.J. On the Evaluation of Model Performance in Physical Geography. In Spatial Statistics and Models. Theory and Decision Library; Gaile, G.L., Willmott, C.J., Eds.; Springer: Dordrecht, The Netherlands, 1984; Volume 40. [Google Scholar] [CrossRef]
- Kirkham, M.B. (Ed.) Chapter 10—Field Capacity, Wilting Point, Available Water, and the Nonlimiting Water Range. In Principles of Soil and Plant Water Relations, 2nd ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 153–170. [Google Scholar] [CrossRef]
- Science for Environment Policy. No Net Land Take by 2050? Future Brief 14, 2016; Produced for the European Commission DG Environment by the Science Communication Unit; UWE: Bristol, UK, 2016. Available online: https://op.europa.eu/en/publication-detail/-/publication/f1ca6673-23cd-11e6-86d0-01aa75ed71a1/language-en (accessed on 17 June 2025).
- Hamel, P.; Benjamin, P.; Bryant, B.P. Uncertainty assessment in ecosystem services analyses: Seven challenges and practical responses. Ecosyst. Serv. 2017, 24, 1–15. [Google Scholar] [CrossRef]
- Walther, F.; Barton, D.N.; Schwaab, J.; Kato-Huerta, J.; Immerzeel, B.; Adamescu, M.; Andersen, E.; Coyote, M.V.A.; Arany, I.; Balzan, M.; et al. Uncertainties in ecosystem services assessments and their implications for decision support—A semi-systematic literature review. Ecosyst. Serv. 2025, 73, 101714. [Google Scholar] [CrossRef]
- Barton, D.N.; Immerzeel, B.; Brander, L.; Grêt-Regamey, A.; Kato Huerta, J.; Kretsch, C.; Le Clech, S.; Rendón, P.; Seguin, J.; Arámbula Coyote, M.; et al. Increasing uptake of ecosystem service assessments: Best practice checklists for practitioners in Europe. One Ecosyst. 2024, 9, e120449. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Halpern, B.S.; Longo, C.; Hardy, D.; McLeod, K.L.; Samhouri, J.F.; Katona, S.K.; Kleisner, K.; Lester, S.E.; O’Leary, J.; Ranelletti, M.; et al. An index to assess the health and benefits of the global ocean. Nature 2012, 488, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Block, S.; Emerson, J.W.; Esty, D.C.; de Sherbinin, A.; Wendling, Z.A. Yale Center for Environmental Law & Policy; Environmental Performance Index: New Haven, CT, USA, 2024; epi.yale.edu. [Google Scholar]
Area | Variable | Num | Mean | Std.Dev. | Min. | P10 | Q25 | Median | Q75 | P90 | Max |
---|---|---|---|---|---|---|---|---|---|---|---|
Plain | Sand % | 32,498 | 21.67 | 15.27 | 0.00 | 6.00 | 11.00 | 19.00 | 28.45 | 40.00 | 97.83 |
Silt % | 32,498 | 46.54 | 12.30 | 0.00 | 32.00 | 40.50 | 48.00 | 54.00 | 60.00 | 88.48 | |
Clay % | 32,498 | 30.67 | 12.16 | 0.00 | 16.78 | 22.00 | 30.00 | 38.00 | 46.98 | 81.32 | |
Coarse fragments % | 32,808 | 0.26 | 1.75 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 60.00 | |
C org. % | 18,330 | 1.44 | 1.48 | 0.00 | 0.75 | 0.93 | 1.18 | 1.51 | 1.97 | 28.94 | |
pH | 30,981 | 7.80 | 0.47 | 4.03 | 7.30 | 7.70 | 7.90 | 8.10 | 8.20 | 9.60 | |
Hills and mountains | Sand % | 9193 | 25.91 | 14.42 | 0.10 | 9.00 | 15.00 | 24.00 | 34.00 | 46.00 | 89.90 |
Silt % | 9193 | 43.29 | 10.27 | 0.10 | 30.00 | 37.00 | 44.00 | 50.00 | 55.80 | 85.40 | |
Clay % | 9193 | 30.78 | 10.66 | 0.10 | 17.00 | 24.00 | 31.00 | 38.00 | 44.00 | 72.30 | |
Coarse fragments % | 9048 | 5.14 | 8.06 | 0.03 | 0.03 | 0.03 | 0.03 | 8.50 | 15.30 | 65.00 | |
C org. % | 9048 | 1.26 | 0.99 | 0.05 | 0.56 | 0.75 | 1.04 | 1.51 | 2.03 | 32.98 | |
pH | 8467 | 7.72 | 0.67 | 3.63 | 7.00 | 7.60 | 7.80 | 8.00 | 8.20 | 9.90 | |
Whole region | QBS-ar | 330 | 133.8 | 44.8 | 33.0 | 76.0 | 97.0 | 133.0 | 168.0 | 193.0 | 251.0 |
Soil | Sand% | Silt% | Clay% | ||||||
provinces | Num | Means | Std.Dev. | Num | Means | Std.Dev. | Num | Means | Std.Dev. |
A1 | 684 | 62.35 | 30.81 | 684 | 22.52 | 19.41 | 684 | 15.13 | 13.14 |
A2 | 782 | 24.21 | 17.20 | 782 | 40.71 | 10.87 | 782 | 35.08 | 14.41 |
A3 | 1754 | 23.42 | 13.63 | 1754 | 47.04 | 9.13 | 1754 | 29.55 | 11.17 |
A4 | 1198 | 28.02 | 18.69 | 1198 | 48.16 | 13.43 | 1198 | 23.82 | 10.68 |
A5 | 4307 | 12.70 | 9.39 | 4307 | 42.60 | 9.40 | 4307 | 44.70 | 11.18 |
A6 | 13,008 | 22.48 | 14.32 | 13,008 | 48.83 | 10.09 | 13,008 | 28.69 | 10.15 |
A7 | 3921 | 24.11 | 12.24 | 3921 | 47.62 | 9.41 | 3921 | 28.33 | 8.46 |
A8 | 4395 | 20.04 | 10.39 | 4395 | 46.96 | 9.19 | 4395 | 33.36 | 8.45 |
A9 | 594 | 22.17 | 8.80 | 594 | 48.59 | 8.81 | 594 | 29.24 | 7.01 |
A10 | 1856 | 19.03 | 10.05 | 1856 | 55.00 | 12.93 | 1856 | 26.18 | 9.67 |
Soil | Coarse fragments % | C org. % | pH | ||||||
provinces | Num | Means | Std.Dev. | Num | Mean | Stdev | Num | Means | Std.Dev. |
A1 | 737 | 0.07 | 0.88 | 560 | 1.39 | 1.11 | 723 | 7.89 | 0.37 |
A2 | 798 | 0.00 | 0.00 | 727 | 5.88 | 5.24 | 799 | 7.26 | 0.93 |
A3 | 1766 | 0.00 | 0.00 | 1679 | 1.26 | 0.67 | 1847 | 7.92 | 0.27 |
A4 | 1204 | 0.13 | 1.94 | 629 | 1.08 | 0.41 | 1208 | 7.84 | 0.33 |
A5 | 4352 | 0.01 | 0.40 | 2418 | 1.46 | 0.64 | 3924 | 7.90 | 0.32 |
A6 | 13,019 | 0.02 | 0.51 | 6873 | 1.19 | 0.42 | 11,898 | 7.96 | 0.23 |
A7 | 3927 | 0.86 | 2.92 | 1983 | 1.25 | 0.48 | 3741 | 7.82 | 0.37 |
A8 | 4495 | 0.43 | 2.38 | 2267 | 1.33 | 0.54 | 4331 | 7.71 | 0.45 |
A9 | 626 | 3.61 | 5.58 | 318 | 1.53 | 0.63 | 604 | 7.32 | 0.51 |
A10 | 1884 | 0.36 | 1.68 | 875 | 1.10 | 0.49 | 1906 | 7.01 | 0.72 |
Soil | Sand% | Silt% | Clay% | ||||||
provinces | Num | Means | Std.Dev. | Num | Means | Std.Dev. | Num | Means | Std.Dev. |
B1 | 2283 | 20.50 | 13.69 | 2283 | 45.28 | 9.82 | 2283 | 34.14 | 8.44 |
B2 | 2072 | 20.78 | 12.37 | 2072 | 40.85 | 10.89 | 2072 | 38.14 | 9.57 |
B3 | 345 | 25.17 | 14.33 | 345 | 46.26 | 10.97 | 345 | 27.89 | 8.17 |
B4 | 1435 | 31.59 | 13.79 | 1435 | 45.11 | 9.94 | 1435 | 23.00 | 8.08 |
C1 | 1219 | 25.88 | 10.21 | 1219 | 43.35 | 9.06 | 1219 | 30.20 | 9.29 |
C2 | 881 | 27.85 | 10.54 | 881 | 42.00 | 8.97 | 881 | 29.31 | 8.42 |
C3 | 594 | 34.45 | 14.58 | 594 | 42.20 | 9.73 | 594 | 24.16 | 9.11 |
C4 | 6 | 38.32 | 18.33 | 6 | 36.50 | 4.81 | 6 | 23.65 | 12.77 |
C5 | 39 | 35.77 | 12.17 | 39 | 41.56 | 8.54 | 39 | 22.63 | 9.19 |
D1 | 186 | 49.04 | 16.12 | 186 | 36.86 | 11.01 | 186 | 16.80 | 9.83 |
D2 | 104 | 29.24 | 15.06 | 104 | 45.95 | 9.74 | 104 | 24.21 | 9.35 |
D3 | 31 | 49.94 | 15.74 | 31 | 37.15 | 11.07 | 31 | 12.18 | 6.19 |
Soil | Coarse fragments % | C org. % | pH | ||||||
provinces | Num | Means | Std.Dev. | Num | Mean | Stdev | Num | Means | Std.Dev. |
B1 | 2236 | 0.49 | 2.29 | 1992 | 0.90 | 0.47 | 2174 | 7.90 | 0.49 |
B2 | 1711 | 3.41 | 4.47 | 2083 | 1.22 | 0.61 | 1649 | 7.86 | 0.33 |
B3 | 546 | 1.20 | 3.56 | 341 | 1.26 | 0.85 | 539 | 7.88 | 0.31 |
B4 | 1389 | 0.64 | 1.58 | 1435 | 0.73 | 0.33 | 1061 | 8.05 | 0.25 |
C1 | 1061 | 15.90 | 8.03 | 1215 | 1.68 | 0.75 | 1063 | 7.65 | 0.46 |
C2 | 1019 | 8.55 | 8.70 | 898 | 1.38 | 0.54 | 1003 | 7.70 | 0.53 |
C3 | 587 | 7.46 | 8.99 | 633 | 1.48 | 0.61 | 529 | 7.17 | 0.90 |
C4 | 5 | 6.27 | 4.13 | 6 | 2.20 | 1.21 | 5 | 7.00 | 0.84 |
C5 | 65 | 21.66 | 4.39 | 38 | 1.97 | 0.81 | 66 | 7.17 | 0.52 |
D1 | 258 | 11.62 | 12.61 | 272 | 3.64 | 2.95 | 204 | 5.51 | 1.05 |
D2 | 140 | 14.00 | 8.45 | 104 | 2.57 | 1.34 | 141 | 6.47 | 1.08 |
D3 | 31 | 21.08 | 13.72 | 31 | 3.50 | 1.87 | 31 | 6.59 | 0.44 |
Ecosystem Service a | CICES Code 5.1 b | Soil Contribution to ES c | Soil Function | Indicator | Input Data for Calculation | Code |
---|---|---|---|---|---|---|
Supporting | 2.2.2.3 | Habitat for soil organisms | Biodiversity pool | Potential habitat for soil organisms | Index QBS-ar Covariates DSM | BIO |
Provisioning | 1.1.1.x 1.1.5.x | Biomass supply (potential) | Biomass production | NDVI average 2016–2020 | NDVI (Landsat 8) | BIOMASS |
Regulating | 2.2.1.1 2.3.3.2 | Buffering capacity for nutrients and pollutants: natural attenuation (potential) | Storing, filtering, transforming nutrients, and substances | Cation exchange capacity (CEC) Soil reaction Rooting depth | C org % Clay % pH Coarse fraction % | BUF |
Regulating | 2.1.1.2 2.3.3.2 | Carbon sequestration (potential) | Carbon pool | Carbon sequestration actual | C org % Bulk density | CST |
Regulating | 2.2.1.1 2.2.1.3 | Erosion control decreasing surface runoff | Vegetation support | Difference between potential and actual soil erosion | RUSLE factors | ERSCRL |
Provisioning | 1.1.1.1 | Food provision (potential) | Biomass production | Land capability (LC) map | LC classes and integrades | PRO |
Regulating | 2.2.1.3 | Water regulation: runoff, flood control (potential) | Storing filtering and transforming nutrients, substances and water | Infiltration capacity | Ksat (mm/h) Psie (cm) | WAR |
Regulating (Provisioning) | 2.2.1.3 (4.2.2.2) | Water regulation: water storage (potential) | Storing filtering and transforming nutrients, substances and water | Water content at field capacity Presence of water table | Field capacity (−33 kPa) | WAS |
SES Code | Input Data | Calculation |
---|---|---|
BIO | Soil Biological Quality index, QBSar [56] Covariate for Digital Soil Mapping (see Table 4) | Spatialization of QBSar point data values via DSM (Quantile Random Forest) |
BIOMASS | NDVI (Normaized Difference Vegetation Index) | Interval normalization (0–1) NDVI (average median values 2015–2020) |
BUF | CEC (cmolc/kg) depending on OC (%) and clay (%) CEC = 6.332 + 0.404 clay + 1.690 OC (R2 = 0.75) pH Coarse fragments content, sk (%) Average depth of shallow water table, WT (cm) | BUF0–1 = log CEC (pH; sk)0–1 with pH < 6.5 reduction by 0.25 or 0.5 depending on CEC and by 0.25 for sk > 30% Water Table (WT) depth < 30 cm BUF0–1 = log CSC (pH; sk)0–1 × WT/30 |
CST | Organic carbon, OC (%) Bulk density, BD (Mg m−3) | CST0–1 = log [OC × BD × (1−sk)]0–1 |
ERSCRL | RUSLE factors R, K, LS, C | ERSCRL0–1 = {log [(R × K × LS)−(R × K × LS × C)]}0–1 |
PRO | Land capability (LC) classes and intergrades [39] | LC reclassification (0–1) |
WAR | Saturated hydraulic conductivity, Ksat (mmh−1) Air entry potential, PSIe (cm) | WAR0–1 = logKsat0–1 − PSIe0–1 |
WAS | Water content at field capacity (−33 kPa), WCFC (vol/vol) Average depth of water table, WT (cm) sk, coarse fragments (Ø > 2 mm, vol/vol) | WAS0–1 = (WCFC × 1−sk)0–1 if WT > 30 cm, and WAS0–1 = (WCFC × 1−sk) 0–1 × WT/30 if WT < 30 cm |
Covariates | Description | SCORPAN Factor | Ref. Year | Layer Type | Variable Type | Spatial Resolution | Units |
---|---|---|---|---|---|---|---|
aspect | Aspect from DEM | R | 2016 | Raster | Cat. | 10 m | ° |
Soil_L2 | Soil province (pedolandscapes) | C+O+R+P | 2021 | Vector | Cat. | 1 Mk | class |
erosion | RUSLE map | S+R+C+O | 2019 | Raster | Num. | 20 m | Mg/ha/yr |
mwmtemp | July mean temperature | C | 1970–2000 | Raster | Num. | 100 m | °C |
land use | Land use map | O | 2020 | Vector | Cat. | 10 k | class |
evi | Enhanced Vegetation Index | O | 2015–2022 | Raster | Num. | 250 m | - |
gfc_tcov | Global forest tree canopy cover | O | 2019 | Raster | Num. | 30 m | % |
ndivis5 | NDVI Sum of June-September | S+O | 2015–2022 | Raster | Num. | 30 m | - |
nir | Landsat Band 4 (Near-Infrared reflectance) | S+O | 2015–2022 | Raster | Num. | 30 m | DN 8bit |
red | Landsat Band 3 (Red) | S+O | 2015–2022 | Raster | Num. | 30 m | DN 8bit |
swir | Landsat Band 5 (Short-wave infrared) | S+O | 2015–2022 | Raster | Num. | 30 m | DN 8bit |
nort | Northness (orientation and slope) | R | 2016 | Raster | Num. | 10 m | index |
slope | Slope, from DEM | R | 2016 | Raster | Num. | 10 m | % |
dem | Elevation | R | 2016 | Raster | Num. | 10 m | m |
geomorfo | geomorphological forms | R+P | 2016 | Raster | Cat. | 25 m | class |
mrvbf | Multi-Resolution Index of Valley Bottom Flatness, from DEM | R | 2016 | Raster | Num. | 10 m | - |
twi | Topographic Wetness Index from, DEM | R | 2016 | Raster | Num. | 10 m | m2 rad−1 |
vdnc | Vertical dist. channel network, from DEM | R | 2016 | Raster | Num. | 10 m | m |
vdepth | Valley depth, from DEM | R | 2016 | Raster | Num. | 10 m | m |
SaClclass | Sand and Clay content class (20iles) | S | 2022 | Vector | Cat. | 50–250 k | class |
avg_Sand | Map polygon mean content, Sand | S | 2022 | Vector | Num. | 50–250 k | % |
avg_Silt | Map polygon mean content, Silt | S | 2022 | Vector | Num. | 50–250 k | % |
avg_Clay | Map polygon mean content, Clay | S | 2022 | Vector | Num. | 50–250 k | % |
avg_Skel | Map polygon mean content, Skeleton | S | 2022 | Vector | Num. | 50–250 k | % |
avg_lulc | Mean C org. content per LULC class per agricultural district | O | 2022 | Raster | Num. | 10 k | % |
avg_pH | Map polygon mean content, pH | S | 2022 | Vector | Num. | 50–250 k | - |
Variable | Nugget C0 | Model | Sill C1 | Range a1 (m) | Sill C2 | Range a2 (m) |
---|---|---|---|---|---|---|
Sand % | 0.173 | Sph. + Sph. | 0.547 | 644.7 | 0.211 | 5399.3 |
Silt % | 0.168 | Sph. + Sph. | 0.630 | 650.9 | 0.236 | 4117.5 |
Clay % | 0.207 | Sph. + Sph. | 0.510 | 577.1 | 0.226 | 4004.6 |
Organic C % | 0.180 | Sph. + Sph. | 0.402 | 711.6 | 0.313 | 18,002.6 |
pH | 0.228 | Sph. + Sph. | 0.435 | 682.1 | 0.267 | 3708.5 |
Area | Variable | Data Set | Num | ME | AE | RMSE | R2 | IoA |
---|---|---|---|---|---|---|---|---|
Apennines | Skeleton, % | Train | 6786 | −0.015 | 2.246 | 4.189 | 0.732 | 0.908 |
Test | 2262 | 0.541 | 3.359 | 5.742 | 0.511 | 0.801 | ||
Sand, % | Train | 6515 | −0.347 | 4.586 | 7.095 | 0.773 | 0.915 | |
Test | 2172 | −0.099 | 7.604 | 10.087 | 0.523 | 0.796 | ||
Silt, % | Train | 6510 | 0.837 | 3.202 | 5.001 | 0.804 | 0.925 | |
Test | 2171 | 0.809 | 5.080 | 6.958 | 0.584 | 0.829 | ||
Clay, % | Train | 6510 | −0.507 | 4.206 | 6.234 | 0.691 | 0.848 | |
Test | 2171 | −0.729 | 5.584 | 7.511 | 0.460 | 0.709 | ||
C org % | Train | 6786 | 0.070 | 0.163 | 0.423 | 0.880 | 0.940 | |
Test | 2262 | 0.056 | 0.158 | 0.359 | 0.893 | 0.946 | ||
pH | Train | 2117 | 0.065 | 0.162 | 0.269 | 0.948 | 0.854 | |
Test | 6350 | 0.058 | 0.289 | 0.435 | 0.859 | 0.611 | ||
Plain | Skeleton, % | Train | 24,606 | 0.084 | 0.087 | 1.043 | 0.656 | 0.860 |
Test | 8202 | 0.148 | 0.208 | 1.629 | 0.288 | 0.437 | ||
Sand, % | Train | 24,374 | −0.024 | 0.195 | 1.766 | 0.987 | 0.997 | |
Test | 8125 | −0.007 | 0.323 | 2.511 | 0.667 | 0.867 | ||
Silt, % | Train | 24,374 | 0.018 | 0.310 | 2.152 | 0.964 | 0.991 | |
Test | 8125 | 0.026 | 0.412 | 2.593 | 0.642 | 0.828 | ||
Clay, % | Train | 24,374 | 0.004 | 0.280 | 1.948 | 0.973 | 0.993 | |
Test | 8125 | 0.004 | 0.444 | 2.710 | 0.707 | 0.890 | ||
C org % | Train | 13,748 | −0.036 | 0.055 | 0.252 | 0.975 | 0.993 | |
Test | 4583 | −0.029 | 0.053 | 0.214 | 0.989 | 1.000 | ||
pH | Train | 23,236 | −0.001 | 0.006 | 0.062 | 0.982 | 0.996 | |
Test | 7745 | −0.001 | 0.011 | 0.100 | 0.890 | 0.713 | ||
Region | QBS-ar | Train | 249 | 2.177 | 14.215 | 18.371 | 0.880 | 0.941 |
Test | 83 | −2.101 | 11.201 | 16.100 | 0.869 | 0.948 |
Soil Province (Area Share, %) | BIO | BIOMASS | BUF | CST | ERCRL | PRO | WAR | WAS |
---|---|---|---|---|---|---|---|---|
A1 (2.3%) | 0.248 | 0.523 | 0.358 | 0.521 | 0.426 | 0.776 | 0.691 | 0.209 |
A2 (2.3%) | 0.218 | 0.584 | 0.694 | 0.709 | 0.489 | 0.650 | 0.636 | 0.659 |
A3 (4.5%) | 0.304 | 0.579 | 0.554 | 0.523 | 0.513 | 0.808 | 0.414 | 0.465 |
A4 (2.5%) | 0.333 | 0.598 | 0.457 | 0.500 | 0.453 | 0.726 | 0.456 | 0.413 |
A5 (7.3%) | 0.269 | 0.601 | 0.716 | 0.552 | 0.515 | 0.725 | 0.292 | 0.557 |
A6 (17.1%) | 0.376 | 0.599 | 0.551 | 0.533 | 0.518 | 0.887 | 0.406 | 0.461 |
A7 (6.5%) | 0.341 | 0.547 | 0.550 | 0.537 | 0.470 | 0.797 | 0.426 | 0.453 |
A8 (6.1%) | 0.328 | 0.568 | 0.605 | 0.534 | 0.534 | 0.838 | 0.384 | 0.486 |
A9 (0.9%) | 0.299 | 0.543 | 0.561 | 0.572 | 0.537 | 0.849 | 0.397 | 0.458 |
A10 (2.8%) | 0.464 | 0.632 | 0.482 | 0.509 | 0.675 | 0.775 | 0.367 | 0.463 |
B1 (5.6%) | 0.632 | 0.672 | 0.594 | 0.500 | 0.811 | 0.434 | 0.419 | 0.481 |
B2 (7.3%) | 0.626 | 0.691 | 0.628 | 0.543 | 0.822 | 0.464 | 0.395 | 0.480 |
B3 (1.7%) | 0.641 | 0.744 | 0.536 | 0.537 | 0.818 | 0.429 | 0.555 | 0.450 |
B4 (2.8%) | 0.643 | 0.778 | 0.483 | 0.508 | 0.868 | 0.335 | 0.656 | 0.423 |
C1 (8.7%) | 0.558 | 0.768 | 0.542 | 0.570 | 0.840 | 0.524 | 0.594 | 0.381 |
C2 (6.8%) | 0.598 | 0.777 | 0.547 | 0.565 | 0.856 | 0.449 | 0.595 | 0.407 |
C3 (6.5%) | 0.575 | 0.797 | 0.466 | 0.590 | 0.885 | 0.396 | 0.687 | 0.411 |
C4 (0.1%) | 0.457 | 0.813 | 0.474 | 0.597 | 0.789 | 0.297 | 0.869 | 0.370 |
C5 (0.5%) | 0.508 | 0.750 | 0.430 | 0.588 | 0.834 | 0.479 | 0.778 | 0.384 |
D1 (3.6%) | 0.486 | 0.770 | 0.251 | 0.665 | 0.878 | 0.356 | 0.755 | 0.384 |
D2 (3.0%) | 0.562 | 0.792 | 0.375 | 0.626 | 0.906 | 0.459 | 0.689 | 0.408 |
D3 (0.5%) | 0.474 | 0.734 | 0.264 | 0.647 | 0.782 | 0.263 | 0.800 | 0.367 |
Apennines (47.7%) | 0.608 | 0.751 | 0.574 | 0.567 | 0.878 | 0.438 | 0.582 | 0.423 |
Plains (52.3%) | 0.306 | 0.585 | 0.589 | 0.540 | 0.665 | 0.820 | 0.412 | 0.473 |
Region | 0.447 | 0.665 | 0.582 | 0.553 | 0.767 | 0.636 | 0.494 | 0.449 |
SES Indicator | Mean | Std. Dev. | BIO | BIOMASS | BUF | CST | ERSCRL | PRO | WAR | WAS |
---|---|---|---|---|---|---|---|---|---|---|
BIO | 0.452 | 0.142 | 1.000 | 0.812 | −0.203 | −0.094 | 0.911 | −0.748 | 0.273 | −0.199 |
BIOMASS | 0.675 | 0.099 | 0.812 | 1.000 | −0.390 | 0.321 | 0.941 | −0.895 | 0.655 | −0.262 |
BUF | 0.505 | 0.119 | −0.203 | −0.390 | 1.000 | −0.263 | −0.353 | 0.423 | −0.680 | 0.758 |
CST | 0.565 | 0.056 | −0.094 | 0.321 | −0.263 | 1.000 | 0.247 | −0.389 | 0.596 | 0.165 |
ERSCRL | 0.692 | 0.175 | 0.911 | 0.941 | −0.353 | 0.247 | 1.000 | −0.866 | 0.519 | −0.225 |
PRO | 0.578 | 0.205 | −0.748 | −0.895 | 0.423 | −0.389 | −0.866 | 1.000 | −0.714 | 0.247 |
WAR | 0.557 | 0.168 | 0.273 | 0.655 | −0.680 | 0.596 | 0.519 | −0.714 | 1.000 | −0.523 |
WAS | 0.435 | 0.083 | −0.199 | −0.262 | 0.758 | 0.165 | −0.225 | 0.247 | −0.523 | 1.000 |
Municipality | Scale | Statistics | BIO | BIOMASS | BUF | CST | ERSCRL | WAR | WAS |
---|---|---|---|---|---|---|---|---|---|
Portomaggiore | Regional | Mean | 0.275 | 0.608 | 0.575 | 0.564 | 0.595 | 0.478 | 0.500 |
Portomaggiore | Local | 0.431 | 0.684 | 0.483 | 0.638 | 0.690 | 0.398 | 0.447 | |
Portomaggiore | Relative difference | 56.7% | 12.6% | −16.1% | 13.0% | 16.1% | −16.7% | −10.5% | |
Portomaggiore | Regional | SD | 0.098 | 0.067 | 0.133 | 0.104 | 0.080 | 0.171 | 0.124 |
Portomaggiore | Local | 0.172 | 0.116 | 0.145 | 0.125 | 0.115 | 0.198 | 0.137 | |
Portomaggiore | Relative difference | 75.8% | 71.3% | 9.0% | 19.5% | 44.7% | 15.8% | 10.5% | |
Castel di Casio | Regional | Mean | 0.583 | 0.792 | 0.497 | 0.567 | 0.885 | 0.675 | 0.377 |
Castel di Casio | Local | 0.704 | 0.797 | 0.659 | 0.373 | 0.736 | 0.528 | 0.535 | |
Castel di Casio | Relative difference | 20.8% | 0.71% | 32.7% | −34.2% | −16.8% | −21.8% | 41.9% | |
Castel di Casio | Regional | SD | 0.101 | 0.067 | 0.125 | 0.032 | 0.028 | 0.161 | 0.030 |
Castel di Casio | Local | 0.136 | 0.140 | 0.259 | 0.150 | 0.089 | 0.283 | 0.122 | |
Castel di Casio | Relative difference | 35.5% | 109.07% | 106.6% | 374.6% | 215.0% | 75.8% | 309.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ungaro, F.; Tarocco, P.; Calzolari, C. Leveraging Soil Geography for Land Use Planning: Assessing and Mapping Soil Ecosystem Services Indicators in Emilia-Romagna, NE Italy. Geographies 2025, 5, 39. https://doi.org/10.3390/geographies5030039
Ungaro F, Tarocco P, Calzolari C. Leveraging Soil Geography for Land Use Planning: Assessing and Mapping Soil Ecosystem Services Indicators in Emilia-Romagna, NE Italy. Geographies. 2025; 5(3):39. https://doi.org/10.3390/geographies5030039
Chicago/Turabian StyleUngaro, Fabrizio, Paola Tarocco, and Costanza Calzolari. 2025. "Leveraging Soil Geography for Land Use Planning: Assessing and Mapping Soil Ecosystem Services Indicators in Emilia-Romagna, NE Italy" Geographies 5, no. 3: 39. https://doi.org/10.3390/geographies5030039
APA StyleUngaro, F., Tarocco, P., & Calzolari, C. (2025). Leveraging Soil Geography for Land Use Planning: Assessing and Mapping Soil Ecosystem Services Indicators in Emilia-Romagna, NE Italy. Geographies, 5(3), 39. https://doi.org/10.3390/geographies5030039