Digital-Twin-Based Structural Health Monitoring of Dikes
Abstract
1. Introduction
2. Designing a Digital Twin for Monitoring Dikes
3. Implementation of the Digital Twin Environment
3.1. Dike and BIM Model
3.2. Digital Twin Environment
4. Validation of the Digital-Twin-Based SHM Approach
4.1. Validation Method and Procedure
Listing 1. Asynchronous function within the DESITE md webform that requests the property values belonging to the resultTime and result properties from Observations of a defined Datastream within the OGC SensorThings data model. |
4.2. Results of the Validation
4.3. Discussion of the Results
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergmeister, K.; Fingerloos, F.; Wörner, J.-D. (Eds.) Beton-Kalender 2013: Lebensdauer und Instandsetzung, Brandschutz; Ernst & Sohn: Berlin, Germany, 2013; pp. 345–468. ISBN 978-3-433-03000-4. [Google Scholar]
- van Noortwijk, J.M.; Frangopol, D.M. Two probabilistic life-cycle maintenance models for deteriorating civil infrastructures. Probabilistic Eng. Mech. 2004, 19, 345–359. [Google Scholar] [CrossRef]
- DIN 1076:1999-11; Ingenieurbauwerke im Zuge von Straßen und Wegen—Überwachung und Prüfung. Beuth: Berlin, Germany, 1999.
- Große, C.; Helmerich, R.; Herbrand, M. Dauerüberwachung von Ingenieurbauwerken—Merkblatt B09; Deutsche Gesellschaft für Zerstörungsfreie Prüfung e.V.: Berlin, Germany, 2022; ISBN 978-3-947971-22-0. [Google Scholar]
- Bergmeister, K.; Fingerloos, F.; Wörner, J.-D. (Eds.) Beton-Kalender 2015: Bauen im Bestand, Brücken; Ernst & Sohn: Berlin, Germany, 2013; pp. 317–458. ISBN 978-3-433-03073-8. [Google Scholar]
- Hofstede, J. (Ed.) Generalplan Küstenschutz des Landes Schleswig-Holstein; Ministerium für Energiewende, Landwirtschaft, Umwelt, Natur und Digitalisierung des Landes Schleswig-Holstein: Kiel, Germany, 2022; Available online: https://www.schleswig-holstein.de/DE/fachinhalte/K/kuestenschutz/generalplanKuestenschutz.html (accessed on 16 July 2025).
- Balageas, D.; Fritzen, C.P.; Guemes, A. (Eds.) Structural Health Monitoring; ISTE: London, UK, 2006; ISBN 978-1-905209-01-9. [Google Scholar]
- BAW Merkblatt Damminspektion (MDI); Bundesanstalt für Wasserbau: Karlsruhe, Germany, 2017.
- Noel, A.B.; Abdaoui, A.; Elfouly, T.; Ahmed, M.H.; Badawy, A.; Shehata, M.S. Structural health monitoring using wireless sensor networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2017, 19, 1403–1423. [Google Scholar] [CrossRef]
- Sofi, A.; Regita, J.J.; Rane, B.; Lau, H.H. Structural health monitoring using wireless smart sensor network–An overview. Mech. Syst. Signal Process. 2022, 163, 108113. [Google Scholar] [CrossRef]
- Smarsly, K.; Dragos, K.; Kölzer, T. Sensorintegrierte digitale Zwillinge für das automatisierte Monitoring von Infrastrukturbauwerken. Bautechnik 2022, 99, 471–476. [Google Scholar] [CrossRef]
- Kornblum, W.; Schumann, R. Digitale Zwillinge ermöglichen fundierte Entscheidungen durch vernetzte Daten. Bautechnik 2023, 100, 198–205. [Google Scholar] [CrossRef]
- Jiang, F.; Ma, L.; Broyd, T.; Chen, K. Digital twin and its implementations in the civil engineering sector. Autom. Constr. 2021, 130, 103838. [Google Scholar] [CrossRef]
- Torzoni, M.; Tezzele, M.; Mariani, S.; Manzoni, A.; Willcox, K.E. A digital twin framework for civil engineering structures. Comput. Methods Appl. Mech. Eng. 2024, 418, 116584. [Google Scholar] [CrossRef]
- Smarsly, K.; Ahmad, M.E.; Peralta, P.; Al-Zuriqat, T.; Al-Nasser, H.; Dragos, K.; Chillón Geck, C. Digital Twins, Architectures, and Elements in Civil Engineering—A Multivocal Literature Review. In Advances in Information Technology in Civil and Building Engineering: Proceedings of the 20th International Conference on Computing in Civil and Building Engineering (ICCCBE); Springer: Cham, Switzerland, 2025. [Google Scholar]
- Schmidt, C. (Ed.) Digitainability—Digital Technologies for Environmentally Sustainable Economic Activity: Market Potential and Strategic Implications (Acatech STUDY); Acatech–National Academy of Science and Engineering: Munich, Germany, 2023. [Google Scholar]
- Ariyachandra, M.R.M.F.; Wedawatta, G. Digital Twin Smart Cities for Disaster Risk Management: A Review of Evolving Concepts. Sustainability 2023, 15, 11910. [Google Scholar] [CrossRef]
- Yun, S.-J.; Kwon, J.-W.; Kim, W.-T. A Novel Digital Twin Architecture with Similarity-Based Hybrid Modeling for Supporting Dependable Disaster Management Systems. Sensors 2022, 22, 4774. [Google Scholar] [CrossRef]
- Wenner, M.; Meyer-Westphal, M.; Herbrand, M.; Ullerich, C. The Concept of Digital Twin to Revolutionise Infrastructure Maintenance: The Pilot Project smart-BRIDGE Hamburg. In Proceedings of the 27th ITS World Congress, Hamburg, Germany, 11–15 October 2021. [Google Scholar]
- Pregnolato, M.; Gunner, S.; Voyagaki, E.; de Risi, R.; Carhart, N.; Gavriel, G.; Tully, P.; Tryfonas, T.; Macdonald, J.; Taylor, C. Towards Civil Engineering 4.0: Concept, workflow and application of Digital Twins for existing infrastructure. Autom. Constr. 2022, 141, 104421. [Google Scholar] [CrossRef]
- Brucherseifer, E.; Winter, H.; Mentges, A.; Mühlhäuser, M.; Hellmann, M. Digital Twin conceptual framework for improving critical infrastructure resilience. Automatisierungstechnik 2021, 69, 1062–1080. [Google Scholar] [CrossRef]
- Hakimi, O.; Liu, H.; Abudayyeh, O.; Houshyar, A.; Almatared, M.; Alhawiti, A. Data Fusion for Smart Civil Infrastructure Management: A Conceptual Digital Twin Framework. Buildings 2023, 13, 2725. [Google Scholar] [CrossRef]
- Yu, D.; He, Z. Digital twin-driven intelligence disaster prevention and mitigation for infrastructure: Advances, challenges, and opportunities. Nat. Hazards 2022, 112, 1–36. [Google Scholar] [CrossRef]
- Cheng, R.; Hou, L.; Xu, S. A Review of Digital Twin Applications in Civil and Infrastructure Emergency Management. Buildings 2023, 13, 1143. [Google Scholar] [CrossRef]
- Doğan, Ö.; Şahin, O.; Karaarslan, E. Digital Twin Based Disaster Management System Proposal: DT-DMS. J. Emerg. Comput. Technol. 2021, 1, 25–30. [Google Scholar]
- Riaz, K.; McAfee, M.; Gharbia, S.S. Management of Climate Resilience: Exploring the Potential of Digital Twin Technology, 3D City Modelling, and Early Warning Systems. Sensors 2023, 23, 2659. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, H.J.; Schneider, R.; Koch, J.; Ondracek, M.; Troldborg, L.; Seidenfaden, I.K.; Kragh, S.J.; Bøgh, E.; Stisen, S. A New Digital Twin for Climate Change Adaptation, Water Management, and Disaster Risk Reduction (HIP Digital Twin). Water 2023, 15, 25. [Google Scholar] [CrossRef]
- Blankenbach, J.; Gries, T.; Heins, K.; Herlé, S.; Ingebrandt, S.; Kimm, M.; Klopries, E.-M.; Schüttrumpf, H.; Wetzel, L. Sicherheit durch smarte Bauwerke. RWTH-Themen Forschungsmagazin 2021, 2021, 52–55. [Google Scholar]
- Dittmer, C.; Drews, K.; Eversheim, A. Governance und Kommunikation im Krisenfall des Hochwasserereignisses im Juli 2021; DKKV-Schriftenreihe Nr., 63; Deutsches Komitee Katastrophenvorsorge, e.V.: Bonn, Germany, 2024; ISBN 978-3-933181-73-2. [Google Scholar]
- Bersan, S.; Koelewijn, A.; Simonini, P. Application of distributed temperature sensors in piping-prone dikes. In FMGM 2015: Proceedings of the Ninth Symposium on Field Measurements in Geomechanics; Australian Centre for Geomechanics: Perth, Australia, 2015; pp. 475–486. [Google Scholar]
- de Vries, G.; Koelewijn, A.R.; Hopman, V. IJkdijk Full Scale Underseepage Erosion (Piping) Test: Evaluation of Innovative Sensor Technology. In Proceedings of the 5th International Conference on Scour and Erosion (ICSE-5), San Francisco, CA, USA, 7–10 November 2010; pp. 649–657. [Google Scholar] [CrossRef]
- Kuratorium für Forschung im Küsteningenieurwesen (Ed.) Die Küste—Entwicklung eines sensor- und risikobasierten Frühwarnsystems für Seedeiche—EarlyDike; Bundesanstalt für Wasserbau: Karlsruhe, Germany, 2021; Volume 90, ISBN 978-3-939230-78-6. [Google Scholar]
- Federal Waterways Engineering and Research Institute. MDI-DE—Marine Data Infrastructure Germany—Ocean Data. n.d. Available online: https://projekt.mdi-de.org/en/mdi-de-en/ (accessed on 7 October 2024).
- Federal Agency for Cartography and Geodesy. SDI Germany Geodateninfrastruktur Deutschland. n.d. Available online: https://www.gdi-de.org/GDI-DE (accessed on 7 October 2024).
- Federal Agency for Cartography and Geodesy. INSPIRE Geodateninfrastruktur Deutschland. n.d. Available online: https://www.gdi-de.org/en/INSPIRE (accessed on 7 October 2024).
- Assing, M.; Bange, M.; Bartsch, A.; Gutierrez, R.; Fritsch, D.; Hahn, O.; Harke, T.; Hartung, R.; Herbrand, M.; Käding, M.; et al. DBV Heft 51-Digitaler Zwilling: Strategie für den Bestandserhalt; Deutscher Beton- und Bautechnik Verein e.V.: Berlin, Germany, 2021. [Google Scholar]
- Lee, J.; Yoo, S.; Kim, C.; Sohn, H. Automatic levee surface extraction from mobile LiDAR data using directional equalization and projection clustering. Int. J. Appl. Earth Obs. Geoinf. 2023, 116, 103143. [Google Scholar] [CrossRef]
- Fritsch, C.; Voigt, C.; Burkhardt, J.; Arndt, R.; Marx, S. Digitale Bauwerksdiagnose—Ein Projekt zur digitalen Transformation. Bautechnik 2024, 3, 181–189. [Google Scholar] [CrossRef]
- Condemine, C.; Grau, L.; Masson, Y.; Aubry, S. Live Digital Twin for Hydraulic Structures Fatigue Estimation. In Proceedings of the PIANC Smart Rivers 2022; Springer Nature: Singapore, 2023; pp. 494–505. [Google Scholar]
- Brötzmann, J.; Grunert, G.; Thiele, C.-D.; Rüppel, U.; Lorenzen, S. BIM-Integration von Sensordaten aus dem Monitoring von Eisenbahnbrücken im Betrieb. Bautechnik 2024, 3, 166–173. [Google Scholar] [CrossRef]
- Cremona, C.; Santos, J. Structural Health Monitoring as a Big-Data Problem. Struct. Eng. Int. 2018, 28, 243–253. [Google Scholar] [CrossRef]
- Theiler, M.; Dragos, K.; Smarsly, K. BIM-based design of structural health monitoring systems. In Proceedings of the 11th International Workshop on Structural Health Monitoring (IWSHM), Stanford, CA, USA, 12–14 September 2017. [Google Scholar]
- buildingSMART: Industry Foundation Classes Version 4.1.0.0. 2020. Available online: https://standards.buildingsmart.org/IFC/RELEASE/IFC4_1/FINAL/HTML/ (accessed on 8 April 2025).
- Docker. Docker Desktiop: The #1 Containerization Tool for Developers. 2024. Available online: https://www.docker.com/products/docker-desktop/ (accessed on 2 January 2025).
- Chang, H.-F.; Shokrolah Shirazi, M. Integration with 3D Visualization and IoT-Based Sensors for Real-Time Structural Health Monitoring. Sensors 2021, 21, 6988. [Google Scholar] [CrossRef]
- DESITE BIM User Manual; Thinkproject Deutschland GmbH: Munich, Germany, 2023; Available online: https://focusbim.de/files/content/images/DESITE%20BIM/DESITE%20User%20Documentation_3.2.pdf (accessed on 16 July 2025).
- Fraunhofer Institute of Optronics, System Technologies and Image Exploitation FROST®-Server—An open source implementation of OGC SensorThings API. n.d. Available online: https://www.iosb.fraunhofer.de/en/projects-and-products/frost-server.html (accessed on 20 June 2024).
- SensorUp Inc. OGC SensorThings API Documentation. n.d. Available online: https://developers.sensorup.com/docs/ (accessed on 20 June 2024).
Requirement | Description | Requirement |
---|---|---|
As-built data | Representation of as-built geometry and integration of physical/geotechnical parameters | Modeling based on documentation, site measurements, and geo-survey methods |
As-is data | Integration of as-is condition data based on sensor network measurements | Integrating constant sensor data stream |
Localization and contextualization of damage | Establishing a relationship between damage and structural elements | Object-oriented reference of damage objects in a digital twin environment |
Data acquisition and management | Communication between sensor networks and a digital twin environment | Permanent measurements and automated storage. Effective data reduction and filtering |
Data evaluation | Data analysis regarding comprehensible condition indicators adapted to the interests of stakeholders | Automated data analysis based on mathematical models |
Data visualization | Visualization of data for structural condition assessment | Customizable view with either continuous or predefined time frames |
Usability | Intuitive user interface of the digital twin environment | Customized user interface considering the interests of different stakeholders |
Documentation | Effortless documentation of states and changes to ensure plausibility and transparency for model-based decision making | Automated export of documents based on analyzed sensor data |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bornholdt, M.; Herbrand, M.; Smarsly, K.; Zehetmaier, G. Digital-Twin-Based Structural Health Monitoring of Dikes. CivilEng 2025, 6, 39. https://doi.org/10.3390/civileng6030039
Bornholdt M, Herbrand M, Smarsly K, Zehetmaier G. Digital-Twin-Based Structural Health Monitoring of Dikes. CivilEng. 2025; 6(3):39. https://doi.org/10.3390/civileng6030039
Chicago/Turabian StyleBornholdt, Marike, Martin Herbrand, Kay Smarsly, and Gerhard Zehetmaier. 2025. "Digital-Twin-Based Structural Health Monitoring of Dikes" CivilEng 6, no. 3: 39. https://doi.org/10.3390/civileng6030039
APA StyleBornholdt, M., Herbrand, M., Smarsly, K., & Zehetmaier, G. (2025). Digital-Twin-Based Structural Health Monitoring of Dikes. CivilEng, 6(3), 39. https://doi.org/10.3390/civileng6030039