Innovative Controlled-Release Systems for Fucoxanthin: Research Progress and Applications
Abstract
1. Introduction
2. The Biological Activity of Fucoxanthin
2.1. Antioxidant Activity
2.2. Anti-Inflammatory Activity
2.3. Antibacterial Activity
2.4. Anticancer Activity
2.5. Anti-Obesity Activity
2.6. Anti-Aging Efficacy
2.7. Neuroprotective Properties
2.8. Applications of Encapsulated Fucoxanthin in Various Disease Models
3. Novel Controlled-Release Systems for Fucoxanthin Delivery
3.1. Emulsions
Controlled-Release Systems | Carrier or Wall Materials | Emulsifiers | Fabrication Technologies | Experimental Category | Particle Size | Improvement | Reference |
---|---|---|---|---|---|---|---|
Emulsions | |||||||
O/W Emulsions | Fucoidan | N. sativa oil, Tween 80 | High shear homogenization and ultrasound-assisted emulsification | In vitro and in vivo | 181–184 | (1) Increased encapsulation efficiency (89.94–91.68%). (2) Enhanced in vitro release rate (75.86–83.76%). (3) Reduced body/liver weight and alleviated hepatic lipid accumulation. | [78] |
O/W Emulsions | Lysozyme | Phycocyanin | Stir | In vitro | 31.06 ± 2.76 μm | (1) Optimized bioavailability during in vitro digestion. (2) Improved encapsulation stability within oil droplets | [94] |
O/W Emulsion gels | Salmon by-product protein (SP), pectin | Corn oil | High shear homogenization | In vitro | 3–15 μm | (1) Displayed protective release under simulated oral/gastric conditions and intestinal-targeted controlled release. (2) Improved fucoxanthin retention for 15 days at 25 °C. (3) Applicable to 3D printing-compatible food technologies. | [95] |
S/O/W multilayer emulsions | Gliadin, carboxymethyl starch (CMS), propylene glycol alginate (PGA), carboxymethyl konjac glucomannan | Coconut oil | Anti-solvent precipitation method, rotary evaporate, ultrasound-assisted emulsification | In vitro and in vivo | 24.8 ± 0.5 μm | (1) Stabilized against photothermal degradation. (2) Showed programmed sequential release profile: reduced gastric degradation and potentiated intestinal/colonic distribution. | [93] |
Polymer nanoparticles | |||||||
Nanoparticles | Sodium alginate, chitosan | Sodium caseinate | Ionic gelation and polyelectrolyte complexation method | In vitro and in vivo | 246.1 ± 7.9, 258.7 ± 9.4 nm | (1) Achieved controlled release and targeted delivery to intestinal epithelial cell membranes. (2) Amplified bioavailability in terms of absorption amount and residence time. | [96] |
Nanoparticles | Chitosan, gelatin | / | Magnetic stir, ultrasound-assisted emulsification | In vitro | 300 nm | (1) Potentiated encapsulation efficiency (83.88 ± 4.39%) and stability. (2) Upregulated cellular uptake and antioxidant activity. | [97] |
Nanoparticles | Flaxseed gum | Whey protein | Anti-solvent precipitation method | In vitro and in vivo | 348 ± 36 nm | (1) Promoted focal necrosis in tumor tissues. (2) Triggered tumor cell apoptosis in a dose-dependent way. (3) Caused anti-apoptotic factor (e.g., Bcl-2, CyclinD1, Ki-67) suppression and apoptotic (Bax) secretion, and inhibited tumor growth/metastasis. | [84] |
Nanoparticles | Sodium alginate, chitosan | Tween 80 | Ionic gelation method | In vitro and in vivo | 227 ± 23 nm | (1) Potentiated antioxidant and anti-inflammatory activities. (2) Exhibited good cytotoxic effects against diverse cancer cell lines. | [98] |
Nanoparticles | Oxidized paramylon | / | Anti-solvent precipitation method | In vitro | 86.38–107.33 m | (1) Showed excellent storage stability and photostability. (2) Prevented premature release in gastric conditions. (3) Increased intestinal-phase release efficiency (72.17%). (4) Reduced ROS in insulin-resistant HepG2 cells. (5) Promoted cellular glucose uptake/utilization. | [99] |
Nanoparticles | Hydroxyethyl starch, cholesterol | / | Rotary evaporated, ultrasound-assisted emulsification and magnetic stir | In vitro and in vivo | 138.7 ± 0.9 mm | (1) Synergized drug penetration through tumor interstitial barriers for targeted delivery. (2) Reduced TNBC orthotopic tumor burden and suppressed pulmonary metastasis. | [83] |
Nanoparticles | Kelp nanocellulose | Sodium caseinate | High shear homogenization, ultrasound-assisted emulsification | In vitro and in vivo | 285.13 ± 5.85–309.3 ± 5.78 nm | (1) Encapsulation efficiency reached 82.2%, with >50% retention after 14-day storage. (2) Showed excellent cytocompatibility. (3) Enhanced cellular antioxidant enzyme activity and reduced ROS generation. (4) Improved intracellular delivery. (5) Suppressed excessive FFA-induced lipid droplet formation efficiency and bioavailability. (6) Boosted drug delivery efficiency and target-tissue accumulation. (7) Prevented premature release/degradation of active components in gastrointestinal tract. | [81] |
Nanoparticles | Chitosan | Whey protein | Magnetic stir, freeze-drying technique and rotary evaporate | In vitro | 171 ± 4 nm | (1) Upregulated water dispersibility and stability. (2) Improved encapsulation efficiency (≥93.6%). | [100] |
Nanoparticles | Fucoidan | Pea protein isolated powder | PH-switchable molecular self-assembly method | In vitro | 166.60 m | (1) Exhibited superior thermal and storage stability, effectively protecting fucoxanthin from degradation induced by pH fluctuations and high temperatures. (2) Demonstrated exceptional antioxidant capacity with significant radical scavenging activity. | [101] |
Nanoparticles | Sodium alginate, κ-carrageenan, and Ca2+ crosslinking | / | Ionic gelation method and cross-linking method | In vitro | / | (1) Enhanced stability during in vitro digestion. (2) Maintained significant antioxidant activity with excellent thermal and photostability, indicating superior storage stability. | [102] |
Nanoparticles | Glycosylated zein-based colloids | / | Maillard conjugate, PH-switchable molecular self-assembly method | In vitro and in vivo | <210.00 nm | (1) Enhanced thermal stability. (2) Improved digestive stability, micellization rate, and oral bioavailability. | [103] |
Nanofibers | Hydroxypropyl-β-cyclodextrin | / | Magnetic stir, electrospinning method | In vitro and in vivo | 499 ± 177 nm | (1) Improved aqueous solubility. (2) Enhanced thermal stability and aqueous dispersibility. (3) Anti-obesity and hypolipidemic effects: ameliorated body weight/dyslipidemia, alleviated hepatic steatosis and testicular injury | [79] |
Nanofibers | Gelatin, zein | / | Coaxial electrospinning method | In vitro | 662 ± 116 nm | (1) High-efficiency encapsulation (up to 98%). (2) Superior thermal stability and antioxidant activity. (3) Protection against harsh environmental conditions (temperature, light, UV radiation). (4) Enhanced biocompatibility: boosts antioxidant enzyme activity, inhibits ROS generation, maintains mitochondrial membrane potential | [104] |
Nanostructured lipid carriers | Myristic acid (MA), palmitic acid (PA), stearic acid (SA), and arachidonic acid (AA) | Millard-modified zein | PH-switchable molecular self-assembly method | In vitro and in vivo | 200.00~230.00 nm | (1) Improved water solubility. (2) Maximized encapsulation efficiency (>98.00%). (3) Enhanced bioaccessibility (increased from 43.00% to 60.00%). (4) Promoted oral absorption. (5) Significant upregulation of lipid transport-related protein expression. | [105] |
Nanostructured lipid carriers | Coconut oil | Tween 80 | High shear homogenization | In vitro and in vivo | 248.98 ± 4.0 nm | (1) Exhibited outstanding stability. (2) Showed favorable in vitro release characteristics. | [106] |
Nanostructured lipid carriers | Soy phosphatidylcholine, cholesterol | / | Ultrasonic film dispersio method | In vitro | 98.28 nm | (1) Enhanced erythrocyte protective potential. (2) Inhibited hemolysis, photohemolysis, and heat-induced hemolysis. | [107] |
Biomimetic drug delivery system | |||||||
Probiotics’ membrane vesicles | Lactobacillus Plantarum-derived extracellular vesicles | / | Centrifugated and sonication method | In vitro and in vivo | 422 ± 9 nm | (1) Enhanced gastrointestinal stability. (2) Effective free radical scavenging. (3) Promoted macrophage M2 polarization. (4) Prevented colonic tissue damage and shortening. (5) Ameliorated colonic inflammatory responses. (6) Inhibited pro-inflammatory cytokines. (7) Modulated gut microbiota composition. (8) Increased short-chain fatty acid abundance in colon. | [82,108] |
Lactobacillus paracasei-derived extracellular vesicles | / | Centrifugated and sonication method | In vitro and in vivo | 151–205 nm | (1) Displayed enhanced biocompatibility and improved stability. (2) Showed hepatic targeting efficiency. (3) Regulated lipid synthesis, reduced fat deposition, mitigated NAFLD progression, and ameliorated lipid metabolism disorders. | [80] | |
Bionic cell wall | 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)-oxidized cellulose nanofiber (TCNF) | Lecithin from soybean, cholesterol | PH-switchable molecular self-assembly method, ultrasonic treatment | In vitro | 239.33 nm | (1) Structural protection with improved environmental stability. (2) Achieved pH-responsive controlled release. | [109] |
3.2. Polymer Nanoparticles
3.3. Biomimetic Drug Deliver System
4. Safety and Bioavailability of Fucoxanthin in the Novel Controlled-Release Delivery System
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Palmisano, A.C.; Wharton, R.A., Jr.; Cronin, S.E.; Des Marais, D.J. Lipophilic pigments from the benthos of a perennially ice-covered Antarctic lake. Hydrobiologia 1989, 178, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Dautermann, O.; Lyska, D.; Andersen-Ranberg, J.; Becker, M.; Fröhlich-Nowoisky, J.; Gartmann, H.; Krämer, L.C.; Mayr, K.; Pieper, D.; Rij, L.M.; et al. An algal enzyme required for biosynthesis of the most abundant marine carotenoids. Sci. Adv. 2020, 6, eaaw9183. [Google Scholar] [CrossRef]
- Peng, J.; Yuan, J.P.; Wu, C.F.; Wang, J.H. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health. Mar. Drugs 2011, 9, 1806–1828. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, S.; Hosokawa, M.; Miyashita, K. Fucoxanthin promotes translocation and induction of glucose transporter 4 in skeletal muscles of diabetic/obese KK-A(y) mice. Phytomedicine 2012, 19, 389–394. [Google Scholar] [CrossRef]
- Takatani, N.; Sakimura, K.; Nagata, K.; Beppu, F.; Yamano, Y.; Maoka, T.; Hosokawa, M. Identification and tissue distribution of fucoxanthinol and amarouciaxanthin A fatty acid esters in fucoxanthin-fed mice. Food Chem. 2023, 410, 135318. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wang, Y.; Yao, T.; Dong, X.; Liu, Y.; Nakamura, Y.; Qi, H. Mechanism of inhibition of melanoma by fucoxanthin simulated in vitro digestion products in cell models constructed using human malignant melanoma cells (A375) and keratinocytes (HaCaT). Food Chem. 2025, 462, 141003. [Google Scholar] [CrossRef]
- Silva Meneguelli, T.; Duarte Villas Mishima, M.; Hermsdorff, H.H.M.; Martino, H.S.D.; Bressan, J.; Tako, E. Effect of carotenoids on gut health and inflammatory status: A systematic review of in vivo animal studies. Crit. Rev. Food Sci. Nutr. 2024, 64, 11206–11221. [Google Scholar] [CrossRef]
- Nagappan, H.; Pee, P.P.; Kee, S.H.Y.; Ow, J.T.; Yan, S.W.; Chew, L.Y.; Kong, K.W. Malaysian brown seaweeds Sargassum siliquosum and Sargassum polycystum: Low density lipoprotein (LDL) oxidation, angiotensin converting enzyme (ACE), α-amylase, and α-glucosidase inhibition activities. Food Res. Int. 2017, 99, 950–958. [Google Scholar] [CrossRef]
- Li, N.; Gao, X.; Zheng, L.; Huang, Q.; Zeng, F.; Chen, H.; Farag, M.A.; Zhao, C. Advances in fucoxanthin chemistry and management of neurodegenerative diseases. Phytomedicine 2022, 105, 154352. [Google Scholar] [CrossRef]
- Mandal, A.K.; Parida, S.; Behera, A.K.; Adhikary, S.P.; Lukatkin, A.A.; Lukatkin, A.S.; Jena, M. Seaweed in the Diet as a Source of Bioactive Metabolites and a Potential Natural Immunity Booster: A Comprehensive Review. Pharmaceuticals 2025, 18, 367. [Google Scholar] [CrossRef]
- Lee, W.S.; Kim, Y.; Bae, M.K.; Yoo, K.H.; Park, H.R.; Kim, Y.I. Fucosterol and Fucoxanthin Enhance Dentin Collagen Stability and Erosion Resistance Through Crosslinking and MMP Inhibition. Int. J. Nanomed. 2024, 19, 13253–13265. [Google Scholar] [CrossRef] [PubMed]
- Teng, C.; Wu, J.; Zhang, Z.; Wang, J.; Yang, Y.; Dong, C.; Wu, L.; Lin, Z.; Hu, Y.; Wang, J.; et al. Fucoxanthin ameliorates endoplasmic reticulum stress and inhibits apoptosis and alleviates intervertebral disc degeneration in rats by upregulating Sirt1. Phytother. Res. 2024, 38, 2114–2127. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, W.; Wu, Q.; Zhang, L.; Wu, Y.; Tong, H.; Su, M. Fucoxanthin Targets β1 Integrin to Disrupt Adhesion and Migration in Human Glioma Cells. J. Agric. Food Chem. 2025, 73, 10961–10973. [Google Scholar] [CrossRef]
- Guo, G.X.; Qiu, Y.H.; Liu, Y.; Yu, L.L.; Zhang, X.; Tsim, K.W.; Qin, Q.W.; Hu, W.H. Fucoxanthin Attenuates Angiogenesis by Blocking the VEGFR2-Mediated Signaling Pathway through Binding the Vascular Endothelial Growth Factor. J. Agric. Food Chem. 2024, 72, 21610–21623. [Google Scholar] [CrossRef]
- Su, J.; Guan, B.; Chen, K.; Feng, Z.; Guo, K.; Wang, X.; Xiao, J.; Chen, S.; Chen, W.; Chen, L.; et al. Fucoxanthin Attenuates Inflammation via Interferon Regulatory Factor 3 (IRF3) to Improve Sepsis. J. Agric. Food Chem. 2023, 71, 12497–12510. [Google Scholar] [CrossRef]
- Du, L.; Chen, C.; Yang, Y.H.; Zheng, Y.; Li, H.; Wu, Z.J.; Wu, H.; Miyashita, K.; Su, G.H. Fucoxanthin alleviates lipopolysaccharide-induced intestinal barrier injury in mice. Food Funct. 2024, 150, 6359–6373. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wu, S.; Yang, G.; Pan, K.; Wang, L.; Hu, Z. A review on the progress, challenges and prospects in commercializing microalgal fucoxanthin. Biotechnol. Adv. 2021, 53, 107865. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wang, J.; Li, Y.; Yang, S.; Chen, D.D.; Tu, Y.; Liu, J.; Sun, Z. Synthetic biology in microalgae towards fucoxanthin production for pharmacy and nutraceuticals. Biochem. Pharmacol. 2024, 220, 115958. [Google Scholar] [CrossRef]
- Zhou, C.; Feng, Y.; Li, Z.; Shen, L.; Li, X.; Wang, Y.; Han, G.; Kuang, T.; Liu, C.; Shen, J.R.; et al. Structural and spectroscopic insights into fucoxanthin chlorophyll a/c-binding proteins of diatoms in diverse oligomeric states. Plant Commun. 2024, 5, 101041. [Google Scholar] [CrossRef]
- Yusof, Z.; Lim, V.; Khong, N.M.H.; Choo, W.S.; Foo, S.C. Assessing the impact of temperature, pH, light and chemical oxidation on fucoxanthin colour changes, antioxidant activity and the resulting metabolites. J. Sci. Food Agric. 2025, 105, 93–108. [Google Scholar] [CrossRef]
- Fatima, I.; Munir, M.; Qureshi, R.; Hanif, U.; Gulzar, N.; Sheikh, A.A. Advanced methods of algal pigments extraction: A review. Crit. Rev. Food Sci. Nutr. 2024, 64, 9771–9788. [Google Scholar] [CrossRef]
- Li, Y.; Sun, H.; Wu, T.; Fu, Y.; He, Y.; Mao, X.; Chen, F. Storage carbon metabolism of Isochrysis zhangjiangensis under different light intensities and its application for co-production of fucoxanthin and stearidonic acid. Bioresour. Technol. 2019, 282, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Reynolds-Brandão, P.; Quintas-Nunes, F.; Bertrand, C.D.; Martins, R.M.; Crespo, M.T.; Galinha, C.F.; Nascimento, F.X. Integration of spectroscopic techniques and machine learning for optimizing Phaeodactylum tricornutum cell and fucoxanthin productivity. Bioresour. Technol. 2025, 418, 131988. [Google Scholar] [CrossRef] [PubMed]
- Rubiño, S.; Peteiro, C.; Aymerich, T.; Hortós, M. Major lipophilic pigments in Atlantic seaweeds as valuable food ingredients: Analysis and assessment of quantification methods. Food Res. Int. 2022, 159, 111609. [Google Scholar] [CrossRef]
- Yusof, Z.; Lim, V.; Khong, N.M.H.; Choo, W.S.; Foo, S.C. Unveiling fucoxanthin’s fate: In vitro gastrointestinal digestion effects on bioaccessibility, antioxidant potential, colour changes, and metabolite profiles. Food Chem. 2025, 463, 141209. [Google Scholar] [CrossRef] [PubMed]
- Tollemeto, M.; Ursulska, S.; Welzen, P.L.W.; Thamdrup, L.H.E.; Malakpour-Permlid, A.; Li, Y.; Soufi, G.; Patiño Padial, T.; Christensen, J.B.; Hagner Nielsen, L.; et al. Tailored Polymersomes for Enhanced Oral Drug Delivery: pH-Sensitive Systems for Intestinal Delivery of Immunosuppressants. Small 2024, 20, e2403640. [Google Scholar] [CrossRef]
- Kang, M.; Quintana, J.; Hu, H.; Teixeira, V.C.; Olberg, S.; Banla, L.I.; Rodriguez, V.; Hwang, W.L.; Schuemann, J.; Parangi, S.; et al. Sustained and Localized Drug Depot Release Using Radiation-Activated Scintillating Nanoparticles. Adv. Mater. 2024, 36, e2312326. [Google Scholar] [CrossRef]
- Gressler, S.; Hipfinger, C.; Part, F.; Pavlicek, A.; Zafiu, C.; Giese, B. A systematic review of nanocarriers used in medicine and beyond—Definition and categorization framework. J. Nanobiotechnol. 2025, 23, 90. [Google Scholar] [CrossRef]
- Kolliopoulos, V.; Mikos, A.G. Decellularized extracellular matrix as a drug delivery carrier. J. Control. Release 2025, 382, 113661. [Google Scholar] [CrossRef]
- Lara-Hernández, G.; Ramos-Silva, J.A.; Pérez-Soto, E.; Figueroa, M.; Flores-Berrios, E.P.; Sánchez-Chapul, L.; Andrade-Cabrera, J.L.; Luna-Angulo, A.; Landa-Solís, C.; Avilés-Arnaut, H. Anticancer Activity of Plant Tocotrienols, Fucoxanthin, Fucoidan, and Polyphenols in Dietary Supplements. Nutrients 2024, 16, 4274. [Google Scholar] [CrossRef]
- Shangguan, F.; Ma, N.; Chen, Y.; Zheng, Y.; Ma, T.; An, J.; Lin, J.; Yang, H. Fucoxanthin suppresses pancreatic cancer progression by inducing bioenergetics metabolism crisis and promoting SLC31A1-mediated sensitivity to DDP. Int. J. Oncol. 2025, 66, 31. [Google Scholar] [CrossRef] [PubMed]
- Kuo, M.Y.; Dai, W.C.; Chang, J.L.; Chang, J.S.; Lee, T.M.; Chang, C.C. Fucoxanthin induces human melanoma cytotoxicity by thwarting the JAK2/STAT3/BCL-xL signaling axis. Environ. Toxicol. 2024, 39, 3356–3366. [Google Scholar] [CrossRef]
- Mendonça, I.; Silva, D.; Conde, T.; Maurício, T.; Cardoso, H.; Pereira, H.; Bartolomeu, M.; Vieira, C.; Domingues, M.R.; Almeida, A. Insight into the efficiency of microalgae’ lipidic extracts as photosensitizers for Antimicrobial Photodynamic Therapy against Staphylococcus aureus. J. Photochem. Photobiol. B 2024, 259, 112997. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Peng, X.; Chen, Y.; Dong, B.; Mao, H. Fucoxanthin ameliorates Propionibacterium acnes-induced ear inflammation in mice by modulating the IκBα/NF-κB signaling pathway and inhibiting NF-κB nuclear translocation. PLoS ONE 2025, 20, e0322950. [Google Scholar] [CrossRef]
- Yang, H.; Xing, R.; Liu, S.; Yu, H.; Li, P. Role of Fucoxanthin towards Cadmium-induced renal impairment with the antioxidant and anti-lipid peroxide activities. Bioengineered 2021, 12, 7235–7247. [Google Scholar] [CrossRef]
- Mao, H.; Wang, L.; Xiong, Y.; Jiang, G.; Liu, X. Fucoxanthin Attenuates Oxidative Damage by Activating the Sirt1/Nrf2/HO-1 Signaling Pathway to Protect the Kidney from Ischemia-Reperfusion Injury. Oxid. Med. Cell. Longev. 2022, 2022, 7444430. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Ye, J.; Liu, Y.; Zhang, S.; Xu, Y.; Yang, Z.; Liu, Z. Fucoxanthin Ameliorates Kidney Injury by CCl4-Induced via Inhibiting Oxidative Stress, Suppressing Ferroptosis, and Modulating Gut Microbiota. ACS Omega 2025, 10, 7407–7421. [Google Scholar] [CrossRef]
- Lee, H.; Jang, H.; Heo, D.; Eom, J.I.; Han, C.H.; Kim, S.M.; Shin, Y.S.; Pan, C.H.; Yang, S. Tisochrysis lutea Fucoxanthin Suppresses NF-κB, JNK, and p38-Associated MMP Expression in Arthritis Pathogenesis via Antioxidant Activity. Antioxidants 2024, 13, 941. [Google Scholar] [CrossRef]
- Chiang, Y.F.; Tsai, C.H.; Chen, H.Y.; Wang, K.L.; Chang, H.Y.; Huang, Y.J.; Hong, Y.H.; Ali, M.; Shieh, T.M.; Huang, T.C.; et al. Protective Effects of Fucoxanthin on Hydrogen Peroxide-Induced Calcification of Heart Valve Interstitial Cells. Mar. Drugs 2021, 19, 307. [Google Scholar] [CrossRef]
- Tan, C.P.; Hou, Y.H. First evidence for the anti-inflammatory activity of fucoxanthin in high-fat-diet-induced obesity in mice and the antioxidant functions in PC12 cells. Inflammation 2014, 37, 443–450. [Google Scholar] [CrossRef]
- Wang, P.T.; Sudirman, S.; Hsieh, M.C.; Hu, J.Y.; Kong, Z.L. Oral supplementation of fucoxanthin-rich brown algae extract ameliorates cisplatin-induced testicular damage in hamsters. Biomed. Pharmacother. 2020, 125, 109992. [Google Scholar] [CrossRef]
- Su, J.; Guo, K.; Huang, M.; Liu, Y.; Zhang, J.; Sun, L.; Li, D.; Pang, K.L.; Wang, G.; Chen, L.; et al. Fucoxanthin, a Marine Xanthophyll Isolated From Conticribra weissflogii ND-8: Preventive Anti-Inflammatory Effect in a Mouse Model of Sepsis. Front. Pharmacol. 2019, 10, 906. [Google Scholar] [CrossRef] [PubMed]
- Slautin, V.N.; Grebnev, D.Y.; Maklakova, I.Y.; Sazonov, S.V. Fucoxanthin exert dose-dependent antifibrotic and anti-inflammatory effects on CCl4-induced liver fibrosis. J. Nat. Med. 2023, 77, 953–963. [Google Scholar] [CrossRef] [PubMed]
- Nurcahyanti, A.D.R.; Lady, J.; Wink, M. Fucoxanthin Potentiates the Bactericidal Activity of Cefotaxime Against Staphylococcus aureus. Curr. Microbiol. 2023, 80, 260. [Google Scholar] [CrossRef] [PubMed]
- Hadjkacem, F.; Elleuch, J.; Pierre, G.; Fendri, I.; Michaud, P.; Abdelkafi, S. Production and purification of fucoxanthins and β-carotenes from Halopteris scoparia and their effects on digestive enzymes and harmful bacteria. Environ. Technol. 2024, 45, 2923–2934. [Google Scholar] [CrossRef]
- Šudomová, M.; Shariati, M.A.; Echeverría, J.; Berindan-Neagoe, I.; Nabavi, S.M.; Hassan, S.T.S. A Microbiological, Toxicological, and Biochemical Study of the Effects of Fucoxanthin, a Marine Carotenoid, on Mycobacterium tuberculosis and the Enzymes Implicated in Its Cell Wall: A Link Between Mycobacterial Infection and Autoimmune Diseases. Mar. Drugs 2019, 17, 641. [Google Scholar] [CrossRef]
- Karpiński, T.M.; Adamczak, A. Fucoxanthin-An Antibacterial Carotenoid. Antioxidants 2019, 8, 239. [Google Scholar] [CrossRef]
- Du, H.F.; Wu, J.W.; Zhu, Y.S.; Hua, Z.H.; Jin, S.Z.; Ji, J.C.; Wang, C.S.; Qian, G.Y.; Jin, X.D.; Ding, H.M. Fucoxanthin Induces Ferroptosis in Cancer Cells via Downregulation of the Nrf2/HO-1/GPX4 Pathway. Molecules 2024, 29, 2832. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Mendonca, P.; Elhag, R.; Soliman, K.F.A. Anticancer Effects of Fucoxanthin through Cell Cycle Arrest, Apoptosis Induction, Angiogenesis Inhibition, and Autophagy Modulation. Int. J. Mol. Sci. 2022, 23, 16091. [Google Scholar] [CrossRef]
- Yu, R.X.; Hu, X.M.; Xu, S.Q.; Jiang, Z.J.; Yang, W. Effects of fucoxanthin on proliferation and apoptosis in human gastric adenocarcinoma MGC-803 cells via JAK/STAT signal pathway. Eur. J. Pharmacol. 2011, 657, 10–19. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Y.; Yang, J.; Jin, L.; Gao, Z.; Xue, L.; Hou, L.; Sui, L.; Liu, J.; Zou, X. Fucoxanthin inhibits tumour-related lymphangiogenesis and growth of breast cancer. J. Cell Mol. Med. 2019, 23, 2219–2229. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Fu, C.; Lin, M.; Lu, Y.; Lian, S.; Xie, X.; Zhou, G.; Li, W.; Zhang, Y.; Jia, L.; et al. Fucoxanthin prevents breast cancer metastasis by interrupting circulating tumor cells adhesion and transendothelial migration. Front. Pharmacol. 2022, 13, 960375. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.J.; Seo, Y.J.; Pan, C.H.; Lee, O.H.; Kim, K.J.; Lee, B.Y. Fucoxanthin Suppresses Lipid Accumulation and ROS Production During Differentiation in 3T3-L1 Adipocytes. Phytother. Res. 2016, 30, 1802–1808. [Google Scholar] [CrossRef]
- Lin, W.C.; Shih, P.H.; Wang, W.; Wu, C.H.; Hsia, S.M.; Wang, H.J.; Hwang, P.A.; Wang, C.Y.; Chen, S.H.; Kuo, Y.T. Inhibitory effects of high stability fucoxanthin on palmitic acid-induced lipid accumulation in human adipose-derived stem cells through modulation of long non-coding RNA. Food Funct. 2015, 6, 2215–2223. [Google Scholar] [CrossRef]
- Ha, A.W.; Kim, W.K. The effect of fucoxanthin rich power on the lipid metabolism in rats with a high fat diet. Nutr. Res. Pract. 2013, 7, 287–293. [Google Scholar] [CrossRef]
- Yang, S.; Li, J.; Yan, L.; Wu, Y.; Zhang, L.; Li, B.; Tong, H.; Lin, X. Molecular Mechanisms of Fucoxanthin in Alleviating Lipid Deposition in Metabolic Associated Fatty Liver Disease. J. Agric. Food Chem. 2024, 72, 10391–10405. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, C.; Li, F.; Yan, Y.; Wu, Y.; Li, B.; Tong, H.; Lang, J. Fucoxanthin Mitigates High-Fat-Induced Lipid Deposition and Insulin Resistance in Skeletal Muscle through Inhibiting PKM1 Activity. J. Agric. Food Chem. 2024, 72, 18013–18026. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.H.; Chen, C.; Zheng, Y.; Wu, Z.J.; Zhou, M.Q.; Liu, X.Y.; Miyashita, K.; Duan, D.L.; Du, L. Fucoxanthin Alleviates Dextran Sulfate Sodium-Induced Colitis and Gut Microbiota Dysbiosis in Mice. J. Agric. Food Chem. 2024, 72, 4142–4154. [Google Scholar] [CrossRef]
- Han, B.; Ma, Y.; Liu, Y. Fucoxanthin Prevents the Ovalbumin-Induced Food Allergic Response by Enhancing the Intestinal Epithelial Barrier and Regulating the Intestinal Flora. J. Agric. Food Chem. 2022, 70, 10229–10238. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, W.; Zhou, Y.; Zhang, J.; Zeng, C.; Sun, P.; Liu, B. Fucoxanthin restructures the gut microbiota and metabolic functions of non-obese individuals in an in vitro fermentation model. Food Funct. 2024, 15, 4805–4817. [Google Scholar] [CrossRef]
- Hao, J.; Zhang, J.; Wu, T. Fucoxanthin extract ameliorates obesity associated with modulation of bile acid metabolism and gut microbiota in high-fat-diet fed mice. Eur. J. Nutr. 2024, 63, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhao, H.; Liu, Z.; Sun, X.; Zhang, D.; Wang, S.; Xu, Y.; Zhang, G.; Wang, D. Modulation of Gut Microbiota by Fucoxanthin During Alleviation of Obesity in High-Fat Diet-Fed Mice. J. Agric. Food Chem. 2020, 68, 5118–5128. [Google Scholar] [CrossRef]
- Guo, B.; Yang, B.; Pang, X.; Chen, T.; Chen, F.; Cheng, K.W. Fucoxanthin modulates cecal and fecal microbiota differently based on diet. Food Funct. 2019, 10, 5644–5655. [Google Scholar] [CrossRef]
- Łagowska, K.; Jurgoński, A.; Mori, M.; Yamori, Y.; Murakami, S.; Ito, T.; Toda, T.; Pieczyńska-Zając, J.M.; Bajerska, J. Effects of dietary seaweed on obesity-related metabolic status: A systematic review and meta-analysis of randomized controlled trials. Nutr. Rev. 2025, 83, e116–e130. [Google Scholar] [CrossRef]
- Shanaida, M.; Mykhailenko, O.; Lysiuk, R.; Hudz, N.; Balwierz, R.; Shulhai, A.; Shapovalova, N.; Shanaida, V.; Bjørklund, G. Carotenoids for Antiaging: Nutraceutical, Pharmaceutical, and Cosmeceutical Applications. Pharmaceuticals 2025, 18, 403. [Google Scholar] [CrossRef]
- Lashmanova, E.; Proshkina, E.; Zhikrivetskaya, S.; Shevchenko, O.; Marusich, E.; Leonov, S.; Melerzanov, A.; Zhavoronkov, A.; Moskalev, A. Fucoxanthin increases lifespan of Drosophila melanogaster and Caenorhabditis elegans. Pharmacol. Res. 2015, 100, 228–241. [Google Scholar] [CrossRef]
- Liu, S.; Mohri, S.; Tsukamoto, M.; Yanai, Y.; Manabe, Y.; Sugawara, T. Preventive effects of dietary fucoxanthin on ultraviolet A induced photoaging in hairless mice. J. Sci. Food Agric. 2025, 105, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Prasedya, E.S.; Martyasari, N.W.R.; Abidin, A.S.; Pebriani, S.A.; Ilhami, B.T.K.; Frediansyah, A.; Sunarwidhi, A.L.; Widyastuti, S.; Sunarpi, H. Macroalgae Sargassum cristaefolium Extract Inhibits Proinflammatory Cytokine Expression in BALB/C Mice. Scientifica 2020, 2020, 9769454. [Google Scholar] [CrossRef] [PubMed]
- Guvatova, Z.; Dalina, A.; Marusich, E.; Pudova, E.; Snezhkina, A.; Krasnov, G.; Kudryavtseva, A.; Leonov, S.; Moskalev, A. Protective effects of carotenoid fucoxanthin in fibroblasts cellular senescence. Mech. Ageing Dev. 2020, 189, 111260. [Google Scholar] [CrossRef]
- Chang, P.M.; Li, K.L.; Lin, Y.C. Fucoidan-Fucoxanthin Ameliorated Cardiac Function via IRS1/GRB2/ SOS1, GSK3β/CREB Pathways and Metabolic Pathways in Senescent Mice. Mar. Drugs 2019, 17, 69. [Google Scholar] [CrossRef]
- Chen, S.J.; Lin, T.B.; Peng, H.Y.; Liu, H.J.; Lee, A.S.; Lin, C.H.; Tseng, K.W. Cytoprotective Potential of Fucoxanthin in Oxidative Stress-Induced Age-Related Macular Degeneration and Retinal Pigment Epithelial Cell Senescence In Vivo and In Vitro. Mar. Drugs 2021, 19, 114. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, H.; Ding, Y.; Liu, S.; Ding, Y.; Lu, B.; Xiao, J.; Zhou, X. Dietary Protective Potential of Fucoxanthin as an Active Food Component on Neurological Disorders. J. Agric. Food Chem. 2023, 71, 3599–3619. [Google Scholar] [CrossRef] [PubMed]
- Guardado Yordi, E.; Pérez Martínez, A.; Radice, M.; Scalvenzi, L.; Abreu-Naranjo, R.; Uriarte, E.; Santana, L.; Matos, M.J. Seaweeds as Source of Bioactive Pigments with Neuroprotective and/or Anti-Neurodegenerative Activities: Astaxanthin and Fucoxanthin. Mar. Drugs 2024, 22, 327. [Google Scholar] [CrossRef]
- Liu, J.; Lu, Y.; Tang, M.; Shao, F.; Yang, D.; Chen, S.; Xu, Z.; Zhai, L.; Chen, J.; Li, Q.; et al. Fucoxanthin Prevents Long-Term Administration l-DOPA-Induced Neurotoxicity through the ERK/JNK-c-Jun System in 6-OHDA-Lesioned Mice and PC12 Cells. Mar. Drugs 2022, 20, 245. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.J.; Lee, C.J.; Lin, T.B.; Peng, H.Y.; Liu, H.J.; Chen, Y.S.; Tseng, K.W. Protective Effects of Fucoxanthin on Ultraviolet B-Induced Corneal Denervation and Inflammatory Pain in a Rat Model. Mar. Drugs 2019, 17, 152. [Google Scholar] [CrossRef]
- Anand, P.; Kaur, A.; Singh, S. Fucoxanthin mitigates valproic acid-induced autistic behavior through modulation of the AKT/GSK-3β signaling pathway. Eur. J. Pharmacol. 2024, 967, 176335. [Google Scholar] [CrossRef] [PubMed]
- Xiang, S.; Liu, F.; Lin, J.; Chen, H.; Huang, C.; Chen, L.; Zhou, Y.; Ye, L.; Zhang, K.; Jin, J.; et al. Fucoxanthin Inhibits β-Amyloid Assembly and Attenuates β-Amyloid Oligomer-Induced Cognitive Impairments. J. Agric. Food Chem. 2017, 65, 4092–4102. [Google Scholar] [CrossRef]
- Oliyaei, N.; Tanideh, N.; Moosavi-Nasab, M.; Dehghanian, A.R.; Iraji, A. Development and characterization of a fucoidan-based nanoemulsion using Nigella sativa oil for improvement of anti-obesity activity of fucoxanthin in an obese rat model. Int. J. Biol. Macromol. 2023, 235, 123867. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Su, W.; Zhang, X.; Liang, D.; Tan, M. In vivo anti-obesity efficacy of fucoxanthin/HP-β-CD nanofibers in high-fat diet induced obese mice. Food Chem. 2023, 429, 136790. [Google Scholar] [CrossRef]
- Wu, C.; Xiang, S.; Wang, H.; Zhang, X.; Tian, X.; Tan, M.; Su, W. Orally Deliverable Sequence-Targeted Fucoxanthin-Loaded Biomimetic Extracellular Vesicles for Alleviation of Nonalcoholic Fatty Liver Disease. ACS Appl. Mater. Interfaces 2024, 16, 9854–9867. [Google Scholar] [CrossRef]
- Wang, K.; Huang, K.; Li, X.; Wu, H.; Wang, L.; Bai, F.; Tan, M.; Su, W. Kelp nanocellulose combined with fucoxanthin achieves lipid-lowering function by reducing oxidative stress with activation of Nrf2/HO-1/NQO1 pathway. Food Chem. 2025, 464, 141588. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Liu, C.; Li, Y.; Wu, C.; Chen, Y.; Tan, M.; Su, W. Engineering fucoxanthin-loaded probiotics’ membrane vesicles for the dietary intervention of colitis. Biomaterials 2023, 297, 122107. [Google Scholar] [CrossRef]
- Wu, Z.; Tang, Y.; Liu, Y.; Chen, Z.; Feng, Y.; Hu, H.; Liu, H.; Chen, G.; Lu, Y.; Hu, Y.; et al. Co-delivery of fucoxanthin and Twist siRNA using hydroxyethyl starch-cholesterol self-assembled polymer nanoparticles for triple-negative breast cancer synergistic therapy. J. Adv. Res. 2025, 70, 463–479. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Huang, X.; Sun, K.; Li, X.; Feng, D.; Nakamura, Y.; Qi, H. Whey protein and flaxseed gum co-encapsulated fucoxanthin promoted tumor cells apoptosis based on MAPK-PI3K/Akt regulation on Huh-7 cell xenografted nude mice. Int. J. Biol. Macromol. 2024, 278, 134838. [Google Scholar] [CrossRef]
- da Silva, A.F.; Moreira, A.F.; Miguel, S.P.; Coutinho, P. Recent advances in microalgae encapsulation techniques for biomedical applications. Adv. Colloid. Interface Sci. 2024, 333, 103297. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Xing, Z.; Chen, Y.; Meng, L.; Tang, X. Improve the chitosan particle-stabilized oil-water interface by dual reinforcement and its effect on the structure and properties of emulsion. Food Chem. 2025, 485, 144500. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, X.; Zhao, J.; Li, X.; Liu, L.; Pei, Y.; Geng, Y.; Xu, M. Phospholipid-cholesterol interactions and their effect on the physicochemical, structural, and in vitro lipid digestion properties of mimicking human milk fat emulsions. Food Chem. 2025, 486, 144584. [Google Scholar] [CrossRef]
- Boostani, S.; Sarabandi, K.; Tarhan, O.; Rezaei, A.; Assadpour, E.; Rostamabadi, H.; Falsafi, S.R.; Tan, C.; Zhang, F.; Jafari, S.M. Multiple Pickering emulsions stabilized by food-grade particles as innovative delivery systems for bioactive compounds. Adv. Colloid. Interface Sci. 2024, 328, 103174. [Google Scholar] [CrossRef]
- Ni, L.; Yu, C.; Wei, Q.; Liu, D.; Qiu, J. Pickering Emulsion Catalysis: Interfacial Chemistry, Catalyst Design, Challenges, and Perspectives. Angew. Chem. Int. Ed. Engl. 2022, 61, e202115885. [Google Scholar] [CrossRef]
- Zhi, L.; Liu, Z.; Wu, C.; Ma, X.; Hu, H.; Liu, H.; Adhikari, B.; Wang, Q.; Shi, A. Advances in preparation and application of food-grade emulsion gels. Food Chem. 2023, 424, 136399. [Google Scholar] [CrossRef]
- Li, L.; Tian, Y.; Liu, Y.; Teng, F.; Li, Y.; Geng, M. Insights into the co-loading capacity of Pickering W/O/W systems for different types of soy protein isolated-pectin particles: Affected by biopolymer complexation sequence. Int. J. Biol. Macromol. 2025, 308, 142593. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Debeli, D.K.; Gan, L.; Deng, J.; Hu, L.; Shan, G. Polyether-modified siloxane stabilized dispersion system on the physical stability and control release of double (W/O/W) emulsions. Food Chem. 2020, 332, 127381. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wei, Z.; Xue, C. Co-encapsulation of curcumin and fucoxanthin in solid-in-oil-in-water multilayer emulsions: Characterization, stability and programmed sequential release. Food Chem. 2024, 456, 139975. [Google Scholar] [CrossRef]
- Bai, Y.; Sun, Y.; Li, X.; Ren, J.; Sun, C.; Chen, X.; Dong, X.; Qi, H. Phycocyanin/lysozyme nanocomplexes to stabilize Pickering emulsions for fucoxanthin encapsulation. Food Res. Int. 2023, 173, 113386. [Google Scholar] [CrossRef]
- Zhong, X.; Wang, K.; Chen, Z.; Fei, S.; Li, J.; Tan, M.; Su, W. Incorporation of fucoxanthin into 3D printed Pickering emulsion gels stabilized by salmon by-product protein/pectin complexes. Food Funct. 2024, 15, 1323–1339. [Google Scholar] [CrossRef]
- Koo, S.Y.; Hwang, K.T.; Hwang, S.; Choi, K.Y.; Park, Y.J.; Choi, J.H.; Truong, T.Q.; Kim, S.M. Nanoencapsulation enhances the bioavailability of fucoxanthin in microalga Phaeodactylum tricornutum extract. Food Chem. 2023, 403, 134348. [Google Scholar] [CrossRef]
- Wang, C.; Bai, Y.; Yin, W.; Qiu, B.; Jiang, P.; Dong, X.; Qi, H. Nanoencapsulation Motivates the High Inhibitive Ability of Fucoxanthin on H2O2-Induced Human Hepatocyte Cell Line (L02) Apoptosis via Regulating Lipid Metabolism Homeostasis. J. Agric. Food Chem. 2023, 71, 6087–6098. [Google Scholar] [CrossRef] [PubMed]
- Sorasitthiyanukarn, F.N.; Muangnoi, C.; Rojsitthisak, P.; Rojsitthisak, P. Stability and biological activity enhancement of fucoxanthin through encapsulation in alginate/chitosan nanoparticles. Int. J. Biol. Macromol. 2024, 263, 130264. [Google Scholar] [CrossRef]
- Li, H.; Hou, Y.; Jia, S.; Tan, M.; Wang, H. Oxidized paramylon self-assembled nanoparticles loaded with fucoxanthin attenuate insulin resistance in HpeG2 cells. Carbohydr. Polym. 2024, 345, 122597. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, Y.; Chen, Y.; Qu, W.; Pei, P.; Li, Z.; Li, Y.; Wang, Y.; Yu, R.; Wang, X. Fabrication, characterization, stability and re-dispersity of H-aggregates fucoxanthin/whey protein/chitosan nanoparticles. Int. J. Biol. Macromol. 2025, 311, 143711. [Google Scholar] [CrossRef]
- Liu, W.; Xu, X.; Liu, W.; Zeng, X.; Shi, S.; Zhang, J.; Tang, J.; Li, Y.; Pang, J.; Wu, C. Construction of fucoxanthin-loaded multi-functional pea protein isolate-fucoidan nanoparticles at neutral pH: Structural characterization and functional verification. Int. J. Biol. Macromol. 2025, 309, 142966. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Lu, Y.; Liu, Y.; Huang, X.; Sun, K.; Qi, H. Encapsulated fucoxanthin improves the functional properties and storage stability of Undaria Pinnatifida and apple freeze-dried snack food during accelerated storage. Food Res. Int. 2025, 201, 115591. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, H.; Ma, L.; Guo, Z.; Liu, Y.; Zheng, J. Construction of glycosylated zein-based colloids to simultaneously improve fucoxanthin’s thermal processing adaptability, digestive stability, and oral bioavailability. Colloids Surf. B Biointerfaces 2025, 245, 114334. [Google Scholar] [CrossRef]
- Tian, X.; Li, J.; Wang, K.; Fei, S.; Zhang, X.; Wu, C.; Tan, M.; Su, W. Microfluidic fabrication of core-shell fucoxanthin nanofibers with improved environmental stability for reducing lipid accumulation in vitro. Food Chem. 2024, 442, 138474. [Google Scholar] [CrossRef]
- Kuang, H.; Peng, X.; Liu, Y.; Li, D. The pro-absorptive effect of glycosylated zein-fatty acid complexes on fucoxanthin via the lipid transporter protein delivery pathway. Food Chem. 2024, 446, 138892. [Google Scholar] [CrossRef]
- Ding, L.; Luo, X.; Xian, Q.; Zhu, S.; Wen, W. Innovative Approaches to Fucoxanthin Delivery: Characterization and Bioavailability of Solid Lipid Nanoparticles with Eco-Friendly Ingredients and Enteric Coating. Int. J. Mol. Sci. 2024, 25, 12825. [Google Scholar] [CrossRef] [PubMed]
- Robles-García, M.; Del-Toro-Sánchez, C.L.; Limón-Vargas, G.; Gutiérrez-Lomelí, M.; Avila-Novoa, M.G.; Villalpando-Vargas, F.V.; Vega-Ruiz, B.; Bernal-Mercado, A.T.; Iturralde-García, R.D.; Gómez-Guzman, A.I.P.; et al. Development of Fucoxanthin-Enriched Yogurt Using Nanoliposomal Carriers: A Strategy for Functional Dairy Products with Antioxidant and Erythroprotective Benefits. Molecules 2025, 30, 1854. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Liu, C.; Li, J.; Li, Y.; Li, J.; Tan, M.; Su, W. Engineering probiotics-derived membrane vesicles for encapsulating fucoxanthin: Evaluation of stability, bioavailability, and biosafety. Food Funct. 2023, 14, 3475–3487. [Google Scholar] [CrossRef]
- Tian, F.; Xu, S.; Gan, M.; Chen, B.; Luan, Q.; Cai, L. Bionic cell wall models: Utilizing TEMPO-oxidized cellulose nanofibers for fucoxanthin delivery systems. Carbohydr. Polym. 2025, 348, 122850. [Google Scholar] [CrossRef]
- McClements, D.J. Edible nanoemulsions: Fabrication, properties, and functional performance. Soft Matter 2010, 7, 2297–2316. [Google Scholar] [CrossRef]
- Liao, W.; Gharsallaoui, A.; Dumas, E.; Elaissari, A. Understanding of the key factors influencing the properties of emulsions stabilized by sodium caseinate. Compr. Rev. Food Sci. Food Saf. 2022, 21, 5291–5317. [Google Scholar] [CrossRef]
- Koo, C.K.W.; Chung, C.; Fu, J.R.; Sher, A.; Rousset, P.; McClements, D.J. Impact of sodium caseinate, soy lecithin and carrageenan on functionality of oil-in-water emulsions. Food Res. Int. 2019, 123, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Dai, J.; Du, Y.; Liu, L.; Li, R.; Wang, Z.; Wang, L.; Huang, Y.; Chen, P.; Zhou, Z.; et al. Caffeic acid phenethyl ester loaded in a targeted delivery system based on a solid-in-oil-in-water multilayer emulsion: Characterization, stability, and fate of the emulsion during in vivo digestion. Food Res. Int. 2022, 161, 111756. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Ahn, D.U. Formulation and characterization of protein-based complexes for nutrient delivery: Impact of polysaccharides on the encapsulation of curcumin with ovalbumin. Food Chem. 2025, 486, 144617. [Google Scholar] [CrossRef] [PubMed]
- Ubeyitogullari, A.; Ahmadzadeh, S.; Kandhola, G.; Kim, J.W. Polysaccharide-based porous biopolymers for enhanced bioaccessibility and bioavailability of bioactive food compounds: Challenges, advances, and opportunities. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4610–4639. [Google Scholar] [CrossRef]
- Sun, C.; Wei, Z.; Xue, C.; Yang, L. Development, application and future trends of starch-based delivery systems for nutraceuticals: A review. Carbohydr. Polym. 2023, 308, 120675. [Google Scholar] [CrossRef]
- Sandmeier, M.; Hoeng, J.; Skov Jensen, S.; Nykjær Nikolajsen, G.; Ziegler Bruun, H.; To, D.; Ricci, F.; Schifferle, M.; Bernkop-Schnürch, A. Oral formulations for highly lipophilic drugs: Impact of surface decoration on the efficacy of self-emulsifying drug delivery systems. J. Colloid. Interface Sci. 2025, 677, 1108–1119. [Google Scholar] [CrossRef]
- Jeon, Y.; Kim, S.G.; Choi, K.O.; Park, J.T. Encapsulation of hydrophobically ion-paired teduglutide in nanoemulsions: Effect of anionic counterions. Food Chem. 2025, 471, 142774. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Wang, S.T.; Berisha, N.; Manzari, M.T.; Vogt, K.; Gang, O.; Heller, D.A. Fragment-based drug nanoaggregation reveals drivers of self-assembly. Nat. Commun. 2023, 14, 8340. [Google Scholar] [CrossRef]
- Lee, H. Hydrodynamics and Aggregation of Nanoparticles with Protein Corona: Effects of Protein Concentration and Ionic Strength. Small 2024, 20, e2403913. [Google Scholar] [CrossRef]
- Birk, S.E.; Boisen, A.; Nielsen, L.H. Polymeric nano- and microparticulate drug delivery systems for treatment of biofilms. Adv. Drug Deliv. Rev. 2021, 174, 30–52. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Sun, Q.; Zhang, R.; Shan, G.; Zhang, H.; Peng, R.; Liu, M.; Sun, G.; Qiao, L.; Li, Y.; et al. Extracellular vesicles-hitchhiking boosts the deep penetration of drugs to amplify anti-tumor efficacy. Biomaterials 2025, 314, 122829. [Google Scholar] [CrossRef] [PubMed]
- Oieni, J.; Levy, L.; Letko Khait, N.; Yosef, L.; Schoen, B.; Fliman, M.; Shalom-Luxenburg, H.; Malkah Dayan, N.; D’Atri, D.; Cohen Anavy, N.; et al. Nano-Ghosts: Biomimetic membranal vesicles, technology and characterization. Methods 2020, 177, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Hahm, J.; Kim, J.; Park, J. Strategies to Enhance Extracellular Vesicle Production. Tissue Eng. Regen. Med. 2021, 18, 513–524. [Google Scholar] [CrossRef]
- Zhang, B.; Gao, Y.; Zhang, L.; Zhou, Y. The plant cell wall: Biosynthesis, construction, and functions. J. Integr. Plant Biol. 2021, 63, 251–272. [Google Scholar] [CrossRef]
- Patel, A.S.; Lakshmibalasubramaniam, S.; Nayak, B.; Tripp, C.; Kar, A.; Sappati, P.K. Improved stability of phycobiliprotein within liposome stabilized by polyethylene glycol adsorbed cellulose nanocrystals. Int. J. Biol. Macromol. 2020, 163, 209–218. [Google Scholar] [CrossRef]
- Wang, X.; Liu, L.; Xia, S.; Muhoza, B.; Cai, J.; Zhang, X.; Duhoranimana, E.; Su, J. Sodium carboxymethyl cellulose modulates the stability of cinnamaldehyde-loaded liposomes at high ionic strength. Food Hydrocoll. 2019, 93, 10–18. [Google Scholar] [CrossRef]
- Wang, J.; Xing, K.; Zhang, G.; Li, Z.; Ding, X.; Leong, D.T. Surface Components and Biological Interactions of Extracellular Vesicles. ACS Nano 2025, 19, 8433–8461. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Guo, M.; Jin, Z. Innovative Controlled-Release Systems for Fucoxanthin: Research Progress and Applications. Pharmaceutics 2025, 17, 889. https://doi.org/10.3390/pharmaceutics17070889
Wang S, Guo M, Jin Z. Innovative Controlled-Release Systems for Fucoxanthin: Research Progress and Applications. Pharmaceutics. 2025; 17(7):889. https://doi.org/10.3390/pharmaceutics17070889
Chicago/Turabian StyleWang, Shiyan, Mengran Guo, and Zhaohui Jin. 2025. "Innovative Controlled-Release Systems for Fucoxanthin: Research Progress and Applications" Pharmaceutics 17, no. 7: 889. https://doi.org/10.3390/pharmaceutics17070889
APA StyleWang, S., Guo, M., & Jin, Z. (2025). Innovative Controlled-Release Systems for Fucoxanthin: Research Progress and Applications. Pharmaceutics, 17(7), 889. https://doi.org/10.3390/pharmaceutics17070889