Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,856)

Search Parameters:
Keywords = diffraction properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 11244 KB  
Article
Pore Structure Characteristics and Genesis of Low-Permeability Sandstone Reservoirs in the Eocene Wenchang Formation, Huizhou Sag, Pearl River Mouth Basin, Northern South China Sea
by Guanliang Zhang, Jiancheng Niu, Zhiling Yang, Qibiao Zang, Qingyu Zhang, Haoxian Liu, Qamar Yasin and Mengdi Sun
J. Mar. Sci. Eng. 2025, 13(9), 1620; https://doi.org/10.3390/jmse13091620 (registering DOI) - 25 Aug 2025
Abstract
Porosity and permeability are critical parameters in petroleum exploration and development. The relationship between pore structure and permeability in near-source reservoirs is more closely correlated than in other types of reservoirs. This study investigates the pore structure and formation processes of low-permeability sandstone [...] Read more.
Porosity and permeability are critical parameters in petroleum exploration and development. The relationship between pore structure and permeability in near-source reservoirs is more closely correlated than in other types of reservoirs. This study investigates the pore structure and formation processes of low-permeability sandstone reservoirs in the Wenchang Formation, Huizhou Depression, Pearl River Mouth Basin (Northern South China Sea). We collected ten core samples of low-permeability sandstone reservoirs at various depths from the key well (A). Multiple analytical techniques were employed, including mercury intrusion capillary pressure (MICP), constant velocity mercury injection (CMI), Wood’s metal impregnation (WM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and quantitative evaluation of minerals via scanning electron microscopy (QEMSCAN). Pore-throat types were classified using fractal theory, followed by analyzing the physical and structural characteristics of interconnected pore-throat reservoir systems. This study examined the impact of various pore types on the physical properties of reservoirs, providing a comprehensive classification and characterization of pore structures in low-permeability sandstone reservoirs. Our findings provide significant insights and recommendations for future developmental initiatives in this region. Full article
(This article belongs to the Special Issue Advances in Offshore Oil and Gas Exploration and Development)
Show Figures

Figure 1

24 pages, 6617 KB  
Article
Improvement of Environment and Mechanical Behaviour of Filling Material of Phosphate Solid Waste Using Natural Fibre
by Defeng Liu, Chenglin Ke, Fan Wu and Yantao Zheng
Materials 2025, 18(17), 3978; https://doi.org/10.3390/ma18173978 (registering DOI) - 25 Aug 2025
Abstract
To enhance both the environmental performance and mechanical properties of phosphate solid waste backfill materials, this study examines the effects of corn straw fibre (CS), rice straw fibre (RS), and jute fibre (JF), each at five lengths (3–15 mm) and five dosages (0.1–0.5 [...] Read more.
To enhance both the environmental performance and mechanical properties of phosphate solid waste backfill materials, this study examines the effects of corn straw fibre (CS), rice straw fibre (RS), and jute fibre (JF), each at five lengths (3–15 mm) and five dosages (0.1–0.5 wt%), on the rheological behaviour, mechanical strength, and microstructural characteristics of the backfill slurry. The experimental results showed that the incorporation of natural fibres markedly improved both the compressive and tensile strengths of backfill materials. For example, incorporating CS at a length of 12 mm and a dosage of 0.2 wt% increased the compressive and tensile strengths by 144.4% and 18.8%, respectively. Likewise, RS at 3 mm and 0.2 wt% increased the strengths by 68.3% and 11.9%, while JF at 12 mm and 0.5 wt% enhanced them by 108.2% and 14.9%, respectively. Ion leaching experiments and XPS analyses confirmed that the incorporation of natural fibres effectively adsorbed and immobilized phosphorus and fluorine in phosphogypsum. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed that the improved mechanical strength was primarily attributed to fibre-bridging effects and enhanced fibre–matrix bonding. Furthermore, nuclear magnetic resonance (NMR) analysis demonstrated that incorporating natural fibres reduced the porosity of backfill materials (from 12.9% to 8.14%) while increasing their density. This study provides an experimental foundation for optimizing backfill materials and recommends a 12 mm CS fibre length at a dosage of 0.2 wt% to improve the stability and safety of mine fill structures. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 12766 KB  
Article
Shaping the Structure and Properties of Stellite 6 Alloy by Addition of Ti and W via Laser Cladding
by Jacek Górka, Tomasz Poloczek, Damian Janicki and Aleksandra Lont
Materials 2025, 18(17), 3968; https://doi.org/10.3390/ma18173968 (registering DOI) - 25 Aug 2025
Abstract
Cobalt-based alloys such as Stellite 6 are widely applied in demanding conditions because of their good resistance to wear, erosion, and corrosion, but further improvements in erosion resistance are still required. This work analyzes the effect of adding titanium and tungsten on the [...] Read more.
Cobalt-based alloys such as Stellite 6 are widely applied in demanding conditions because of their good resistance to wear, erosion, and corrosion, but further improvements in erosion resistance are still required. This work analyzes the effect of adding titanium and tungsten on the structure and properties of Stellite 6 coatings produced by laser cladding, aiming to enhance their erosion resistance. Penetrant tests confirmed that the additions did not reduce coating quality, and macroscopic observations showed that appropriate process parameters allowed for defect-free coatings with strong bonding to the substrate. Microstructural studies carried out by SEM/EDS (Scanning Electron Microscopy/ Energy Dispersive Spectroscopy) and XRD (X-ray Diffraction) revealed that the reference Stellite 6 coating consisted of a cobalt-based austenitic matrix with interdendritic chromium carbides, while Ti and W additions led to the in situ formation of primary and eutectic (Ti,W)C carbides. Transmission electron microscopy showed a gradient in tungsten concentration inside the primary carbides, with progressive tungsten dissolution into the TiC lattice. Although different powder compositions had only a moderate effect on hardness, erosion tests demonstrated that the coatings with Ti and W exhibited clearly improved resistance. In particular, the in situ carbides enhanced erosion resistance at 30° impingement angles, while also maintaining high resistance under 90° impact. These findings confirm that modifying Stellite 6 with Ti and W during laser cladding is an effective way to improve its durability in erosive conditions. Full article
(This article belongs to the Special Issue Fusion Bonding/Welding of Metal and Non-Metallic Materials)
Show Figures

Graphical abstract

16 pages, 6809 KB  
Article
Flaxseed Fiber-Structured Nanoemulgels for Salad Dressing Applications: Processing and Stability
by María-Carmen Alfaro-Rodríguez, Fátima Vela, María-Carmen García-González and José Muñoz
Gels 2025, 11(9), 678; https://doi.org/10.3390/gels11090678 - 24 Aug 2025
Abstract
This study aimed to investigate the production of nanoemulgels structured with flaxseed fiber, designed to simulate salad dressings. For this purpose, the influence of microfluidizer passes (from one to four) on physicochemical and rheological properties was determined, followed by an assessment of thermal [...] Read more.
This study aimed to investigate the production of nanoemulgels structured with flaxseed fiber, designed to simulate salad dressings. For this purpose, the influence of microfluidizer passes (from one to four) on physicochemical and rheological properties was determined, followed by an assessment of thermal behavior. Rotor–stator homogenization followed by microfluidization were employed to produce nanoemulgels, which were characterized using laser diffraction, multiple light scattering, and rheological measurements. The resulting systems exhibited monomodal particle size distributions with mean diameters below 220 nm. Increasing the number of microfluidizer passes from one to four led to slight reductions in particle size, although they were not statistically significant. The formulation with two passes demonstrated superior physical stability during aging studies. Rheological evaluation indicated enhanced gel-like behavior with up to three passes, whereas excessive energy input (four passes) slightly compromised structural integrity. The linear viscoelastic region decreased notably after the first pass but remained relatively stable thereafter. The two-pass nanoemulgel, identified as the optimal formulation, was further tested for thermal stability. Temperature increases (5–20 °C) led to minor decreases in viscosity and firmness, yet the structure remained thermally stable. These findings support microfluidization as an effective strategy for developing stable flaxseed fiber-based nanoemulgels, with potential applications in functional food systems. Full article
(This article belongs to the Special Issue Food Gel-Based Systems: Gel-Forming and Food Applications)
Show Figures

Figure 1

14 pages, 2228 KB  
Article
Silver Nanoparticles@Zeolite Composites: Preparation, Characterization and Antibacterial Properties
by Gospodinka Gicheva, Marinela Panayotova, Orlin Gemishev, Sergei A. Kulinich and Neli Mintcheva
Materials 2025, 18(17), 3964; https://doi.org/10.3390/ma18173964 - 24 Aug 2025
Abstract
The presence of various Ag species (Ag+ ions, Ag clusters, and Ag nanoparticles (NPs)) in Ag-zeolite nanocomposites strongly influences their catalytic, photocatalytic, and antibacterial properties. To tailor materials for specific applications, it is essential to employ strategies that control the redox processes [...] Read more.
The presence of various Ag species (Ag+ ions, Ag clusters, and Ag nanoparticles (NPs)) in Ag-zeolite nanocomposites strongly influences their catalytic, photocatalytic, and antibacterial properties. To tailor materials for specific applications, it is essential to employ strategies that control the redox processes between Ag+ and Ag0 and facilitate the formation of active Ag-containing composites. In this study, we present a comparative analysis of Ag-zeolite nanocomposites, focusing on their synthesis methods, structural characteristics, and antibacterial activity against Escherichia coli. Ag NPs were synthesized using three approaches: solid-state thermal reduction, chemical reduction in aqueous solutions with a mild reducing agent (sodium citrate, Na3Cit), and chemical reduction with a strong reducing agent (sodium borohydride, NaBH4). The resulting materials were characterized by X-ray diffraction (XRD), diffuse reflectance UV–Vis spectroscopy (DR UV–Vis), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM), while antibacterial activity was assessed using biological assays. Microscopic and spectroscopic analyses confirmed the formation of Ag NPs and the co-existence of immobilized Ag+ ions within the zeolite framework. The specific influence of the treatment method of Ag+-zeolite on the presence of silver species in the nanocomposites and their role in antibacterial properties were evaluated. The highest antibacterial efficiency was observed in the nanocomposite produced by thermal treatment of Ag-exchanged zeolite. Thus, the crucial function of Ag+ ions in the mechanism of bacteria cell death was suggested. Full article
Show Figures

Figure 1

28 pages, 18616 KB  
Article
Friction Stir Spot Welding of AA6082-T6 Alloy Sheets with Keyhole Refilling Using Similar Consumable Rod Material: Mechanical Performance and Microstructure Analysis
by Mohamed M. Z. Ahmed, Bandar Alzahrani, Ashraf Bakkar, Mohamed M. El-Sayed Seleman, Ali Alamry and Ali Abd El-Aty
Crystals 2025, 15(9), 751; https://doi.org/10.3390/cryst15090751 - 24 Aug 2025
Abstract
Achieving keyhole-free joints is critical in Friction Stir Spot Welding (FSSW). This study presents a new approach to eliminate this volumetric defect in AA6082-T6 FSSW sheet joints using a continuous multi-layer Friction Stir Deposition (CMFSD) technique, employing a newly designed AA6082-T6 consumable tool. [...] Read more.
Achieving keyhole-free joints is critical in Friction Stir Spot Welding (FSSW). This study presents a new approach to eliminate this volumetric defect in AA6082-T6 FSSW sheet joints using a continuous multi-layer Friction Stir Deposition (CMFSD) technique, employing a newly designed AA6082-T6 consumable tool. FSSW was performed at various rotational speeds (350, 550, 750 and 950 rpm) with a 5 s dwell time. Comprehensive macro- and micro-scale evaluations, along with mechanical properties (hardness and tensile-shear load) of the produced joints, were conducted. Additionally, microstructures were examined using Optical Microscopy (OM), while fracture surfaces were analyzed via Scanning Electron Microscopy (SEM). Optimal FSSW conditions were identified at 550 rpm, yielding a stir zone (SZ) hardness of 94.6 ± 1.4 HV and a maximum tensile-shear load of 4.73 ± 0.27 kN. The keyhole was successfully refilled using AA6082-T6 rod material via CMFSD, resulting in a defect-free joint of the same base alloy. Electron Backscattered Diffraction (EBSD) technique was also used to examine the microstructural features. A comparative analysis revealed significant enhancements: the refilled FSSW joints exhibited a 46.5% increase in maximum tensile-shear load and a 66.66% improvement in elongation to failure compared to the highest-FSSW joint performance with the keyhole defect. Full article
(This article belongs to the Special Issue Recent Advances in Microstructure and Properties of Metals and Alloys)
Show Figures

Figure 1

15 pages, 948 KB  
Article
Efficient pecG-n (n = 1, 2) Basis Sets for Ga, Ge, As, Se, and Br Specialized for the Geometry Optimization of Molecular Structures
by Yuriy Yu. Rusakov and Irina L. Rusakova
Int. J. Mol. Sci. 2025, 26(17), 8197; https://doi.org/10.3390/ijms26178197 - 23 Aug 2025
Viewed by 44
Abstract
In this paper, efficient pecG-n (n = 1, 2) basis sets for the 4th period p-elements, Ga, Ge, As, Se, and Br, specified for the optimization of molecular structures, are proposed. These basis sets were optimized via the property-energy consistent (PEC) [...] Read more.
In this paper, efficient pecG-n (n = 1, 2) basis sets for the 4th period p-elements, Ga, Ge, As, Se, and Br, specified for the optimization of molecular structures, are proposed. These basis sets were optimized via the property-energy consistent (PEC) algorithm directed to the minimization of molecular energy gradient relative to the bond lengths. The performance of the presented basis sets was tested against both theoretical and gas phase electron diffraction experimental reference data relative to the other popular basis sets that are usually employed for the geometry optimization of molecular structures. It was shown that the pecG-n (n = 1, 2) basis sets give equilibrium molecular structures of the quality that considerably surpasses the quality provided by the other commensurate basis sets. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

16 pages, 4846 KB  
Article
A Neodymium(III)-Based Hydrogen-Bonded Bilayer Framework with Dual Functions: Selective Ion Sensing and High Proton Conduction
by Jie Liu, Xin-Yu Guo, Wen-Duo Zhu, Nan Zheng and Jiu-Fu Lu
Molecules 2025, 30(17), 3455; https://doi.org/10.3390/molecules30173455 - 22 Aug 2025
Viewed by 163
Abstract
Lanthanide hydrogen-bonded organic frameworks (Ln-HOFs) integrating luminescent and proton-conductive properties hold significant promise for multifunctional sensing and energy applications, yet their development remains challenging due to the difficulty of balancing structural stability and functional diversity. In this context, this study successfully synthesized a [...] Read more.
Lanthanide hydrogen-bonded organic frameworks (Ln-HOFs) integrating luminescent and proton-conductive properties hold significant promise for multifunctional sensing and energy applications, yet their development remains challenging due to the difficulty of balancing structural stability and functional diversity. In this context, this study successfully synthesized a novel neodymium(III)-based hydrogen-bonded framework material, formulated as {Nd(H2O)3(4-CPCA)[H(4-CPCA)]∙H2O}ₙ (SNUT-15), via hydrothermal assembly using 1-(4-carboxyphenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylic acid (H2(4-CPCA)) as the ligand. Single-crystal X-ray diffraction analysis revealed a rare two-dimensional hydrogen-bonded bilayer structure stabilized by π-π stacking interactions and intermolecular hydrogen bonds. Hirshfeld surface analysis further corroborated the structural characteristics of this material. Moreover, leveraging the superior luminescent properties of lanthanide elements, this crystalline material exhibits dual functionality: selective fluorescence quenching toward Fe3+, La3+, and Mn2+ (with detection limits of 1.74 × 10−4, 1.88 × 10−4, and 3.57 × 10−4 mol·L−1, respectively), as well as excellent proton conductivity reaching 7.92 × 10−3 S cm−1 under conditions of 98% relative humidity and 353 K (80 °C). As a multifunctional neodymium(III)-based HOF material, SNUT-15 demonstrates its potential for applications in environmental monitoring and solid-state electrolytes, providing valuable insights into the rational design of lanthanide-containing frameworks. Full article
(This article belongs to the Section Molecular Structure)
Show Figures

Graphical abstract

13 pages, 2256 KB  
Article
The Influence of the Ar/N2 Ratio During Reactive Magnetron Sputtering of TiN Electrodes on the Resistive Switching Behavior of MIM Devices
by Piotr Jeżak, Aleksandra Seweryn, Marcin Klepka and Robert Mroczyński
Materials 2025, 18(17), 3940; https://doi.org/10.3390/ma18173940 - 22 Aug 2025
Viewed by 155
Abstract
Resistive switching (RS) phenomena are nowadays one of the most studied topics in the area of microelectronics. It can be observed in Metal–Insulator–Metal (MIM) structures that are the basis of resistive switching random-access memories (RRAMs). In the case of commercial use of RRAMs, [...] Read more.
Resistive switching (RS) phenomena are nowadays one of the most studied topics in the area of microelectronics. It can be observed in Metal–Insulator–Metal (MIM) structures that are the basis of resistive switching random-access memories (RRAMs). In the case of commercial use of RRAMs, it is beneficial that the applied materials would have to be compatible with Complementary Metal-Oxide-Semiconductor (CMOS) technology. Fabricating methods of these materials can determine their stoichiometry and structural composition, which can have a detrimental impact on the electrical performance of manufactured devices. In this study, we present the influence of the Ar/N2 ratio during reactive magnetron sputtering of titanium nitride (TiN) electrodes on the resistive switching behavior of MIM devices. We used silicon oxide (SiOx) as a dielectric layer, which was characterized by the same properties in all fabricated MIM structures. The composition of TiN thin layers was controlled by tuning the Ar/N2 ratio during the deposition process. The fabricated conductive materials were characterized in terms of chemical and structural properties employing X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis. Structural characterization revealed that increasing the Ar content during the reactive sputtering process affects the crystallite size of the deposited TiN layer. The resulting crystallite sizes ranged from 8 Å to 757.4 Å. The I-V measurements of fabricated devices revealed that tuning the Ar/N2 ratio during the deposition of TiN electrodes affects the RS behavior. Our work shows the importance of controlling the stoichiometry and structural parameters of electrodes on resistive switching phenomena. Full article
Show Figures

Graphical abstract

28 pages, 2349 KB  
Article
Effective and Stable Senomorphic Apigenin Delivery System Obtained by Supercritical Carbon Dioxide Processing
by Anna Stasiłowicz-Krzemień, Natalia Rosiak, Giuseppe Francesco Racaniello, Nunzio Denora and Judyta Cielecka-Piontek
Int. J. Mol. Sci. 2025, 26(17), 8126; https://doi.org/10.3390/ijms26178126 - 22 Aug 2025
Viewed by 101
Abstract
Apigenin (AP) is a natural flavonoid with senomorphic potential and neuroprotective action; however, poor aqueous solubility (<1 μg/mL) limits its bioavailability and therapeutic use. Therefore, the aim of this study was to obtain an amorphous dispersion of AP and evaluate its biological properties. [...] Read more.
Apigenin (AP) is a natural flavonoid with senomorphic potential and neuroprotective action; however, poor aqueous solubility (<1 μg/mL) limits its bioavailability and therapeutic use. Therefore, the aim of this study was to obtain an amorphous dispersion of AP and evaluate its biological properties. Screening of AP solubilization capabilities under supercritical carbon dioxide processing conditions showed that the system with Soluplus (SOL) achieved the greatest improvement in AP dissolution (6455.4 ± 27.2 μg/mL). Using optimized process parameters (50 °C, 6500 PSI), the AP solubility increased to 8050.2 ± 35.1 μg/mL. X-ray powder diffraction (XRPD) confirmed amorphization, aligning with improved dissolution of AP in both acidic and neutral pH media. As a result, using the PAMPA model, an improvement in AP penetration through membranes simulating gastrointestinal and blood–brain barriers was demonstrated. The significant stability of the obtained amorphous AP dispersion (12 months at room conditions) was associated with stabilizing AP–solubilizer intermolecular interactions, mainly expressed as the shifts in the bands of AP in the range of 1018–1269 cm−1 observed in ATR-FT-IR spectra. Chromatographic analysis confirmed the lack of AP decomposition immediately after the preparation of the amorphous dispersion, as well as after 12 months. As expected, the improvement of AP solubility is correlated with better biological activity assessed in selected in vitro tests such as antioxidant properties (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and cupric ion reducing antioxidant capacity (CUPRAC) assays) and anticholinesterase inhibition capabilities (AChE and BChE assays). The effect of the studies on improving AP solubility under supercritical carbon dioxide processing conditions is obtaining a stable amorphous AP dispersion (up to 12 months). Regardless of the pH of the media, an improvement in AP dissolution and penetration, conditioned by the passive diffusion process, through biological membranes was noted. Moreover, a more efficient antioxidant and neuroprotective effect of AP in the developed amorphous dispersion can also be suggested. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

14 pages, 1657 KB  
Article
Fluorine Plasma Functionalization of Borophene Nanoflakes
by Juan Casanova-Chafer, Pedro Atienzar and Carla Bittencourt
Plasma 2025, 8(3), 33; https://doi.org/10.3390/plasma8030033 - 22 Aug 2025
Viewed by 118
Abstract
Theoretical studies have indicated that borophene is a promising two-dimensional material characterized by remarkable chemical, mechanical, and electrical properties. Nonetheless, its practical applications in areas such as catalysis and gas sensing are hindered by the limited density of reactive sites in its pristine [...] Read more.
Theoretical studies have indicated that borophene is a promising two-dimensional material characterized by remarkable chemical, mechanical, and electrical properties. Nonetheless, its practical applications in areas such as catalysis and gas sensing are hindered by the limited density of reactive sites in its pristine form. To address this limitation, the present study explores the controlled fluorination of borophene nanoflakes as a strategy to modify their surface chemistry and enhance the availability of active sites. Furthermore, it is anticipated that surface fluorination will improve hydrophobicity, which is crucial for reducing humidity-related interference in sensing applications. In this study, we report the successful functionalization of borophene nanoflakes with fluorine using a plasma arc discharge technique for the first time. Borophene nanolayers were synthesized via a sonochemical-assisted exfoliation method, yielding nanosheets with an average lateral dimension of approximately 100 nm. The fluorinated samples were characterized using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). A systematic investigation of plasma exposure durations demonstrated that fluorine was effectively introduced as a dopant while maintaining the crystallinity of the borophene lattice. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Figure 1

28 pages, 6289 KB  
Article
Utilising High-Ambient-Temperature Curing in the Development of Low-Calcium Geopolymers
by Cemal Karaaslan, Şeyda Şek and Canan Turan
Buildings 2025, 15(16), 2974; https://doi.org/10.3390/buildings15162974 - 21 Aug 2025
Viewed by 239
Abstract
Geopolymers are typically cured either at ambient temperature (~25 °C) or subjected to short-term heat curing before being stored under ambient conditions until testing. However, in hot-arid regions, the daily ambient temperature may exceed 45 °C during summer months. Therefore, such conditions should [...] Read more.
Geopolymers are typically cured either at ambient temperature (~25 °C) or subjected to short-term heat curing before being stored under ambient conditions until testing. However, in hot-arid regions, the daily ambient temperature may exceed 45 °C during summer months. Therefore, such conditions should also be considered as high ambient curing, and their influence on low-calcium geopolymer performance needs to be investigated. In this study, pumice- and fly ash-based geopolymer mortars were produced to evaluate the effects of different curing regimes. In the pumice-based mixtures, 10 wt% of pumice was replaced with metakaolin to enrich the alumina content. Three curing conditions were applied: ambient curing, high ambient curing, and heat curing. Setting times of geopolymers were determined based on each curing regime. Physical properties, including density, water absorption, and sorption coefficient, were assessed. Compressive strength development was evaluated over 90 days. In addition, durability performance was assessed through water resistance, freeze–thaw durability, and resistance against sulphuric and hydrochloric acid. Fourier transform infrared spectroscopy and X-ray diffraction confirmed that geopolymerisation reactions continued significantly up to 90 days under high ambient curing, while mercury intrusion porosimetry showed a reduction in porosity. These findings explain the continuous increase in compressive strength. Pumice-based geopolymers cured under this condition exhibited significantly better long-term strength than those cured under other regimes. High ambient-cured fly ash-based geopolymers, a 3-day strength of 40.3 MPa was achieved, eliminating the need for heat curing. Thus, high ambient curing enables the in situ use of these geopolymers and offers a cost-effective and eco-friendly alternative. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

22 pages, 9293 KB  
Article
Synthesis, Characterization, and In Vitro Cytotoxic Evaluation of Neodymium-Doped Cobalt Ferrite Nanoparticles on Human Cancer Cell Lines
by Slaviţa Rotunjanu, Armand Gogulescu, Narcisa Laura Marangoci, Andrei-Ioan Dascălu, Marius Mioc, Roxana Racoviceanu, Alexandra Mioc, Tamara Maksimović, Oana Eșanu, Gabriela Antal and Codruţa Șoica
Materials 2025, 18(16), 3911; https://doi.org/10.3390/ma18163911 - 21 Aug 2025
Viewed by 243
Abstract
Cancer is still the world’s most prevalent cause of death, and the limited efficacy of current treatments highlights the requirement for new therapeutic approaches. In this study, neodymium (Nd)-doped cobalt ferrite (CoFe2₋zNdzO4, z = 0; 0.01; 0.02; [...] Read more.
Cancer is still the world’s most prevalent cause of death, and the limited efficacy of current treatments highlights the requirement for new therapeutic approaches. In this study, neodymium (Nd)-doped cobalt ferrite (CoFe2₋zNdzO4, z = 0; 0.01; 0.02; 0.03; 0.05; 0.1) nanoparticles (Nd0-Nd5) were synthesized via the combustion method. The structural, morphological, and magnetic properties were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), and scanning transmission electron microscopy (STEM) analysis. The synthesized compounds demonstrated single-phase spinel structures, with morphological differences observed between undoped and Nd-doped samples. The biological activity of the nanoparticles was evaluated on immortalized human keratinocytes (HaCaT) and on cancer cell lines: melanoma (A375), breast adenocarcinoma (MCF-7), and pancreatic carcinoma (PANC-1). The cytotoxic effects of Nd0-Nd5 (50–1000 μg∙mL−1) were assessed through Alamar Blue and lactate dehydrogenase (LDH) release assays. The results indicated a dose-dependent cytotoxic effect in cancer cell lines. Changes in cell morphology, suggesting the induction of the apoptotic processes, were observed through immunofluorescence staining of F-actin and nuclei. These findings highlight the potential of Nd-doped cobalt ferrite nanoparticles as selective anticancer agents, warranting further investigation to fully elucidate their mechanisms of action and therapeutic applicability. Full article
(This article belongs to the Special Issue New Functional Materials for Biomedical Applications)
Show Figures

Figure 1

16 pages, 2047 KB  
Article
Germination-Induced Biofortification: Improving Nutritional Efficacy, Physicochemical Properties, and In Vitro Digestibility of Black Rice Flour
by Lingfeng Zhu, Qiutao Xie, Dandan Qin, Yi He, Hongyan Yuan, Yingchao Mao, Zhaoping Pan, Gaoyang Li and Xinxin Xia
Foods 2025, 14(16), 2912; https://doi.org/10.3390/foods14162912 - 21 Aug 2025
Viewed by 217
Abstract
Germination is an effective strategy for enhancing functional and processing characteristics of whole grains. This research aimed to explore the changes of nutritional components, physicochemical properties, in vitro digestibility, and microstructural characteristics of black rice flour (BRF) during 0–48 h germination. The results [...] Read more.
Germination is an effective strategy for enhancing functional and processing characteristics of whole grains. This research aimed to explore the changes of nutritional components, physicochemical properties, in vitro digestibility, and microstructural characteristics of black rice flour (BRF) during 0–48 h germination. The results showed that germination significantly induced α-amylase activation of BRF, from 1.02 U/g to 4.46 U/g, leading to a 3.2-fold increase in reducing sugar content through starch hydrolysis. The content of apparent amylose was down-regulated during germination. The contents of free amino acids and minerals were markedly augmented in BRF. Specially, the GABA content was remarkedly enhanced, from 40.73 mg/kg to 258.35 mg/kg. Compared with BRF, the ratio of rapidly digestible starch (RDS) and resistant starch (RS) of germinated black rice flour (GBRF) increased by 12.04% and 0.43%, respectively, while the ratio of slowly digestible starch (SDS) decreased by 12.47% at 48 h. Scanning electron microscopy (SEM) analysis observed a more porous and loose surface structure in GBRF. X-ray diffraction (XRD) analysis illustrated that the relative crystallinity of GBRF was reduced with the prolonging of germination time. The dissociation of starch granules in GBRF ultimately led to a decrease in characteristic viscosity parameters, including peak, trough, final, and setback viscosity. In conclusion, germination improved the nutritional value and digestive characteristics of BRF, and altered its structure and physicochemical properties, which provides a reference for the development of whole grain-based products. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

22 pages, 9292 KB  
Article
Mechanisms and Potential Assessment of CO2 Sequestration in the Baijiahai Uplift, Junggar Basin
by Xiaohui Wang, Wen Zhang, Qun Wang, Kepeng Wang, Saisai Qin and Tianyu Wang
Processes 2025, 13(8), 2648; https://doi.org/10.3390/pr13082648 - 21 Aug 2025
Viewed by 129
Abstract
To reduce CO2 emissions, CO2 geological storage is recognized as an effective approach to decrease atmospheric carbon concentration. Sequestration in deep saline aquifers has become a research focus. However, the physicochemical property changes in saline formations induced by CO2 injection [...] Read more.
To reduce CO2 emissions, CO2 geological storage is recognized as an effective approach to decrease atmospheric carbon concentration. Sequestration in deep saline aquifers has become a research focus. However, the physicochemical property changes in saline formations induced by CO2 injection remain unclear, making it difficult to assess their CO2 storage potential. This study focuses on saline aquifers within the Jurassic Badaowan formation (J1b), Sangonghe formation (J1s), and Cretaceous Tugulu Group (K1tg) of the Baijiahai Uplift in the Junggar Basin. An integrated methodology combining laboratory experiments—including CO2 static immersion tests, dynamic displacement tests, X-ray diffraction (XRD), mercury injection capillary pressure (MICP), nuclear magnetic resonance (NMR) measurements, and mechanical testing—with CMG-based numerical modeling was employed to analyze CO2 storage mechanisms and evaluate storage potential. The results show that after CO2 immersion, extensive dissolution of calcite in J1s, clay swelling/cementation in J1b, and extensive dissolution of calcite in K1tg all lead to increased porosity and permeability, with the J1b formation exhibiting superior CO2 storage capacity, the highest MICP-derived porosity, and the greatest NMR-measured porosity among the three formations. Numerical simulations further confirmed J1b’s leading sequestration volume. Based on integrated experimental and simulation results, the J1b formation is identified as the optimal reservoir for CO2 storage. However, to manage potential mechanical instability during real-world injection scenarios, injection pressures and rates should be carefully controlled and continuously monitored to avoid formation fracturing and ensure long-term storage security. This study provides a reference for implementing saline aquifer CCUS projects. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

Back to TopTop