Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,255)

Search Parameters:
Keywords = dietary fibers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 840 KB  
Review
Personalized Nutrition Through the Gut Microbiome in Metabolic Syndrome and Related Comorbidities
by Julio Plaza-Diaz, Lourdes Herrera-Quintana, Jorge Olivares-Arancibia and Héctor Vázquez-Lorente
Nutrients 2026, 18(2), 290; https://doi.org/10.3390/nu18020290 - 16 Jan 2026
Abstract
Background: Metabolic syndrome, a clinical condition defined by central obesity, impaired glucose regulation, elevated blood pressure, hypertriglyceridemia, and low high-density lipoprotein cholesterol across the lifespan, is now a major public health issue typically managed with lifestyle, behavioral, and dietary recommendations. However, “one-size-fits-all” [...] Read more.
Background: Metabolic syndrome, a clinical condition defined by central obesity, impaired glucose regulation, elevated blood pressure, hypertriglyceridemia, and low high-density lipoprotein cholesterol across the lifespan, is now a major public health issue typically managed with lifestyle, behavioral, and dietary recommendations. However, “one-size-fits-all” recommendations often yield modest, heterogeneous responses and poor long-term adherence, creating a clinical need for more targeted and implementable preventive and therapeutic strategies. Objective: To synthesize evidence on how the gut microbiome can inform precision nutrition and exercise approaches for metabolic syndrome prevention and management, and to evaluate readiness for clinical translation. Key findings: The gut microbiome may influence cardiometabolic risk through microbe-derived metabolites and pathways involving short-chain fatty acids, bile acid signaling, gut barrier integrity, and low-grade systemic inflammation. Diet quality (e.g., Mediterranean-style patterns, higher fermentable fiber, or lower ultra-processed food intake) consistently relates to more favorable microbial functions, and intervention studies show that high-fiber/prebiotic strategies can improve glycemic control alongside microbiome shifts. Physical exercise can also modulate microbial diversity and metabolic outputs, although effects are typically subtle and may depend on baseline adiposity and sustained adherence. Emerging “microbiome-informed” personalization, especially algorithms predicting postprandial glycemic responses, has improved short-term glycemic outcomes compared with standard advice in controlled trials. Targeted microbiome-directed approaches (e.g., Akkermansia muciniphila-based supplementation and fecal microbiota transplantation) provide proof-of-concept signals, but durability and scalability remain key limitations. Conclusions: Microbiome-informed personalization is a promising next step beyond generic guidelines, with potential to improve adherence and durable metabolic outcomes. Clinical implementation will require standardized measurement, rigorous external validation on clinically meaningful endpoints, interpretable decision support, and equity-focused evaluation across diverse populations. Full article
12 pages, 381 KB  
Article
Application of Apple By-Products and Xanthan Gum in the Development of Fiber-Enriched Gluten-Free Muffins
by Vaida Mankutė, Jolita Jagelavičiūtė, Loreta Bašinskienė and Dalia Čižeikienė
Appl. Sci. 2026, 16(2), 922; https://doi.org/10.3390/app16020922 - 16 Jan 2026
Abstract
The growing demand for gluten-free bakery products requires the development of formulations that overcome their typical technological and nutritional limitations. Using fruit by-products as natural fiber sources, in combination with xanthan gum (XG), supports a sustainable ingredient strategy that improves gluten-free product quality. [...] Read more.
The growing demand for gluten-free bakery products requires the development of formulations that overcome their typical technological and nutritional limitations. Using fruit by-products as natural fiber sources, in combination with xanthan gum (XG), supports a sustainable ingredient strategy that improves gluten-free product quality. This study investigated the effect of apple pomace (AP) (5% and 10%) and XG (1%) on the technological properties, texture profile, nutritional composition, and sensory acceptance of gluten-free muffins. Six formulations were prepared by partially replacing maize flour with AP and/or adding XG. AP (5–10%) reduced muffin height and volume compared with the control, whereas 1% XG increased muffin height by 11.16% and raised volume and specific volume by 38.46% and 36.11%, respectively. XG significantly decreased hardness compared with the control, while the effect of AP on texture was concentration-dependent: 5% AP reduced hardness, whereas 10% AP did not further improve softness. Combined use of AP and XG resulted in complementary effects, improving structural properties while increasing dietary fiber content. The muffins supplemented with AP were acceptable, and their overall acceptability did not differ significantly among the tested formulations. Overall, the results demonstrate that incorporating AP together with XG enhances both the technological and nutritional quality of gluten-free muffins, supporting the valorization of fruit-processing by-products in functional bakery applications. Full article
Show Figures

Figure 1

33 pages, 756 KB  
Article
Parental Perceptions of Healthy Eating and Actual Nutrient Intake: Analysis of the Nutritional Status of Children Aged 1–6 Years in Urban Areas of Central Kazakhstan
by Svetlana Plyassovskaya, Yelena Pozdnyakova and Xeniya Mkhitaryan
Int. J. Environ. Res. Public Health 2026, 23(1), 109; https://doi.org/10.3390/ijerph23010109 - 15 Jan 2026
Viewed by 26
Abstract
Parental perceptions of healthy eating often diverge from children’s actual diets, but this gap is poorly documented in Central Asia. We examined how parents’ priorities for key food groups relate to nutrient intakes in 390 urban children aged 1–6 years in Central Kazakhstan. [...] Read more.
Parental perceptions of healthy eating often diverge from children’s actual diets, but this gap is poorly documented in Central Asia. We examined how parents’ priorities for key food groups relate to nutrient intakes in 390 urban children aged 1–6 years in Central Kazakhstan. In a cross-sectional study, parents completed a 24 h multiple-pass dietary recall and rated the importance of fats and sweets, meat and fish, dairy, vegetables and fruits, and bread and potatoes on 5-point scales. Nutrient intakes were calculated using software, compared with national DRIs, and analyzed using rank-based tests and Spearman correlations. Parents reported near-ceiling priority for restricting fats and sweets and consistently high priority for bread and potatoes, whereas vegetables, fruits, meat/fish ,and dairy were rated moderately important, with dairy under-prioritized in 1–2-year-olds. On the recalled day, median intakes of fat, dietary fiber, vitamin C, and calcium were below national recommendations at all ages, and median intakes of iron, thiamine, and niacin were particularly low at 3–4 years, while sodium intake exceeded recommended levels; the 3–4-year group showed the most pronounced clustering of shortfalls. Prevalence estimates indicated that most children had intakes below recommendations for dietary fiber and calcium and above recommendations for sodium, underscoring population-wide nutritional imbalance. Across all scales, parental priorities showed only weak, non-significant associations with nutrient intakes (|r| < 0.11). These findings indicate a perception–intake gap and support interventions that ensure adequate fats, fiber, vitamin C, calcium, and bioavailable iron in preschool diets. Full article
24 pages, 524 KB  
Review
Algae and Algal Protein in Human Nutrition: A Narrative Review of Health Outcomes from Clinical Studies
by Zixuan Wang, Marie Scherbinek and Thomas Skurk
Nutrients 2026, 18(2), 277; https://doi.org/10.3390/nu18020277 - 15 Jan 2026
Viewed by 54
Abstract
As global interest in sustainable nutrition grows, algae have emerged as a promising functional food resource. This review analyzes the nutritional value of edible algae, with a particular focus on protein-rich microalgae, and synthesizes current clinical evidence regarding their health benefits. Algae have [...] Read more.
As global interest in sustainable nutrition grows, algae have emerged as a promising functional food resource. This review analyzes the nutritional value of edible algae, with a particular focus on protein-rich microalgae, and synthesizes current clinical evidence regarding their health benefits. Algae have been demonstrated to provide a broad spectrum of physiologically active nutrients, encompassing a range of vitamins and minerals as well as polyunsaturated fatty acids, antioxidant molecules and various bioactive compounds including dietary fiber. These nutrients have been linked to improved cardiovascular and metabolic health, enhanced immune function, and anti-inflammatory effects. A particular emphasis is placed on algal proteins as a novel alternative to traditional dietary proteins. Genera such as Spirulina and Chlorella offer high-quality, complete proteins with amino acid profiles and digestibility scores comparable to those of animal and soy proteins, thereby supporting muscle maintenance and overall nutritional status. Recent clinical studies have demonstrated that the ingestion of microalgae can stimulate muscle protein synthesis and improve lipid profiles, blood pressure, and inflammation markers, indicating functional benefits beyond basic nutrition. Algal proteins also contain bioactive peptides with antioxidative properties that may contribute to positive outcomes. This review synthesizes current studies, which demonstrate that algae represent a potent, sustainable protein source capable of enhancing dietary quality and promoting health. The integration of algae-based products into plant-forward diets has the potential to contribute to global nutritional security and long-term public health. However, the available clinical evidence remains heterogeneous and is largely based on small, short-term intervention studies, with substantial variability in algae species, processing methods and dosages. Consequently, while the evidence suggests the possibility of functional effects, the strength of the evidence and its generalizability across populations remains limited. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

22 pages, 1375 KB  
Article
In Vitro Assessment of Gut Microbiota Modulation Through Functional Biscuits Enriched with Almond By-Products
by Angela Racioppo, Maria Rosaria Corbo, Angela Guerrieri, Milena Sinigaglia, Antonio Bevilacqua, Rossella Caporizzi, Antonio Derossi and Barbara Speranza
Foods 2026, 15(2), 313; https://doi.org/10.3390/foods15020313 - 15 Jan 2026
Viewed by 117
Abstract
Almond skin is an abundant by-product of almond processing and is recognized for its rich content of dietary fiber, polyphenols, and unsaturated fatty acids along with potential health benefits. This study aimed to evaluate the nutritional composition, prebiotic potential, and microbiota modulation properties [...] Read more.
Almond skin is an abundant by-product of almond processing and is recognized for its rich content of dietary fiber, polyphenols, and unsaturated fatty acids along with potential health benefits. This study aimed to evaluate the nutritional composition, prebiotic potential, and microbiota modulation properties of dehydrated almond skin, including its use in 3D-printed functional biscuits. Nutritional analysis revealed high dietary fiber (62.6%) and substantial antioxidant capacity linked to polyphenols. Almond skin supplementation with a concentration ranging from 2.5% to 5.0% significantly enhanced the viability of various probiotic strains during storage, extending their shelf life. Two biscuit formulations, with and without almond skin, were produced and subjected to simulated gastrointestinal digestion (INFOGEST protocol) followed by in vitro fermentation using a minimal gut microbiota model (Bifidobacterium longum, Lactobacillus rhamnosus, Bacteroides caccae, Escherichia coli, Segatella copri, and Clostridioides difficile). Results demonstrated that biscuit enriched with almond skin selectively promoted the growth of beneficial bacteria such as B. longum and L. rhamnosus (from 6.9 to 8.5 log cfu/mL and from 7.8 to 9.0 log cfu/mL, respectively) while suppressing pathogens including C. difficile and E. coli. Moreover, enriched biscuits retained higher polyphenol content and exhibited a favorable macronutrient profile. These findings support the valorization of almond skin as a sustainable functional ingredient offering prebiotic effects and probiotic viability protection, with promising applications in personalized nutrition and gut health management. Further in vivo studies and clinical trials are necessary to confirm these effects and optimize formulations for commercial use. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

16 pages, 1055 KB  
Article
Associations Between Consumption of Ultra-Processed Foods and Diet Quality Among Children and Adolescents
by Evgenia Petridi, Emmanuella Magriplis, Sotiria Kotopoulou, Niki Myrintzou, Evelina Charidemou, Elena Philippou and Antonis Zampelas
Nutrients 2026, 18(2), 272; https://doi.org/10.3390/nu18020272 - 14 Jan 2026
Viewed by 164
Abstract
Background: Ultra-processed foods (UPFs) have emerged as a critical component of diet quality, yet data on the associations between UPF and nutrient intakes remain limited. This study aimed to evaluate nutrient consumption in relation to UPF intake and adherence to international dietary [...] Read more.
Background: Ultra-processed foods (UPFs) have emerged as a critical component of diet quality, yet data on the associations between UPF and nutrient intakes remain limited. This study aimed to evaluate nutrient consumption in relation to UPF intake and adherence to international dietary guidelines for non-communicable disease (NCD) prevention. Methods: Data from 469 individuals aged 2–18 years enrolled in the Hellenic National Nutrition and Health Survey (HNNHS) were analyzed. Intakes were assessed using two 24 h recalls, and foods were classified according to the NOVA system. Participants were categorized by UPF energy intake tertiles. Nutrient adequacy was assessed using Nordic Nutrition Recommendations, European Society of Cardiology guidelines for macronutrients, and the Institute of Medicine’s Estimated Average Requirements and Adequate Intake values for micronutrients. Results: Children in the highest UPF tertile had significantly higher intakes of energy, carbohydrates, added sugars, saturated fats, polyunsaturated fats, and cholesterol, but lower intakes of protein compared to those in the lowest tertile. Fiber intake remained inadequate across all tertiles, with no significant differences. Regarding adherence to NCD prevention guidelines, children in the 3rd UPF tertile had a 2.3 times higher prevalence ratio for exceeding added sugar recommendations, while their protein intake prevalence ratio was 0.8 times lower. For micronutrients, the highest UPF tertile showed significantly elevated intakes of vitamins E, B1, folate, calcium, iron, copper, and sodium, but lower potassium intake compared to the lowest tertile. Conclusions: Our results underscore the need for effective public health strategies to improve diet quality in children and adolescents and prevent diet-related NCDs. Full article
(This article belongs to the Special Issue Ultra-Processed Foods and Chronic Diseases Nutrients)
Show Figures

Figure 1

29 pages, 446 KB  
Article
Revision of the Choices Nutrient Profiling System
by Herbert Smorenburg, Katrina R. Kissock, Eleanor J. Beck, Pulkit Mathur, Bruce Hamaker, Lauren Lissner, Mario R. Marostica, Ngozi Nnam, Hidemi Takimoto and Annet J. C. Roodenburg
Nutrients 2026, 18(2), 258; https://doi.org/10.3390/nu18020258 - 14 Jan 2026
Viewed by 181
Abstract
Background/Objectives: Poor dietary habits are a major contributor to non-communicable diseases (NCDs), the leading cause of mortality worldwide. To promote healthier eating, governments and stakeholders have implemented various nutrition policies, including front-of-pack nutrition labeling (FOPNL). The Choices International Foundation (Choices), through its criteria, [...] Read more.
Background/Objectives: Poor dietary habits are a major contributor to non-communicable diseases (NCDs), the leading cause of mortality worldwide. To promote healthier eating, governments and stakeholders have implemented various nutrition policies, including front-of-pack nutrition labeling (FOPNL). The Choices International Foundation (Choices), through its criteria, supports these efforts through its standardized nutrient profiling system (NPS). Originally developed to underpin a positive FOPNL logo, in 2021, the criteria were expanded into a globally oriented five-level profiling system covering 23 basic and 10 discretionary food groups, addressing key nutrients such as trans-fatty acids, saturated fat, sodium, sugar, fiber, and energy. To ensure continued scientific relevance, the Choices criteria are periodically reviewed by an independent International Scientific Committee (ISC). Methods: This paper presents the 2025 revision of the Choices criteria, focusing on priority areas identified through stakeholder consultation and recent scientific developments. Results: Key updates include the introduction of nutrient-based equivalence criteria for plant-based alternatives to meat and dairy, based on protein and selected micronutrient thresholds. Non-sugar sweeteners (NSSs) were newly included as a factor that lowers a product’s health classification and makes it ineligible for a positive FOPNL. Additionally, the industrially produced trans-fatty acid (iTFA) criteria were revised and aligned with the latest World Health Organization (WHO) recommendations, improving both technical feasibility and policy coherence. While options for incorporating whole-grain and micronutrient criteria were explored, these were not included in the current revision. Conclusions: The 2025 update system enhances the scientific rigor, policy alignment, and global applicability of the Choices system. By providing a harmonized and evidence-based tool, it aims to support national policies that foster healthier food environments and, ultimately, improve public health outcomes worldwide. Full article
Show Figures

Figure 1

15 pages, 11629 KB  
Article
The Effect of Whey Peptides and Micronutrients on Improving Exercise Performance in Mice
by Yitong Cheng, Chenxuan Wang, Jack Yang, Ziyue Wang, Haoran Xing, Wenbin Wu, Ting Yang, Hanfu Xian, Sitong Wan, Dongyuan Zhang, Na Li, Junjie Luo, Yongting Luo, Wanfeng Yang and Peng An
Nutrients 2026, 18(2), 237; https://doi.org/10.3390/nu18020237 - 12 Jan 2026
Viewed by 131
Abstract
Background: Durative exercise-induced fatigue influences muscle structure and exercise performance. Dietary supplements combining bioavailable proteins with essential vitamins and minerals may help reduce fatigue. Compared with proteins, whey peptides, as easily absorbed energy sources, are regarded as better promoting the utilization of [...] Read more.
Background: Durative exercise-induced fatigue influences muscle structure and exercise performance. Dietary supplements combining bioavailable proteins with essential vitamins and minerals may help reduce fatigue. Compared with proteins, whey peptides, as easily absorbed energy sources, are regarded as better promoting the utilization of vitamins and minerals. This study investigated whether the combination of whey peptides and micronutrients could synergistically improve exercise-induced fatigue and exercise performance. Methods: Four-week-old male C57BL/6J mice were forced to exercise using a treadmill for four weeks to evaluate the supplemental effects of whey peptides and/or micronutrients on exercise performance. Results: Compared with mice receiving whey peptides or micronutrients alone, mice receiving a combination of whey peptides and micronutrients displayed increased muscle mass, muscle fiber cross-sectional area, muscle strength, and exercise performance, including running exhausting time and swimming exhausting time. Consistent results were obtained in detecting fatigue-associated serum metabolites and markers reflecting muscle injury. To elucidate the anti-fatigue mechanisms of whey peptides and micronutrients, RNA transcriptome in the muscle tissues were analyzed. Enrichment analysis results suggest that micronutrients and/or whey protein alleviate exercise-induced fatigue, not only via reducing oxidative stress but also repressing excessive immune activation in muscle tissue, thereby decreasing the tissue injury caused by strenuous exercise. Conclusions: Overall, the current study indicates that the combination of whey peptides and micronutrients produces a synergistic effect on promoting exercise performance. Our findings provide scientific evidence for the development of novel and efficient anti-fatigue functional foods using whey peptides and micronutrients. Full article
Show Figures

Figure 1

24 pages, 1445 KB  
Review
Usefulness of Transanal Irrigation and Colon Hydrotherapy in the Treatment of Chronic Constipation and Beyond: A Review with New Perspectives for Bio-Integrated Medicine
by Raffaele Borghini, Francesco Borghini, Alessia Spagnuolo, Agnese Borghini and Giovanni Borghini
Gastrointest. Disord. 2026, 8(1), 6; https://doi.org/10.3390/gidisord8010006 - 12 Jan 2026
Viewed by 295
Abstract
Transanal Irrigation (TAI) and Colon Hydrotherapy (CHT) represent emerging therapeutic options that may complement first-line interventions or serve as rescue treatments for chronic constipation and fecal incontinence. Their clinical utility depends on patient characteristics, specific therapeutic goals, device features, and probe type, as [...] Read more.
Transanal Irrigation (TAI) and Colon Hydrotherapy (CHT) represent emerging therapeutic options that may complement first-line interventions or serve as rescue treatments for chronic constipation and fecal incontinence. Their clinical utility depends on patient characteristics, specific therapeutic goals, device features, and probe type, as well as the procedural setting. This review presents the various pathophysiological contexts in which these techniques can be applied, analyzing their specific characteristics and potential pros and cons. Moreover, these interventions are also considered within a Psycho-Neuro-Endocrino-Immunological (PNEI) framework, given the potential influence of intestinal function and microbiota modulation on the bidirectional communication pathways linking the enteric nervous system, neuroendocrine regulation, immune activity, and global patient well-being. Since there is not yet enough scientific data on this topic, future research should prioritize randomized controlled trials comparing these techniques with other standard treatments (e.g., laxatives or dietary fiber) in defined patient populations. Longitudinal studies will also be essential to clarify long-term safety, potential effects on microbiota, and both risks and benefits. Standardization of technical procedures also remains a critical need, especially regarding professional competencies, operating parameters (e.g., instilled volumes and pressure ranges), and reproducible protocols. Moreover, future investigations should incorporate objective outcome measures, as colonic transit time, stool form and frequency, indices of inflammation or intestinal wall integrity, and changes to microbiome composition. In conclusion, TAI and CHT have the potential to serve as important interventions for the treatment and prevention of chronic constipation and intestinal dysbiosis, as well as their broader systemic correlates, in the setting of bio-integrated medicine. Full article
Show Figures

Figure 1

13 pages, 1183 KB  
Article
Valorization of Lettuce (Lactuca sativa L.) as an Unexploited Source of Natural Insoluble Dietary Fiber Through Integrated Cultivation Conditions and Freeze-Drying Optimization
by Augustina Sandina Tronac, Simona Marcu Spinu, Mihaela Dragoi Cudalbeanu, Carmen Laura Cimpeanu and Alina Ortan
Fibers 2026, 14(1), 10; https://doi.org/10.3390/fib14010010 - 12 Jan 2026
Viewed by 96
Abstract
Human health is profoundly influenced by external factors, with stress being a primary contributor. In this context, the digestive system is particularly susceptible. The prevalence of diseases affecting the small intestine and colon is increasing. Consequently, insoluble plant fibers, such as cellulose and [...] Read more.
Human health is profoundly influenced by external factors, with stress being a primary contributor. In this context, the digestive system is particularly susceptible. The prevalence of diseases affecting the small intestine and colon is increasing. Consequently, insoluble plant fibers, such as cellulose and hemicellulose, play a crucial role in promoting intestinal transit and maintaining colon health. Lettuce is a widely consumed leafy vegetable with high nutritional value and has been intensively studied through hydroponic cultivation. This study aims to optimize the cultivation conditions and freeze-drying process of Lugano and Carmesi lettuce varieties (Lactuca sativa L.) by identifying the optimal growth conditions, freeze-drying duration, and sample surface area in order to achieve an optimal percentage of insoluble fibers. Carmesi and Lugano varieties were selected based on their contrasting growth characteristics and leaf morphology, allowing to assess whether treatments and processing conditions have consistent effects on different types of lettuce. The optimal freeze-drying parameters were determined to include a 48 h freeze-drying period, a maximum sample surface area of 144 cm2, and growth under combined conditions of supplementary oxygenation and LED light exposure. The optimal fiber composition, cellulose (21.61%), hemicellulose (11.84%) and lignin (1.36%), was found for the Lugano variety, which exhibited lower lignin and higher cellulose contents than the Carmesi variety. The quantification of hemicellulose, cellulose and lignin was performed using the well-known NDF, ADF and ADL methods. Therefore, optimized freeze-dried lettuce powder, particularly from the Lugano variety, presents a high-value functional ingredient for enriching foods and developing nutritional supplements aimed at digestive health. Full article
Show Figures

Figure 1

11 pages, 1700 KB  
Article
Seed Coat Color-Mediated Differences in Nutritional Composition and Antioxidant Activity of Mung Bean
by Miaomiao Wu, Qianyu Tao, Suhua Wang, Yang Yao and Lixia Wang
Agronomy 2026, 16(2), 180; https://doi.org/10.3390/agronomy16020180 - 11 Jan 2026
Viewed by 234
Abstract
The mung bean (Vigna radiata) is rich in nutrients and bioactive compounds and is valuable for its antioxidant content in functional food development. However, mung bean seed coats are discarded or used as a low-value feed owing to their coarse texture. [...] Read more.
The mung bean (Vigna radiata) is rich in nutrients and bioactive compounds and is valuable for its antioxidant content in functional food development. However, mung bean seed coats are discarded or used as a low-value feed owing to their coarse texture. Here, 12 homozygous mung bean lines with different seed coat colors were selected from six recombinant inbred lines. The seed coats and cotyledons were separated and quantitatively analyzed for protein, starch, dietary fiber, polyphenols, flavonoids, vitexin, isovitexin, and antioxidant activities using standard chemical assays and HPLC, followed by statistical analysis and principal component analysis. The cotyledons contained more protein (26.97–28.34%) and starch (50.40–56.25%), whereas the seed coat contained more dietary fiber (74.17–79.93 g/100 g) and bioactive compounds. Polyphenolic compounds were significantly higher in the seed coat than in the cotyledons (p < 0.05) and were positively correlated with seed coat darkness, indicating that the black mung bean had higher bioactive functions. This study provides evidence for mung bean variety improvement and functional food development. Full article
(This article belongs to the Special Issue Cultivar Development of Pulses Crop—2nd Edition)
Show Figures

Figure 1

19 pages, 700 KB  
Article
Good Dietary Control Significantly Improves Anthropometric and Metabolic Parameters and Liver Function in Patients with Type 2 Diabetes Mellitus—A Pilot Study
by Bogusława Luzak, Patrycja Szymańska and Marcin Kosmalski
Nutrients 2026, 18(2), 222; https://doi.org/10.3390/nu18020222 - 10 Jan 2026
Viewed by 200
Abstract
Background/Objectives: The aim of the study was to analyze dietary and lifestyle adherence in patients with type 2 diabetes mellitus (T2DM) under the care of a diabetes clinic. Methods: The study included two groups: patients under the close control of a [...] Read more.
Background/Objectives: The aim of the study was to analyze dietary and lifestyle adherence in patients with type 2 diabetes mellitus (T2DM) under the care of a diabetes clinic. Methods: The study included two groups: patients under the close control of a dietitian (n = 50) who followed a standard (DD) or fiber-enriched diabetic diet (FD), and patients under the care of a diabetes clinic without close supervision of a dietitian (n = 50). Results: After 3 months, both DD and FD significantly improved metabolic control in the patients under the care of a dietitian. However, FD was slightly better compared to DD (BMI reduction by an average of 2.4% (95% CI: 1.6%; 3.1%) for DD vs. 4.8% (95% CI: 3.6%; 6.0%) for FD; waist circumference decreasing 2.0% (95% CI: 1.2%; 3.4%) for DD vs. 3.5% (95% CI: 2.6%; 4.3%) for FD, p < 0.01; glycemia reduction 19.9% (95% CI: 14.8%; 25.0%) for FD vs. 5.6% (95% CI: 1.9%; 9.3%) for DD, p < 0.001; GGTP activity reduction 35.7% (95% CI: 28.9%; 42.5%) for FD vs. 1.8% (95% CI: −15.2%; 18.3%) for DD, p < 0.001). In addition, only half of the patients without the close supervision of a dietitian declared adherence to the diet. Most respondents had a satisfactory level of nutritional knowledge, but the analysis indicates the weakly marked influence of the protective features of nutrition as well as evidence of the low contribution of an unhealthy diet. Conclusions: Considering the level of nutritional knowledge and low awareness of their health condition in many patients, visits to the doctor and brief nutrition education are not enough for dietary care in T2DM patients. A dietitian’s care is necessary to improve their health. Full article
(This article belongs to the Special Issue Dietetic Care in Primary Care and Prevention)
Show Figures

Figure 1

19 pages, 931 KB  
Review
Plant-Forward Dietary Approaches to Reduce the Risk of Cardiometabolic Disease Among Hispanic/Latinx Adults Living in the United States: A Narrative Review
by Franze De La Calle, Joanna Bagienska and Jeannette M. Beasley
Nutrients 2026, 18(2), 220; https://doi.org/10.3390/nu18020220 - 10 Jan 2026
Viewed by 202
Abstract
Background: Cardiometabolic risk (CMR), including obesity, dyslipidemia, hypertension, and impaired glucose regulation, disproportionately affects Hispanic/Latinx adults in the United States (U.S.). Although plant-forward dietary patterns are established as cardioprotective, less is known about how dietary patterns within Hispanic/Latinx subgroups relate to CMR. [...] Read more.
Background: Cardiometabolic risk (CMR), including obesity, dyslipidemia, hypertension, and impaired glucose regulation, disproportionately affects Hispanic/Latinx adults in the United States (U.S.). Although plant-forward dietary patterns are established as cardioprotective, less is known about how dietary patterns within Hispanic/Latinx subgroups relate to CMR. Methods: A narrative review was conducted of observational studies among U.S. Hispanic/Latinx adults (≥18 years) examining defined dietary patterns (a priori, a posteriori, or hybrid) in relation to CMR outcomes (e.g., BMI, waist circumference, blood pressure, glucose, lipids). Risk of bias was assessed using an adapted version of the Newcastle–Ottawa Scale. Results: Ten studies met the inclusion criteria, including Seventh-day Adventist Latinx, Puerto Rican adults, Mexican American adults, Hispanic women, and a national Hispanic cohort. Plant-forward dietary patterns were associated with lower BMI and waist circumference, lower triglycerides and fasting glucose, and higher HDL-C. In contrast, energy-dense patterns characterized by refined grains, added sugars, processed meats, fried foods, solid fats, and sugar-sweetened beverages were associated with greater adiposity, poorer lipid profiles, and higher blood pressure. Traditional rice-and-beans–based patterns observed in Puerto Rican and Mexican American groups were associated with central adiposity and higher metabolic syndrome prevalence, despite modestly higher intakes of fruits, vegetables, and fiber. Study quality ranged from good (n = 4) to very good (n = 6). Conclusions: Across Hispanic/Latinx subgroups, plant-forward dietary patterns were associated with favorable cardiometabolic profiles, whereas refined and animal-based patterns aligned with higher CMR. Given the predominance of cross-sectional evidence, these findings should be interpreted as associative rather than causal. Culturally grounded dietary counseling, along with additional longitudinal and intervention studies, is needed to support cardiometabolic health in these populations. Full article
Show Figures

Figure 1

27 pages, 6443 KB  
Article
Comparative Study of the Effectiveness of Cellulose, Pectin and Citrus Peel Powder in Alleviating Loperamide-Induced Constipation
by Feiyang Yang, Ge Wang, Miner Huang, Xin Liu, Sheng Tang, Wenjuan Li, Yuanli Luo, Junying Bai and Linhua Huang
Foods 2026, 15(2), 240; https://doi.org/10.3390/foods15020240 - 9 Jan 2026
Viewed by 205
Abstract
Constipation is a global health issue, with a prevalence of approximately 16%, and insufficient dietary fiber intake is a major contributing factor. Citrus peel residue contains a high proportion of dietary fiber, accounting for about 20–44% of its composition. In this study, the [...] Read more.
Constipation is a global health issue, with a prevalence of approximately 16%, and insufficient dietary fiber intake is a major contributing factor. Citrus peel residue contains a high proportion of dietary fiber, accounting for about 20–44% of its composition. In this study, the constipation-relieving effects of three functional components derived from citrus peel residue—cellulose (CEL), pectin (PEC), and citrus peel powder (CPP)—were systematically compared using a loperamide-induced mouse model. All groups were administered an equivalent dose of 200 mg/kg daily. The results showed that supplementation with CEL, PEC, and CPP improved defecation parameters. Among these, PEC effectively modulated the SCF/C-kit and Nrf2/HO-1 pathways. Compared with the model group, PEC increased Akkermansia abundance by approximately 34% and reduced Desulfovibrio abundance by about 26% Additionally, the smaller particle size and improved solubility of PEC promote the production of beneficial metabolites, thereby alleviating constipation. In contrast, CEL primarily alleviates constipation through its physical properties. At equivalent doses, CPP provides less constipation relief due to its lower component concentrations and a primary composition of insoluble dietary fiber. These findings provide preliminary mechanistic insights and support further exploration of citrus by-products as functional food candidates for the management of constipation. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

22 pages, 2424 KB  
Article
Impact of Organic and Conventional Production Systems on Mineral, Chemical, Antioxidants, and Colorimetric Composition of Grape Pomace from Different Cultivars
by Daniela Freitas, Ana Rita F. Coelho, Ana Coelho Marques, João Dias, Olga Amaral, Manuela Lageiro and Manuela Simões
Sci 2026, 8(1), 12; https://doi.org/10.3390/sci8010012 - 9 Jan 2026
Viewed by 163
Abstract
The winemaking industry represents one of the most important sectors of the Mediterranean agrifood economy, generating large amounts of solid residues, especially grape pomace. The study aimed to evaluate during two consecutive harvest years the influence of the production system (conventional vs. organic) [...] Read more.
The winemaking industry represents one of the most important sectors of the Mediterranean agrifood economy, generating large amounts of solid residues, especially grape pomace. The study aimed to evaluate during two consecutive harvest years the influence of the production system (conventional vs. organic) and cultivar on the mineral, chemical, and antioxidant composition, as well as the colorimetric properties, of grape pomaces obtained from four Vitis vinifera L. cultivars in Alentejo-Portugal. The results showed that mineral composition was significantly affected by both production system and cultivar, with organic grape pomace showing higher K and Mn contents, whereas Ca and Cu showed consistently higher content under conventional. Protein content tended to increase under organic production, while fiber and fat were overall higher in conventional, particularly in the first year. Sugars displayed strong cultivar specificity, with Arinto showing the highest concentrations (30 to 40%), and considering all cultivars, total phenolic content ranged between 4000 ando 9000 mg GAE/100 g, while antioxidant capacity varied among cultivars and years. Colorimetric parameters were essentially influenced by cultivar and harvest year rather than production system. The PCA revealed that PC1 (44.06%) represented a gradient associated with mineral and antioxidant composition, while PC2 (21.26%) reflected minor variation in color and sugars, and the hierarchical clustering distinguished Syrah and Alicante Bouschet as the cultivars most responsive to production system, whereas Aragonez and Arinto exhibited greater compositional stability across years. Overall, the findings indicate that both cultivar and management practices (organic and conventional) influence the compositional profile of grape pomace, with organic showing a tendency to enhance K, Mn, protein, and antioxidant parameters, whereas conventional practices favored higher levels of Ca, Cu, and fiber. The results provide valuable insights for the valorization of grape pomace and the development of sustainable viticultural strategies in Mediterranean environments. Full article
Show Figures

Figure 1

Back to TopTop