Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (523)

Search Parameters:
Keywords = dietary carotenoids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 775 KiB  
Review
Bioactive Compounds, Technological Advances, and Sustainable Applications of Avocado (Persea americana Mill.): A Critical Review
by Amanda Priscila Silva Nascimento, Maria Elita Martins Duarte, Ana Paula Trindade Rocha and Ana Novo Barros
Foods 2025, 14(15), 2746; https://doi.org/10.3390/foods14152746 - 6 Aug 2025
Abstract
Avocado (Persea americana), originally from Mesoamerica, has emerged as a focus of intense scientific and industrial interest due to its unique combination of nutritional richness, bioactive potential, and technological versatility. Its pulp, widely consumed across the globe, is notably abundant in [...] Read more.
Avocado (Persea americana), originally from Mesoamerica, has emerged as a focus of intense scientific and industrial interest due to its unique combination of nutritional richness, bioactive potential, and technological versatility. Its pulp, widely consumed across the globe, is notably abundant in monounsaturated fatty acids, especially oleic acid, which can comprise over two-thirds of its lipid content. In addition, it provides significant levels of dietary fiber, fat-soluble vitamins such as A, D, E and K, carotenoids, tocopherols, and phytosterols like β-sitosterol. These constituents are consistently associated with antioxidant, anti-inflammatory, glycemic regulatory, and cardioprotective effects, supported by a growing body of experimental and clinical evidence. This review offers a comprehensive and critical synthesis of the chemical composition and functional properties of avocado, with particular emphasis on its lipid profile, phenolic compounds, and phytosterols. It also explores recent advances in environmentally sustainable extraction techniques, including ultrasound-assisted and microwave-assisted processes, as well as the application of natural deep eutectic solvents. These technologies have demonstrated improved efficiency in recovering bioactives while aligning with the principles of green chemistry. The use of avocado-derived ingredients in nanostructured delivery systems and their incorporation into functional foods, cosmetics, and health-promoting formulations is discussed in detail. Additionally, the potential of native cultivars and the application of precision nutrition strategies are identified as promising avenues for future innovation. Taken together, the findings underscore the avocado’s relevance as a high-value matrix for sustainable development. Future research should focus on optimizing extraction protocols, clarifying pharmacokinetic behavior, and ensuring long-term safety in diverse applications. Full article
(This article belongs to the Special Issue Feature Review on Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

21 pages, 1039 KiB  
Article
Unveiling the Nutritional Quality of the Sicilian Strawberry Tree (Arbutus unedo L.), a Neglected Fruit Species
by Federica Litrenta, Vincenzo Nava, Ambrogina Albergamo, Angela Giorgia Potortì, Roberto Sturniolo, Vincenzo Lo Turco and Giuseppa Di Bella
Foods 2025, 14(15), 2734; https://doi.org/10.3390/foods14152734 - 5 Aug 2025
Abstract
Although the strawberry tree (A. unedo L.) has been long considered a neglected species of the Mediterranean maquis, the valorization of its fruit production may enhance its socioeconomic value, especially in rural areas. In this study, strawberry trees from different Sicilian sites [...] Read more.
Although the strawberry tree (A. unedo L.) has been long considered a neglected species of the Mediterranean maquis, the valorization of its fruit production may enhance its socioeconomic value, especially in rural areas. In this study, strawberry trees from different Sicilian sites were investigated in terms of macronutrients, fatty acid (FA) composition, tocopherols, total phenols, carotenoids, and minerals. Sicilian berries were a good source of carbohydrates (mainly fructose, glucose and sucrose) and dietary fiber. They were low in fat; however, the FA composition revealed the abundance of unsaturated FAs over saturated FAs and an advantageous n-6/n-3 ratio. Additionally, Sicilian berries showed an inversed linoleic/α-linolenic acid ratio with respect to berries from other Mediterranean regions, that had previously investigated in literature. This evidence suggests that this ratio may have a chemotaxonomic relevance. Considering antioxidants, the fruits had levels of tocopherols, particularly α-tocopherol, total phenols and carotenoids similar to those of certain commercial fruits. Precious amounts of minerals, such as Ca, K, Zn and Fe were also determined. Interestingly, berries harvested near a Sicilian volcanic area had higher levels of minerals, as well as tocopherols, phenols and carotenoids, than fruits from other Sicilian sites, thereby advancing the hypothesis that fruits from volcanic areas may have a superior nutritional value. Overall, data from this study elaborated by a proper statistical analysis revealed that the geographical origin was a relevant variable to consider in the reliable study of this fruit species. Full article
(This article belongs to the Special Issue The Health Benefits of Fruits and Vegetables—3rd Edition)
Show Figures

Figure 1

24 pages, 1951 KiB  
Review
Antioxidant Capacity and Therapeutic Applications of Honey: Health Benefits, Antimicrobial Activity and Food Processing Roles
by Ivana Tlak Gajger, Showket Ahmad Dar, Mohamed Morsi M. Ahmed, Magda M. Aly and Josipa Vlainić
Antioxidants 2025, 14(8), 959; https://doi.org/10.3390/antiox14080959 (registering DOI) - 4 Aug 2025
Abstract
Honey is a natural product of honeybees that has been consumed for centuries due to its nutritional value and potential health benefits. Recent scientific research has focused on its antioxidant capacity, which is linked to a variety of bioactive compounds such as phenolic [...] Read more.
Honey is a natural product of honeybees that has been consumed for centuries due to its nutritional value and potential health benefits. Recent scientific research has focused on its antioxidant capacity, which is linked to a variety of bioactive compounds such as phenolic acids, enzymes (e.g., glucose oxidase, catalase), flavonoids, ascorbic acid, carotenoids, amino acids, and proteins. Together, these components work synergistically to neutralize free radicals, regulate antioxidant enzyme activity, and reduce oxidative stress. This review decisively outlines the antioxidant effects of honey and presents compelling clinical and experimental evidence supporting its critical role in preventing diseases associated with oxidative stress. Honey stands out for its extensive health benefits, which include robust protection against cardiovascular issues, notable anticancer and anti-inflammatory effects, enhanced glycemic control in diabetes, immune modulation, neuroprotection, and effective wound healing. As a recognized functional food and dietary supplement, honey is essential for the prevention and adjunct treatment of chronic diseases. However, it faces challenges due to variations in composition linked to climatic conditions, geographical and floral sources, as well as hive management practices. The limited number of large-scale clinical trials further underscores the need for more research. Future studies must focus on elucidating honey’s antioxidant mechanisms, standardizing its bioactive compounds, and examining its synergistic effects with other natural antioxidants to fully harness its potential. Full article
Show Figures

Figure 1

32 pages, 1104 KiB  
Review
Vegetable By-Products from Industrial Processing: From Waste to Functional Ingredient Through Fermentation
by Andrea Marcelli, Andrea Osimani and Lucia Aquilanti
Foods 2025, 14(15), 2704; https://doi.org/10.3390/foods14152704 - 31 Jul 2025
Viewed by 265
Abstract
In recent decades, the rapid expansion of the food processing industry has led to significant losses and waste, with the fruit and vegetable sector among the most affected. According to the Food and Agriculture Organization of the United Nations (FAO), losses in this [...] Read more.
In recent decades, the rapid expansion of the food processing industry has led to significant losses and waste, with the fruit and vegetable sector among the most affected. According to the Food and Agriculture Organization of the United Nations (FAO), losses in this category can reach up to 60%. Vegetable waste includes edible parts discarded during processing, packaging, distribution, and consumption, often comprising by-products rich in bioactive compounds such as polyphenols, carotenoids, dietary fibers, vitamins, and enzymes. The underutilization of these resources constitutes both an economic drawback and an environmental and ethical concern. Current recovery practices, including their use in animal feed or bioenergy production, contribute to a circular economy but are often limited by high operational costs. In this context, fermentation has emerged as a promising, sustainable approach for converting vegetable by-products into value-added food ingredients. This process improves digestibility, reduces undesirable compounds, and introduces probiotics beneficial to human health. The present review examines how fermentation can improve the nutritional, sensory, and functional properties of plant-based foods. By presenting several case studies, it illustrates how fermentation can effectively valorize vegetable processing by-products, supporting the development of novel, health-promoting food products with improved technological qualities. Full article
(This article belongs to the Special Issue Feature Reviews on Food Microbiology)
Show Figures

Figure 1

50 pages, 2093 KiB  
Review
Enhancing Human Health Through Nutrient and Bioactive Compound Recovery from Agri-Food By-Products: A Decade of Progress
by Cinzia Ingallina, Mattia Spano, Sabrina Antonia Prencipe, Giuliana Vinci, Antonella Di Sotto, Donatella Ambroselli, Valeria Vergine, Maria Elisa Crestoni, Chiara Di Meo, Nicole Zoratto, Luana Izzo, Abel Navarré, Giuseppina Adiletta, Paola Russo, Giacomo Di Matteo, Luisa Mannina and Anna Maria Giusti
Nutrients 2025, 17(15), 2528; https://doi.org/10.3390/nu17152528 - 31 Jul 2025
Viewed by 191
Abstract
In light of pressing global nutritional needs, the valorization of agri-food waste constitutes a vital strategy for enhancing human health and nutrition, while simultaneously supporting planetary health. This integrated approach is increasingly indispensable within sustainable and equitable food systems. Recently, a sustainability-driven focus [...] Read more.
In light of pressing global nutritional needs, the valorization of agri-food waste constitutes a vital strategy for enhancing human health and nutrition, while simultaneously supporting planetary health. This integrated approach is increasingly indispensable within sustainable and equitable food systems. Recently, a sustainability-driven focus has shifted attention toward the valorization of the agri-food by-products as rich sources of bioactive compounds useful in preventing or treating chronic diseases. Agri-food by-products, often regarded as waste, actually hold great potential as they are rich in bioactive components, dietary fiber, and other beneficial nutrients from which innovative food ingredients, functional foods, and even therapeutic products are developed. This review aims to provide a comprehensive analysis of the current advances in recovering and applying such compounds from agri-food waste, with a particular focus on their roles in human health, sustainable packaging, and circular economy strategies. Methods: This review critically synthesizes recent scientific literature on the extraction, characterization, and utilization of bioactive molecules from agri-food by-products. After careful analysis of the PubMed and Scopus databases, only English-language articles from the last 10 years were included in the final narrative review. The analysis also encompasses applications in the nutraceutical, pharmaceutical, and food packaging sectors. Results: Emerging technologies have enabled the efficient and eco-friendly recovery of compounds such as polyphenols, carotenoids, and dietary fibers that demonstrate antioxidant, antimicrobial, and anti-inflammatory properties. These bioactive compounds support the development of functional foods and biodegradable packaging materials. Furthermore, these valorization strategies align with global health trends by promoting dietary supplements that counteract the effects of the Western diet and chronic diseases. Conclusions: Valorization of agri-food by-products offers a promising path toward sustainable development by reducing waste, enhancing public health, and driving innovation. This strategy not only minimizes waste and supports sustainability, but also promotes a more nutritious and resilient food system. Full article
(This article belongs to the Special Issue Nutrition 3.0: Between Tradition and Innovation)
Show Figures

Figure 1

16 pages, 1005 KiB  
Review
Green Leafy Vegetables (GLVs) as Nutritional and Preventive Agents Supporting Metabolism
by Renata Nurzyńska-Wierdak
Metabolites 2025, 15(8), 502; https://doi.org/10.3390/metabo15080502 - 28 Jul 2025
Viewed by 315
Abstract
Metabolic syndrome (MetS) is defined as a group of metabolic defects that include hypertension, insulin resistance, visceral obesity, fatty liver disease, and atherosclerotic cardiovascular disease (CVD). The first step in controlling the progression of MetS is lifestyle changes, including dietary modification. Regular consumption [...] Read more.
Metabolic syndrome (MetS) is defined as a group of metabolic defects that include hypertension, insulin resistance, visceral obesity, fatty liver disease, and atherosclerotic cardiovascular disease (CVD). The first step in controlling the progression of MetS is lifestyle changes, including dietary modification. Regular consumption of fruits, vegetables, whole grains and other plant foods negatively correlates with the risk of developing chronic diseases. Green leafy vegetables (GLVs) are a key element of healthy eating habits and an important source of vitamins C and E, carotenoids—mainly β-carotene and lutein—and minerals. This review discusses and summarizes the current knowledge on the health benefits of consuming GLVs in the prevention and treatment of MetS to provide a compendium for other researchers investigating new natural products. Full article
(This article belongs to the Special Issue Plants and Plant-Based Foods for Metabolic Disease Prevention)
Show Figures

Figure 1

24 pages, 2082 KiB  
Review
Exploring the Pharmacological Landscape of Undaria pinnatifida: Insights into Neuroprotective Actions and Bioactive Constituents
by Helena Machado, Jorge Pereira Machado, Christian Alves, Cristina Soares, Clara Grosso, Jorge Magalhães Rodrigues and Maria Begoña Criado
Nutraceuticals 2025, 5(3), 20; https://doi.org/10.3390/nutraceuticals5030020 - 24 Jul 2025
Viewed by 410
Abstract
The marine seaweed Undaria pinnatifida belongs to the large group of brown macroalgae (Ochrophyta) and is valued both as a nutritious food and a source of pharmaceutical compounds. It has been widely consumed in East Asia as part of the traditional [...] Read more.
The marine seaweed Undaria pinnatifida belongs to the large group of brown macroalgae (Ochrophyta) and is valued both as a nutritious food and a source of pharmaceutical compounds. It has been widely consumed in East Asia as part of the traditional diet and is generally regarded as a “healthy longevity food.” Consequently, it represents one of the most promising natural sources of biomedicinal and bioactive products. This review aims to synthesize current scientific evidence on the pharmacologically active compounds of U. pinnatifida, emphasizing their mechanisms of action and therapeutic potential in neurodegenerative and chronic diseases. This narrative review is based on a comprehensive literature search of peer-reviewed articles from scientific databases, focusing on studies addressing the pharmacological properties of U. pinnatifida and its major bioactive constituents. Recent research highlights that compounds such as fucoxanthin (a carotenoid), fucosterol (a sterol), fucoidan (a polysaccharide), alginate, and dietary fiber found in U. pinnatifida possess significant potential for developing treatments for conditions including goitre, urinary diseases, scrofula, dropsy, stomach ailments, and hemorrhoids. Moreover, these compounds exhibit remarkable pharmacological properties, including immunomodulation, antitumor, antiviral, antioxidant, antidiabetic, anti-inflammatory, anticoagulant, antithrombotic, and antibacterial activities, all with low toxicity and minimal side effects. Additionally, U. pinnatifida shows promise in the treatment or prevention of neurodegenerative diseases such as Alzheimer’s and Parkinson’s, as well as neuropsychiatric conditions like depression, supported by its antioxidant effects against oxidative stress and neuroprotective activities. Numerous in vitro and in vivo studies have confirmed that U. pinnatifida polysaccharides (UPPs), particularly fucoidans, exhibit significant biological activities. Thus, accumulating evidence positions UPPs as promising therapeutic agents for a variety of diseases. Full article
Show Figures

Figure 1

17 pages, 1035 KiB  
Review
Ancient Grains as Functional Foods: Integrating Traditional Knowledge with Contemporary Nutritional Science
by Jude Juventus Aweya, Drupat Sharma, Ravneet Kaur Bajwa, Bliss Earnest, Hajer Krache and Mohammed H. Moghadasian
Foods 2025, 14(14), 2529; https://doi.org/10.3390/foods14142529 - 18 Jul 2025
Viewed by 781
Abstract
Ancient grains, including wild rice, millet, fonio, teff, quinoa, amaranth, and sorghum, are re-emerging as vital components of modern diets due to their dense nutritional profiles and diverse health-promoting bioactive compounds. Rich in high-quality proteins, dietary fiber, essential micronutrients, and a broad spectrum [...] Read more.
Ancient grains, including wild rice, millet, fonio, teff, quinoa, amaranth, and sorghum, are re-emerging as vital components of modern diets due to their dense nutritional profiles and diverse health-promoting bioactive compounds. Rich in high-quality proteins, dietary fiber, essential micronutrients, and a broad spectrum of bioactive compounds such as phenolic acids, flavonoids, carotenoids, phytosterols, and betalains, these grains exhibit antioxidant, anti-inflammatory, antidiabetic, cardioprotective, and immunomodulatory properties. Their health-promoting effects are underpinned by multiple interconnected mechanisms, including the reduction in oxidative stress, modulation of inflammatory pathways, regulation of glucose and lipid metabolism, support for mitochondrial function, and enhancement of gut microbiota composition. This review provides a comprehensive synthesis of the essential nutrients, phytochemicals, and functional properties of ancient grains, with particular emphasis on the nutritional and molecular mechanisms through which they contribute to the prevention and management of chronic diseases such as cardiovascular disease, type 2 diabetes, obesity, and metabolic syndrome. Additionally, it highlights the growing application of ancient grains in functional foods and nutrition-sensitive dietary strategies, alongside the technological, agronomic, and consumer-related challenges limiting their broader adoption. Future research priorities include well-designed human clinical trials, standardization of compositional data, innovations in processing for nutrient retention, and sustainable cultivation to fully harness the health, environmental, and cultural benefits of ancient grains within global food systems. Full article
Show Figures

Figure 1

25 pages, 1591 KiB  
Review
Cardiovascular Risk Factors, Alzheimer’s Disease, and the MIND Diet: A Narrative Review from Molecular Mechanisms to Clinical Outcomes
by Amirhossein Ataei Kachouei, Saiful Singar, Amber Wood, Jason D. Flatt, Sara K. Rosenkranz, Richard R. Rosenkranz and Neda S. Akhavan
Nutrients 2025, 17(14), 2328; https://doi.org/10.3390/nu17142328 - 16 Jul 2025
Viewed by 723
Abstract
Cardiovascular diseases (CVDs) and Alzheimer’s disease (AD) are among the top 10 causes of death worldwide. Accumulating evidence suggests connections between CVD risk factors―including hypertension (HTN), hyperlipidemia (HLP), diabetes mellitus (DM), obesity, and physical inactivity―and AD. The Mediterranean–DASH Intervention for Neurodegenerative Delay (MIND) [...] Read more.
Cardiovascular diseases (CVDs) and Alzheimer’s disease (AD) are among the top 10 causes of death worldwide. Accumulating evidence suggests connections between CVD risk factors―including hypertension (HTN), hyperlipidemia (HLP), diabetes mellitus (DM), obesity, and physical inactivity―and AD. The Mediterranean–DASH Intervention for Neurodegenerative Delay (MIND) dietary pattern has recently garnered considerable attention as a key preventive strategy for both CVDs and AD. While previous studies have examined the connections between CVD risk factors and AD, they have not thoroughly explored their underlying mechanisms. Therefore, the current literature review aims to synthesize the literature and highlight underlying mechanisms from preclinical to clinical studies to elucidate the relationship between CVD risk factors, AD, and the role of the MIND dietary pattern in these conditions. The MIND dietary pattern emphasizes foods rich in antioxidants and brain-healthy nutrients such as vitamin E, folate, polyphenols, flavonoids, carotenoids, fiber, monounsaturated fatty acids, and omega-3 fatty acids. These components have been associated with reduced amyloid-β accumulation in preclinical studies and may contribute to the prevention of AD, either directly or indirectly by affecting CVD risk factors. Despite the extensive evidence from preclinical and observational studies, few clinical trials have investigated the effects of the MIND dietary pattern on cognitive health. Therefore, long-term clinical trials are required to better understand and establish the potential role of the MIND dietary pattern in preventing and managing AD. Full article
Show Figures

Figure 1

21 pages, 1170 KiB  
Review
Innovative Controlled-Release Systems for Fucoxanthin: Research Progress and Applications
by Shiyan Wang, Mengran Guo and Zhaohui Jin
Pharmaceutics 2025, 17(7), 889; https://doi.org/10.3390/pharmaceutics17070889 - 8 Jul 2025
Viewed by 404
Abstract
Fucoxanthin, a marine-derived carotenoid primarily sourced from algae and microalgae, holds significant potential for pharmaceutical and nutraceutical applications. However, its highly unsaturated structure presents critical challenges, including structural instability, poor aqueous solubility, and limited bioavailability. These restrict its application despite its abundant natural [...] Read more.
Fucoxanthin, a marine-derived carotenoid primarily sourced from algae and microalgae, holds significant potential for pharmaceutical and nutraceutical applications. However, its highly unsaturated structure presents critical challenges, including structural instability, poor aqueous solubility, and limited bioavailability. These restrict its application despite its abundant natural availability. Recently, various controlled-release nanotechnologies have been applied to improve the properties of fucoxanthin formulations. In this review, we systematically summarized the bioactivities of fucoxanthin and highlighted recent advancements in controlled-release systems designed to address the limitations. These controlled-release systems mainly use natural or synthetic organic materials and are employed to develop various formulations, including emulsions, nanoparticles, nanofibers, and nanostructured lipid carriers. In addition, the emerging bioinspired drug delivery systems, particularly extracellular vesicles and cell-membrane-derived biomimetic systems, have gained prominence for their immunocompatibility and ability to penetrate physiological barriers, which is regarded as superior encapsulation vesicles for fucoxanthin. Focusing on innovations, we discussed the state-of-the-art delivery systems for fucoxanthin encapsulation and emphasized their roles in improving biosafety, enhancing bioavailability, preserving bioactivity, and optimizing therapeutic performance across various disease models. These insights will provide promising guidance for engineering controlled-release platforms and will aim to unlock fucoxanthin’s full potential in drug development and dietary supplement formulations. Full article
Show Figures

Figure 1

16 pages, 3566 KiB  
Article
Effects of Dietary β-Carotene on the Gonadal Color, Pigmentation, and Regulation Mechanisms in Sea Urchin Strongylocentrotus Intermedius
by Weixiao Di, Yinuo Zhang, Huinan Zuo, Haijing Liu, Lina Wang, Jun Ding, Yaqing Chang and Rantao Zuo
Fishes 2025, 10(7), 304; https://doi.org/10.3390/fishes10070304 - 24 Jun 2025
Viewed by 370
Abstract
This study aims to clarify the dose–response relationship between dietary β-carotene levels and gonadal pigment deposition and regulation mechanisms related to the carotenoid synthesis of Strongylocentrotus intermedius based on a 60-day feeding trial and subsequent transcriptome analysis. Adult sea urchins (initial weight: 9.33 [...] Read more.
This study aims to clarify the dose–response relationship between dietary β-carotene levels and gonadal pigment deposition and regulation mechanisms related to the carotenoid synthesis of Strongylocentrotus intermedius based on a 60-day feeding trial and subsequent transcriptome analysis. Adult sea urchins (initial weight: 9.33 ± 0.21 g) of three cages were given one of the dry feeds with different doses of β-carotene (0 mg/kg, 150 mg/kg, 300 mg/kg) or fresh kelp (Saccharina japonica). The results indicated that the weight gain rate (WGR) of sea urchins increased with the addition of β-carotene, with that of the C300 group being markedly higher than that of the C0 group. The addition of β-carotene significantly improved the redness (a*) and yellowness (b*) values of the gonads, with sea urchins in the C300 group exhibiting closest gonad coloration to those in the kelp-fed group. Meanwhile, β-carotene and echinenone in the gonads of the C300 group showed the highest contents, reaching 1.96 μg/kg and 11.97 μg/kg, respectively. Several differential genes, enriched in the pathways of steroid biosynthesis, oxidative phosphorylation, and ubiquitination, were screened based on transcriptome analysis. Real-time PCR further demonstrated that β-carotene significantly upregulated the expression of cholesterol 25-hydroxylase (CH25H), NADH dehydrogenase subunit 1 (ND1), NADH dehydrogenase subunit 2 (ND2), and NADH dehydrogenase subunit 4 (ND4) while it downregulated the expression of 24-dehydrocholesterol reductase (DHCR24). These results showed that 300 mg/kg β-carotene significantly increased the WGR, redness, and yellowness values, as well as the contents of β-carotene and echinenone in the gonads of S. intermedius. On the one hand, dietary β-carotene increased NADH enzyme activity, which participates in echinenone synthesis by donating electrons for the transformation of β-carotene to echinenone synthesis. On the other hand, the addition of β-carotene inhibited cholesterol synthesis by increasing the expression of CH25H and decreasing the expression of DHCR24, which could in turn increase the fluidity and permeability of the cell membranes and the transport efficiency of β-carotene and echinenone from the digestive tract to the gonads. These results provided fundamental insights into the production of sea urchin gonads with market-favored colors. Full article
(This article belongs to the Special Issue Advances in Aquaculture Feed Additives)
Show Figures

Graphical abstract

26 pages, 2501 KiB  
Article
The Role of Genetic Variation in Modulating the Effects of Blended Fruits and Vegetables Versus Fruit- and Vegetable-Coated Food Products on Antioxidant Capacity, DNA Protection, and Vascular Health: A Randomized Controlled Trial
by Julia N. DeBenedictis, Na Xu, Theo M. de Kok and Simone G. van Breda
Nutrients 2025, 17(12), 2036; https://doi.org/10.3390/nu17122036 - 18 Jun 2025
Viewed by 500
Abstract
Background/Objectives: Fruits and vegetables (F&Vs) are major dietary sources of phytochemicals, crucial for preventing non-communicable diseases. However, barriers such as preparation inconvenience and a short shelf life hinder their consumption. F&V-coated foods have emerged as an alternative. This human nutrition intervention study [...] Read more.
Background/Objectives: Fruits and vegetables (F&Vs) are major dietary sources of phytochemicals, crucial for preventing non-communicable diseases. However, barriers such as preparation inconvenience and a short shelf life hinder their consumption. F&V-coated foods have emerged as an alternative. This human nutrition intervention study assessed the effects of a blended F&Vs mixture versus an F&V-coated food on phytochemical absorption and chronic disease risk markers. It also explored how genetic variation influences physiological responses to these F&V products. Methods: In this randomized-controlled trial, participants were assigned to one of three dietary interventions: a blended F&V mixture (“F&V Blend”), a rice-based cereal product coated with this blend (“Coated Pearl”), or the same product without the F&V mixture (“Uncoated Pearl”). The four-week study included a two-week run-in and a two-week intervention phase, each followed by a test day. Measurements included DNA damage resistance (comet assay), plasma antioxidant status (Trolox capacity and superoxide levels), microvasculature health (retinal analysis), and plasma phytochemical concentrations (colorimetric analyses or HPLC). To assess group differences, a linear mixed model was used. Fifteen polymorphic genes related to phytochemical metabolism and oxidative stress were tested using TaqMan and PCR, with outcomes analyzed via ANOVA. Results: The F&V Blend and Coated Pearl products increased plasma carotenoid levels versus the Uncoated Pearl product. Only the F&V Blend improved retinal dilation and DNA resistance. Surprisingly, the Uncoated Pearl product enhanced antioxidant capacity, lowered superoxide levels, and improved retinal microvasculature. Genotype effects were minimal, except for HNF1A, where wildtypes in the Uncoated Pearl group showed a higher antioxidant capacity. Conclusions: Fresh F&Vs were more effective than coated alternatives in improving vascular health and DNA protection. Full article
(This article belongs to the Special Issue Fruits and Vegetable Bioactive Substances and Nutritional Value)
Show Figures

Graphical abstract

14 pages, 1667 KiB  
Article
A Study on the Enhancement of Storage Stability in Formulated Gac Fruit Oil and Its Encapsulated Form
by Po-Hua Wu, Chia-Yu Lin, Ming-Chang Wu, Shih-Lun Liu, Sz-Jie Wu and Chang-Wei Hsieh
Processes 2025, 13(6), 1913; https://doi.org/10.3390/pr13061913 - 17 Jun 2025
Viewed by 654
Abstract
The fruit of Momordica cochinchinensis Spreng., commonly known as Gac fruit, contains arils rich in carotenoids and unsaturated fatty acids, making it suitable for use as a natural colorant, flavor enhancer, and dietary supplement. This study examined Gac oil extracted from locally cultivated [...] Read more.
The fruit of Momordica cochinchinensis Spreng., commonly known as Gac fruit, contains arils rich in carotenoids and unsaturated fatty acids, making it suitable for use as a natural colorant, flavor enhancer, and dietary supplement. This study examined Gac oil extracted from locally cultivated Gac fruit in Taiwan and evaluated the impact of different encapsulation methods and press through packaging (PTP) packaging on its oxidative stability during storage. The Gac oil was found to contain exceptionally high levels of β-carotene (up to 6047.52 ± 16.15 ppm) and lycopene (3192.84 ± 20.21 ppm). Among the tested formulations, soft capsules demonstrated lower peroxide value (PV) and better retention of carotenoids, including lycopene β-carotene compared to hard capsules. Furthermore, capsules stored in PTP packaging exhibited enhanced protection against oxidation. Overall, soft capsules combined with PTP packaging provided the most effective approach for maintaining the nutritional quality and oxidative stability of Gac oil during storage. Full article
(This article belongs to the Special Issue Extraction Processes, Modeling, and Optimization of Oils)
Show Figures

Figure 1

53 pages, 1156 KiB  
Review
Functional and Therapeutic Roles of Plant-Derived Antioxidants in Type 2 Diabetes Mellitus: Mechanisms, Challenges, and Considerations for Special Populations
by Vicente Javier Clemente-Suárez, Alexandra Martín-Rodríguez, Ana Isabel Beltrán-Velasco, Alejandro Rubio-Zarapuz, Ismael Martínez-Guardado, Roberto Valcárcel-Martín and José Francisco Tornero-Aguilera
Antioxidants 2025, 14(6), 725; https://doi.org/10.3390/antiox14060725 - 13 Jun 2025
Cited by 1 | Viewed by 1081
Abstract
Background: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by persistent hyperglycemia, oxidative stress, and inflammation, contributing to insulin resistance and long-term complications. Dietary antioxidants from plant sources, such as polyphenols, flavonoids, carotenoids, and phenolic acids, have been increasingly studied [...] Read more.
Background: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by persistent hyperglycemia, oxidative stress, and inflammation, contributing to insulin resistance and long-term complications. Dietary antioxidants from plant sources, such as polyphenols, flavonoids, carotenoids, and phenolic acids, have been increasingly studied for their potential to modulate these pathophysiological mechanisms. Objective: This review aims to summarize and critically analyze the current evidence on the biological effects, therapeutic potential, and translational challenges of plant-derived antioxidants in the prevention and management of T2DM. Methods: This narrative review was conducted using peer-reviewed literature from PubMed, Scopus, and Web of Science. Emphasis was placed on mechanistic studies, clinical trials, bioavailability data, and advances in formulation technologies related to antioxidant compounds in the context of T2DM. Results: Plant antioxidants exert beneficial effects by modulating oxidative stress, reducing systemic inflammation, and improving insulin signaling pathways. However, their clinical application is limited by low bioavailability, chemical instability, and high interindividual variability. Recent developments, such as nanoencapsulation, synergistic functional food formulations, and microbiome-targeted strategies, have shown promise in enhancing efficacy. Additionally, personalized nutrition approaches and regulatory advances are emerging to support the integration of antioxidant-based interventions into diabetes care. Conclusions: Plant-derived antioxidants represent a promising complementary tool for T2DM management. Nonetheless, their effective clinical use depends on overcoming pharmacokinetic limitations and validating their long-term efficacy in well-designed trials. Integrating food technology, microbiome science, and precision nutrition will be crucial to translate these compounds into safe, scalable, and personalized therapeutic options for individuals with or at risk of T2DM. Full article
(This article belongs to the Special Issue Plant Antioxidants, Inflammation, and Chronic Disease)
Show Figures

Figure 1

27 pages, 4965 KiB  
Systematic Review
Association Between Lycopene and Metabolic Disease Risk and Mortality: Systematic Review and Meta-Analysis
by Isabel Viña, Alicia Robles and Juan R. Viña
Life 2025, 15(6), 944; https://doi.org/10.3390/life15060944 - 12 Jun 2025
Viewed by 1154
Abstract
Background: Lycopene, a dietary carotenoid with antioxidant properties, protects against sun-induced skin damage, prostatic conditions such as chronic prostatitis, and cancer; however, its role in metabolic disorders, including metabolic syndrome and nonalcoholic fatty liver disease (MAFLD), remains unclear. This study aimed to systematically [...] Read more.
Background: Lycopene, a dietary carotenoid with antioxidant properties, protects against sun-induced skin damage, prostatic conditions such as chronic prostatitis, and cancer; however, its role in metabolic disorders, including metabolic syndrome and nonalcoholic fatty liver disease (MAFLD), remains unclear. This study aimed to systematically assess the association between lycopene levels (serum and dietary) and the risk of metabolic diseases. Methods: This study adhered to the PRISMA guidelines and was prospectively registered on the Open Science Framework (OSF). We searched PubMed, Scopus, Web of Science, and Medline via WoS. Pooled odds ratios (OR), hazard ratios (HR), and mean differences (MD) with 95% confidence intervals (CIs) were calculated using fixed or random-effects models based on heterogeneity. Results: Twenty-nine studies were included, of which twenty-five were eligible for the meta-analysis. Pooled analysis showed that the individuals with the lowest serum lycopene levels had a significantly higher risk of MAFLD (OR = 1.39, 95%CI: 1.02–1.89, p = 0.0388). No significant associations were found between HbA1c levels, diabetes history, and weight status. Although not statistically significant, a clear trend of patients with DM having lower lycopene levels than the control group was observed (MD = −0.09, 95% CI: −0.19 to 0.00, p = 0.054). Comparisons based on weight status showed no significant differences. Conclusions: While lower serum lycopene levels are significantly associated with increased MAFLD risk, their impact on glycemic control remains inconclusive, underscoring the need for targeted clinical research. Full article
(This article belongs to the Special Issue Feature Papers in Medical Research: 3rd Edition)
Show Figures

Figure 1

Back to TopTop