Advances in Offshore Oil and Gas Exploration and Development

A special issue of Journal of Marine Science and Engineering (ISSN 2077-1312). This special issue belongs to the section "Geological Oceanography".

Deadline for manuscript submissions: 15 July 2025 | Viewed by 797

Special Issue Editors


E-Mail Website
Guest Editor
1. Hubei Key Laboratory of Marine Geological Resources, China University of Geosciences, Wuhan 430074, China
2. College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China
Interests: pore structure characterization; fluid occurrence; water–rock interaction; nuclear magnetic resonance; unconventional oil/gas
Special Issues, Collections and Topics in MDPI journals
School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China
Interests: shale oil and gas geology; petroleum migration and accumulation; shale reservoir characterization; shale pore system; organic matter accumulation
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
Interests: CO2 geological storage; CO2 flooding; heavy oil recovery; thermal recovery; gas hydrate
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In today’s world, energy consumption is at an all-time high, necessitating the development of new energy sources. Offshore strata contain vast reserves of oil and gas, providing an important solution to address the global energy shortage. However, our understanding of efficient offshore oil and gas resource development remains limited. Some key challenges should be addressed in the exploration and development of these resources, including, but not limited to, pore structure characterization, oil occurrence, oil mobility, and enhanced oil recovery (EOR). Pore structure encompasses aspects like pore size distribution, porosity, permeability, and pore connectivity. A larger pore volume can accommodate higher amounts of oil and gas, and higher permeability facilitates their flow. Good pore connectivity enhances the movement of oil and gas out of the mineral matrix. Oil occurrence involves both adsorbed oil and free oil, with the latter being more readily extracted. Oil mobility distinguishes between movable oil and irreducible oil, with a higher fraction of movable oil leading to increased production rates. EOR techniques, such as imbibition, CO2 displacement, and chemical displacement, have the potential to significantly boost oil and gas productivity.

This Special Issue proposes a collection of state-of-the-art research on the exploitation of offshore oil and gas resources. We invite prospective authors to submit high-quality original articles or comprehensive reviews that investigate the efficient development of oil and gas from both geological and engineering perspectives.

Prof. Dr. Mianmo Meng
Dr. Wenming Ji
Prof. Dr. Guodong Cui
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Marine Science and Engineering is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • pore size distribution (PSD)
  • porosity measured by multiple methods
  • permeability determined by steady-state and pulse-decay methods
  • pore connectivity
  • oil occurrence
  • oil mobility
  • EOR by imbibition
  • EOR by CO2
  • EOR by chemistry
  • gas hydrate

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 7526 KiB  
Article
Facies-Controlled Sedimentary Distribution and Hydrocarbon Control of Lower Cretaceous Source Rocks in the Northern Persian Gulf
by Yaning Wang, Wei Huang, Tao Cheng, Xuan Chen, Qinqin Cong and Jianhao Liang
J. Mar. Sci. Eng. 2025, 13(3), 576; https://doi.org/10.3390/jmse13030576 - 15 Mar 2025
Viewed by 200
Abstract
The two-phase source rocks deposited during the Lower Cretaceous in the Persian Gulf Basin play a pivotal role in the regional hydrocarbon system. However, previous studies have lacked a macroscopic perspective constrained by the Tethyan Ocean context, which has limited a deeper understanding [...] Read more.
The two-phase source rocks deposited during the Lower Cretaceous in the Persian Gulf Basin play a pivotal role in the regional hydrocarbon system. However, previous studies have lacked a macroscopic perspective constrained by the Tethyan Ocean context, which has limited a deeper understanding of their developmental patterns and hydrocarbon control mechanisms. To address this issue, this study aims to clarify the spatiotemporal evolution of the two-phase source rocks and their hydrocarbon control effects, with a particular emphasis on the critical impact of terrestrial input on the quality improvement of source rocks. Unlike previous studies that relied on a single research method, this study employed a comprehensive approach, including time series analysis, sequence stratigraphy, lithofacies, well logging, well correlation, seismic data, and geochemical analysis, to systematically compare and analyze the depositional periods, distribution, and characteristics of the two-phase source rocks under different sedimentary facies in the region. The goal was to reveal the intrinsic relationship between the Neo-Tethyan Ocean context and regional sedimentary responses. The results indicate the following: (1) the late Tithonian–Berriasian and Aptian–Albian source rocks in the Northern Persian Gulf were deposited during periods of extensive marine transgression, closely aligning with the global Weissert and OAE1d anoxic events, reflecting the profound impact of global environmental changes on regional sedimentary processes; (2) in the early stages of the Neo-Tethyan Ocean, controlled by residual topography, the Late Tithonian–Berriasian source rocks exhibited a shelf–intrashelf basin facies association, with the intrashelf basin showing higher TOC, lower HI, and higher Ro values compared to the deep shelf facies, indicating more favorable conditions for organic matter enrichment; (3) with the opening and deepening of the Neo-Tethyan Ocean, the Aptian–Albian source rocks at the end of the Lower Cretaceous transitioned to a shelf–basin facies association, with the basin facies showing superior organic matter characteristics compared to the shelf facies; (4) the organic matter content, type, and thermal maturity of the two-phase source rocks are primarily controlled by sedimentary facies and terrestrial input, with the Aptian–Albian source rocks in areas with terrestrial input showing significantly better quality than those without, confirming the decisive role of terrestrial input in improving source rock quality. In summary, this study not only reveals the differences in the depositional environments and hydrocarbon control mechanisms of the two-phase source rocks, but also highlights the core role of terrestrial input in enhancing source rock quality. The findings provide a basis for facies selection in deep natural gas exploration in the Zagros Belt and shale oil exploration in the western Rub’ al-Khali Basin, offering systematic theoretical guidance and practical insights for hydrocarbon exploration in the Persian Gulf and broader tectonic domains. Full article
(This article belongs to the Special Issue Advances in Offshore Oil and Gas Exploration and Development)
Show Figures

Figure 1

26 pages, 13949 KiB  
Article
Mechanisms of Uranium and Thorium Accumulation in the Lower Ediacaran Marine Sediments from the Upper Yangtze Platform, China: Implications for Helium Exploration
by Yi Zou, Qingyong Luo, Huayao Zou, Jianfa Chen, Wenming Ji, Jin Wu, Tao Du, Xintong Liu, Zilong Fang, Wenxin Hu, Ye Zhang and Jinqi Qiao
J. Mar. Sci. Eng. 2025, 13(3), 413; https://doi.org/10.3390/jmse13030413 - 23 Feb 2025
Viewed by 364
Abstract
The ocean is a significant global reservoir of uranium (U) and thorium (Th). These elements can be incorporated into marine sediments through processes involving organic matter (OM), redox conditions, terrigenous inputs, and mineral interactions. Helium generated through the radioactive decay of U and [...] Read more.
The ocean is a significant global reservoir of uranium (U) and thorium (Th). These elements can be incorporated into marine sediments through processes involving organic matter (OM), redox conditions, terrigenous inputs, and mineral interactions. Helium generated through the radioactive decay of U and Th within geological formations represents a critical potential resource. Marine black shales, which are rich in U and Th, are widespread in the Ediacaran Doushantuo Formation of the Upper Yangtze Platform, making them a key target for helium exploration. However, there is limited research on the mechanisms behind U and Th accumulation in these shales. This study focuses on shales from the Doushantuo Formation in Chongqing, China, aiming to explore the mechanisms of U and Th accumulation and assess the potential for helium generation, and argillaceous dolomites are included for comparative analysis. The results show that the average U and Th content in the black shales (17.58 and 9.78 ppm, respectively) is higher than that of argillaceous dolomites (3.52 and 2.75 ppm, respectively). Uranium mainly comes from authigenic precipitation and hydrothermal inputs, while thorium is primarily sourced from terrigenous and hydrothermal inputs. The semi-humid climate in the provenance area facilitated parent rock weathering, with atmospheric precipitation and river systems transporting U and Th to the ocean. However, excessive terrigenous input can dilute the U and Th content in the sediments. In the shales, uranium is primarily adsorbed and/or complexed by organic matter (OM), with the anoxic–euxinic sedimentary environment and high OM content (TOC = 0.06–34.58 wt.%, r = 0.95) promoting U accumulation. Thorium accumulation is largely controlled by adsorption onto clay minerals. The total amount of helium generated from the Doushantuo shales is estimated to be 7.20 × 1010 m3. Full article
(This article belongs to the Special Issue Advances in Offshore Oil and Gas Exploration and Development)
Show Figures

Figure 1

Back to TopTop