Antioxidant Capacity and Therapeutic Applications of Honey: Health Benefits, Antimicrobial Activity and Food Processing Roles
Abstract
1. Introduction
2. Chemical Composition and Its Properties
3. Antioxidant Capacity of Honey and Its Health Benefits
4. Role of Antioxidants in Preventing Cancer
5. Antioxidants and Cardiovascular Diseases
5.1. Quercetin
5.2. Acacetin
5.3. Caffeic Acid Phenethyl Ester (CAPE)
5.4. Kaempferol
5.5. Galangin
6. Antioxidants and Neural Diseases
Pinocembrin
7. Antimicrobial Activities of Honey
8. Wound Healing
9. Food Processing
10. Anti-Inflammatory and Immunological Properties of Honey
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Alvarez-Suarez, J.M.; Tulipani, S.; Díaz, D.; Estevez, Y.; Romandini, S.; Giampieri, F.; Damiani, E.; Astolfi, P.; Bompadre, S.; Battino, M. Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds. Food Chem. Toxicol. 2010, 48, 2490–2499. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M.; Giampieri, F.; Battino, M. Honey as a Source of Dietary Antioxidants: Structures, Bioavailability and Evidence of Protective Effects Against Human Chronic Diseases. Curr. Med. Chem. 2013, 20, 621–638. [Google Scholar] [CrossRef] [PubMed]
- Pisoschi, A.M.; Pop, A. The Role of Antioxidants in the Chemistry of Oxidative Stress: A Review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Understanding mechanisms of antioxidant action in health and disease. Nat. Rev. Mol. Cell Biol. 2024, 25, 13–33. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Hazra, K.; Prasad, P.V.V.; Bulleddu, R. Honey: An important nutrient and adjuvant for maintenance of health and management of diseases. J. Ethn. Food 2024, 11, 19. [Google Scholar] [CrossRef]
- Al-Madhagi, H.; Masoud, A. Limitations and Challenges of Antioxidant Therapy. Phytother. Res. 2024, 38, 5549–5566. [Google Scholar] [CrossRef]
- Tumilaar, S.G.; Hardianto, A.; Dohi, H.; Kurnia, D. A Comprehensive Review of Free Radicals, Oxidative Stress, and Antioxidants: Overview, Clinical Applications, Global Perspectives, Future Directions, and Mechanisms of Antioxidant Activity of Flavonoid Compounds. J. Chem. 2024, 2024, 1–21. [Google Scholar] [CrossRef]
- Koo, T.H.; Zakaria, A.D.; Mustafa, M.Z. Honey clinical applications in complementary medicine: A critical review. J. Pharm. Pharmacogn. Res. 2024, 12, 1040–1055. [Google Scholar] [CrossRef]
- Tafere, D.A. Chemical composition and uses of honey: A Review. J. Food Sci. Nutr. Res. 2021, 4, 194–201. [Google Scholar] [CrossRef]
- Dar, S.A.; Farook, U.B.; Rasool, K.; Ahad, S. Chapter one—Honey: Classification, composition, safety, quality issues and health benefits. In Advanced Techniques of Honey Analysis—Characterization, Authentication, and Adulteration, 1st ed.; Nayik, G.A., Uddin, J., Nanda, V., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 1–37. [Google Scholar]
- Tlak Gajger, I.; Vlainić, J. Antioxidant Activity of Honey Bee Products. Antioxidants 2025, 14, 64. [Google Scholar] [CrossRef]
- Yangoua, H.; Dibacto, R.E.K.; Tchuente, B.R.T.; Nyobe, E.C.; Nguedjo, M.W.; Dimitri, T.K.A.; Kamini, M.F.G. Physicochemical properties and antioxidant potential of honey from Cameroon agroecological zones. Heliyon 2024, 10, e40232. [Google Scholar] [CrossRef] [PubMed]
- Mahesar, S.A.; Sidhu, A.R.; Naz, S.; Kandhro, A.A. Phenolic and Mineral Contents in Honey and Their Associated Health Benefits. In Honey in Food Science and Physiology, 1st ed.; Kumar, R., Hajam, Y.A., Bala Dhull, S., Giri, A., Eds.; Springer: Singapore, 2024; pp. 155–179. [Google Scholar]
- Osés, S.M.; Rodríguez, C.; Valencia, O.; Fernández-Muiño, M.A.; Sancho, M.T. Relationships among Hydrogen Peroxide Concentration, Catalase, Glucose Oxidase, and Antimicrobial Activities of Honeys. Foods 2024, 13, 1344. [Google Scholar] [CrossRef] [PubMed]
- Quinn, A.; El Chazli, Y.; Escrig, S.; Daraspe, J.; Neuschwander, N.; McNally, A.; Genoud, C.; Meibom, A.; Engel, P. Host-derived organic acids enable gut colonization of the honey bee symbiont Snodgrassella alvi. Nat. Microbiol. 2024, 9, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Zammit Young, G.-W.; Blundell, R. A Review on the Phytochemical Composition and Health Applications of Honey. Heliyon 2023, 9, e12507. [Google Scholar] [CrossRef]
- Shakoori, Z.; Salaseh, E.; Mehrabian, A.R.; Tehrani, D.M.; Dardashti, N.F.; Salmanpour, F. The amount of antioxidants in honey has a strong relationship with the plants selected by honey bees. Sci. Rep. 2024, 14, 351. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Ye, J.; Hu, Y.; Zhang, J.; Li, W.; Zhou, X.; Yu, M.; Yu, Y.; Yang, J.; Yang, W.; et al. Extraction and Synthesis of Typical Carotenoids: Lycopene, β-Carotene, and Astaxanthin. Molecules 2024, 25, 4549. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Sulaiman, S.A.; Baig, A.A.; Ibrahim, M.; Liaqat, S.; Fatima, S.; Jabeen, S.; Shamim, N.; Othman, N.H. Honey as a Potential Natural Antioxidant Medicine: An Insight into Its Molecular Mechanisms of Action. Oxid. Med. Cell. Longev. 2018, 2018, 8367846. [Google Scholar] [CrossRef]
- Yunus, M. Antioxidant Properties of Honey: Mechanisms and Clinical Applications. Free Radic. Antioxid. 2024, 13, 50–53. [Google Scholar] [CrossRef]
- Saad, B. Immunomodulatory and Anti-Inflammatory Properties of Honey and Bee Products. Immuno 2025, 5, 19. [Google Scholar] [CrossRef]
- Fadzil, M.A.M.; Mustar, S.; Rashed, A.A. The Potential Use of Honey as a Neuroprotective Agent for the Management of Neurodegenerative Diseases. Nutrients 2023, 15, 1558. [Google Scholar] [CrossRef]
- Martinello, M.; Mutinelli, F. Antioxidant Activity in Bee Products: A Review. Antioxidants 2021, 10, 71. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Kumar, S.; Kanwar, S.S. Honey: Introduction, History, Composition, and Its Uses. In Biomedical Perspectives of Herbal Honey, 1st ed.; Springer: Singapore, 2024; pp. 1–17. [Google Scholar]
- Balkrishna, A.; Saini, A.; Yadav, P.; Yadav, P.; Kumar, B.; Arya, V. Cardioprotective, Anti-Atherogenic and Anti-Cancerous Potential of Honey. In Honey in Food Science and Physiology, 1st ed.; Kumar, R., Hajam, Y.A., Bala Dhull, S., Giri, A., Eds.; Springer: Singapore, 2024; pp. 255–265. [Google Scholar]
- Liu, B.; Nguyen, P.L.; Li, H.Y.X.; Wang, H.; Nguyen, T.G.B.; Sahoo, P.K.; Sur, M.; Reddy, J.; Sillman, S.; Kachman, S.D.; et al. Honey vesicle-like nanoparticles protect aged liver from non-alcoholic steatohepatitis. Acta Pharm. Sin. B 2024, 4, 3661–3679. [Google Scholar] [CrossRef] [PubMed]
- Bonsignore, G.; Martinotti, S.; Ranzato, E. Honey Bioactive Molecules: There Is a World Beyond the Sugars. BioTech 2024, 13, 47. [Google Scholar] [CrossRef] [PubMed]
- Spoială, A.; Ilie, C.-I.; Ficai, D.; Ficai, A.; Andronescu, E. Synergic Effect of Honey with Other Natural Agents in Developing Efficient Wound Dressings. Antioxidants 2023, 12, 34. [Google Scholar] [CrossRef] [PubMed]
- Safitri, E.; Purnobasuki, H.; Al-Anshori, A.A.; Lestari, T.D.; Utama, S.; Yimer, N. Honey-derived phytochemicals: Implications for stem cell activation and health benefits. J. Funct. Foods 2024, 114, 106058. [Google Scholar] [CrossRef]
- Ndungu, N.N.; Kegode, T.M.; Kurgat, J.K.; Baleba, S.B.S.; Cheseto, X.; Turner, S.; Taboue, G.C.T.; Kasina, J.M.; Subramanian, S.; Nganso, B.T. Bio-functional properties and phytochemical composition of selected Apis mellifera honey from Africa. Heliyon 2024, 10, e30839. [Google Scholar] [CrossRef]
- Wang, S.; Qiu, Y.; Zhu, F. An updated review of functional ingredients of Manuka honey and their value-added innovations. Food Chem. 2024, 440, 138060. [Google Scholar] [CrossRef]
- Kumar, S.; Verma, M.; Hajam, Y.A.; Kumar, R. Honey infused with herbs: A boon to cure pathological diseases. Heliyon 2024, 10, e23302. [Google Scholar] [CrossRef]
- Ntakoulas, D.D.; Tsagkaris, A.S.; Raptis, S.; Pasias, I.N.; Raptopoulou, K.G.; Kharoshka, A.; Schulzova, V.; Proestos, C. Study of authenticity, quality characteristics and bioactivity in honey samples from different botanical origins and countries. J. Food Comp. Anal. 2024, 136, 106716. [Google Scholar] [CrossRef]
- Ameer, K.; Murtaza, N.A.; Jiang, G.; Zhao, C.C.; Siddique, F.; Kausar, T.; Mueen-ud-Din, G.; Mahmood, S. Chapter six-Fluorescence and ultraviolet–visible spectroscopy in the honey analysis. In Advanced Techniques of Honey Analysis-Characterization, Authentication, and Adulteration, 1st ed.; Nayik, G.A., Uddin, J., Nanda, V., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 153–191. [Google Scholar]
- Nyarko, K.; Mensah, S.; Greenlief, C.M. Examining the Use of Polyphenols and Sugars for Authenticating Honey on the U.S. Market: A Comprehensive Review. Molecules 2024, 29, 4940. [Google Scholar] [CrossRef]
- Dżugan, M.; Tomczyk, M.; Sowa, P.; Grabek-Lejko, D. Antioxidant activity as biomarker of honey variety. Molecules 2018, 23, 2069. [Google Scholar] [CrossRef]
- Filipe, M.S.; Kowalczyk, T.; Kukula-Koch, W.; Wieczfinska, J.; Bangay, G.; Diaz-Lanza, A.M.; Cardoso, R.V.C.; Mandim, F.; Falcão, S.I.; Vilas-Boas, M.; et al. Evaluating the quality, physicochemical properties, and biological activities of Centauri® honey from Turkey. Food Biosci. 2024, 62, 105028. [Google Scholar] [CrossRef]
- Halagarda, M.; Groth, S.; Popek, S.; Rohn, S.; Pedan, V. Antioxidant activity and phenolic profile of selected organic and conventional honeys from Poland. Antioxidants 2020, 9, 44. [Google Scholar] [CrossRef] [PubMed]
- Al-Farsi, M.; Al-Amri, A.; Al-Hadhrami, A.; Al-Belushi, S. Color, flavonoids, phenolics and antioxidants of Omani honey. Heliyon 2018, 4, e00874. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.V.; Krishnan, K.T.; Salleh, N.; Gan, S.H. Biological and therapeutic effects of honey produced by honey bees and stingless bees: A comparative review. Rev. Bras. Farmacogn. 2016, 26, 657–664. [Google Scholar] [CrossRef]
- Mračević, S.Đ.; Krstić, M.; Lolić, A.; Ražić, S. Comparative study of the chemical composition and biological potential of honey from different regions of Serbia. Microchem. J. 2020, 152, 104420. [Google Scholar] [CrossRef]
- Alves, A.; Ramos, A.; Gonçalves, M.M.; Bernardo, M.; Mendes, B. Antioxidant activity, quality parameters and mineral content of Portuguese monofloral honeys. J. Food Comp. Anal. 2013, 30, 130–138. [Google Scholar] [CrossRef]
- Tlak Gajger, I.; Pavliček, D.; Oreščanin, V.; Varenina, I.; Sedak, M.; Bilandžić, N. Mineral Concentrations in Different Types of Honey Originating from Three Regions of Continental Croatia. Foods 2024, 13, 2754. [Google Scholar] [CrossRef]
- Wang, X.; Liu, H.; Xue, Y.; Cui, L.; Chen, L.; Ho, K.; Huang, Y. Formation of environmentally persistent free radicals and their risks for human health: A review. Environ. Chem. Lett. 2024, 22, 1327–1343. [Google Scholar] [CrossRef]
- Hassan, H.A.; Ahmed, H.S.; Hassan, D.F. Free radicals and oxidative stress: Mechanisms and therapeutic targets. Hum. Antibodies 2024, 32, 151–167. [Google Scholar] [CrossRef]
- Yang, H.; Leng, J.; Liu, N.; Huang, L. Free radicals and antioxidants in diseases associated with immune dysfunction, inflammatory process, and aberrant metabolism. Front. Endocrinol. 2024, 15, 1363854. [Google Scholar] [CrossRef]
- Bose, D.; Famurewa, A.C.; Akash, A.; Othman, E.M. The Therapeutic Mechanisms of Honey in Mitigating Toxicity from Anticancer Chemotherapy Toxicity: A Review. J. Xenobiot. 2024, 14, 1109–1129. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.L.; Konsue, N.; Bennett, L.L.; El-Kenawy, A.E.-M. Preventive potential of antioxidants in age-related diseases. Front. Pharmacol. 2024, 15, 1515004. [Google Scholar] [CrossRef] [PubMed]
- Kardas, M.; Staśkiewicz-Bartecka, W.; Sołtys, K.; Dul, L.; Sapała, A.M.; Kiciak, A.; Bielaszka, A.; Kardas, J. The quality of selected raw and pasteurized honeys based on their sensory profiles and consumer preferences. Front. Nutr. 2024, 16, 1330307. [Google Scholar] [CrossRef] [PubMed]
- Dossena, S.; Marino, A. Oxidative Stress and Antioxidants in Aging. Antioxidants 2024, 13, 1288. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Zhang, M.; Yuan, Y.; Mu, G.; Xu, H.; Zhao, T.; Wang, Y.; Xue, X. Chaste honey in long term-storage: Occurrence and accumulation of Maillard reaction products, and safety assessment. Food Chem. 2023, 30, 136457. [Google Scholar] [CrossRef]
- Ahmad, A.; Younas, K. Microbial Production of Apigenin and Chrysin. In Microbial Production of Food Bioactive Compounds; Jafari, S.M., Harzevili, F.D., Eds.; Springer: Berlin, Germany, 2024; pp. 1–29. [Google Scholar]
- Ayoub, W.S.R.; Zahoor, I.; Dar, A.H.; Farooq, S.; Mir, T.A.; Ganaie, T.A.; Srivastava, S.; Pandey, V.K.; Altaf, A. Exploiting the polyphenolic potential of honey in the prevention of chronic diseases. Food Chem. Advan. 2023, 3, 100373. [Google Scholar] [CrossRef]
- Vani, S.N.; Soni, D. Nutritional Profile and Health Benefits of Buckwheat: A Miracle Pseudo Cereal. CARAS. 4, Centre for Advanced Research in Agricultural Sciences. Res. J. Agricul. Sci. 2024, 15, 1204–1209. [Google Scholar]
- Sawarkar, A.B. Color intensity and antioxidant properties of honey produced from North Maharashtra, India. J. Food Sci. Technol. 2024, 1, 1–9. [Google Scholar] [CrossRef]
- Mahmoud, M.A.A.; Kılıç-Büyükkurt, O.; Aboul Fotouh, M.A.; Selli, S. Aroma active compounds of honey: Analysis with GC-MS, GC-O, and molecular sensory techniques. J. Food Comp. Anal. 2024, 134, 106545. [Google Scholar] [CrossRef]
- Hajj, E.R.; Estephan, N. Advances in infrared spectroscopy and chemometrics for honey analysis: A comprehensive review. Cri. Rev. Food Sci. Nutr. 2024, 12, 1–14. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Wu, L.; Liu, Y.F. IRE1α: From the function to the potential therapeutic target in atherosclerosis. Mol. Cell Biochem. 2024, 479, 1079–1092. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Cai, H.; He, X.; Tang, Z.; Lu, S. Enzyme-mimetic antioxidant nanomaterials for ROS scavenging: Design, classification, and biological applications. Coord. Chem. Rev. 2024, 500, 215536. [Google Scholar] [CrossRef]
- Bani, C.; Peñas, E.; Baron, G.; Martínez-Villaluenga, C.; Mercogliano, F.; Aldini, G.; Piazza, S.; Lorenzo, C.D.; Restani, P. Characterization of the phenolic profile and in vitro antioxidant potential of different varieties of common buckwheat (Fagopyrum esculentum Moench) and Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.). LWT 2025, 215, 117261. [Google Scholar] [CrossRef]
- Alcoléa, M.; Santana Junior, M.B.; Oliveira, K.A.M.; Tussolini, L.; Leite, M.A.G.; Honorio-França, A.C.; França, E.L.; Pertuzatti, P.B. Bioactive compounds of honey from different regions of Brazil: The effect of simulated gastrointestinal digestion on antioxidant and antimicrobial properties. Food Funct. 2024, 15, 1310–1322. [Google Scholar] [CrossRef]
- Bok, V.V.; Šola, I.; Rusak, G.; Budisavljević, A.; Nguyen, R.; Ludwig-Müller, J.; Maleš, Ž. Phenolic content and antioxidant activity of Croatian and German honey. Acta Pharm. 2024, 74, 673–692. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Othman, N.H. Honey as a Potential Natural Anticancer Agent: A Review of Its Mechanisms. Evid.-Based Complement. Altern. Med. 2013, 2013, 829070. [Google Scholar] [CrossRef]
- Martinotti, S.; Bonsignore, G.; Ranzato, E. Understanding the Anticancer Properties of Honey. Int. J. Mol. Sci. 2024, 25, 11724. [Google Scholar] [CrossRef]
- Wahid, M.; Nazeer, M.; Qadir, A.; Azmi, M.B. Investigating the Protein-Based Therapeutic Relationship between Honey Protein SHP-60 and Bevacizumab on Angiogenesis: Exploring the Synergistic Effect through In Vitro and In Silico Analysis. ACS Omega 2024, 9, 17143–17153. [Google Scholar] [CrossRef]
- Garcıa, L.M.; Caicedo-Garzon, V.; Riveros, A.J. Oral administration of phytochemicals protects honey bees against cognitive and motor impairments induced by the insecticide fipronil. PLoS ONE 2024, 19, e0300899. [Google Scholar] [CrossRef]
- Alarjani, W.M.A.; Mohammed, M.E.A. Antioxidant activities of Saudi honey samples related to their content of short peptides. Sci. Rep. 2024, 14, 24318. [Google Scholar] [CrossRef] [PubMed]
- Mahani, P.R.F.; Ghibran, H.M.; Herlina, A.F.; Nurhasanah, S.; Nurjanah, N.; Elfirta, R.R.; Pribadi, A.; Rahadian Amalia, R.L.; Samudra, I.M. A report on the physicochemical and antioxidant properties of three Indonesian forest honeys produced by Apis dorsata. Food Chem. 2025, 25, 102156. [Google Scholar] [CrossRef]
- Zulkifli, M.F.; Masimen, M.A.A.; Ridzuan, P.M.; Wan Ismail, W.I. Exploring honey’s potential as a functional food for natural sleep aid. Food Funct. 2024, 15, 9678–9689. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Cheng, Y.; Chen, F. The relationship between caffeine consumption and colon cancer prevalence in a nationally representative population. Front. Nutr. 2024, 11, 1375252. [Google Scholar] [CrossRef] [PubMed]
- Balhara, N.; Arup Giri, R.; Naryal, A.; Kumar, R. Golden Nectar: Unveiling Honey’s Healing Touch as Nature’s Immunity Booster. In Honey in Food Science and Physiology; Kumar, R., Hajam, Y.A., Bala Dhull, S., Giri, A., Eds.; Springer: Singapore, 2024; pp. 89–119. [Google Scholar]
- Cutty, S.; Hughes, F.; Ortega-Prieto, P.; Desai, S.; Thomas, P.; Fets, L.; Secrier, M.; Barr, A. Pro-survival roles for p21(Cip1/Waf1) in non-small cell lung cancer. Br. J. Cancer 2024, 132, 421–437. [Google Scholar] [CrossRef]
- Elmitwalli, O.; Darwish, R.; Al-Jabery, L.; Algahiny, A.; Roy, S.; Butler, A.E.; Hasan, A.S. The Emerging Role of p21 in Diabetes and Related Metabolic Disorders. Int. J. Mol. Sci. 2024, 25, 13209. [Google Scholar] [CrossRef]
- Hassan, D.; Menges, C.W.; Testa, J.R.; Bellacosa, A. AKT kinases as therapeutic targets. J. Exp. Clin. Cancer Res. 2024, 43, 313. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.T.; Tran, E.; Nguyen, T.H.; Do, P.T.; Huynh, T.H.; Huynh, H. Role of Activated MEK–ERK Pathway in Quercetin-Induced Growth Inhibition and Apoptosis in A549 Lung Cancer Cells. Carcinogenesis 2004, 25, 647–659. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Martinez, E.J.; Flores-Hernández, F.Y.; Salazar-Montes, A.M.; Nario-Chaidez, H.F.; Hernández-Ortega, L.D. Quercetin, a Flavonoid with Great Pharmacological Capacity. Molecules 2024, 29, 1000. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Zhou, G.; Zhao, H.; Xie, D.; Zhang, J.; Kües, U.; Xiao, Y.; Fang, Z.; Liu, J. An apoptosis-inducing factor controls programmed cell death and laccase expression during fungal interactions. Appl. Microbiol. Biotechnol. 2024, 108, 135. [Google Scholar] [CrossRef]
- Mustafa, M.; Ahmad, R.; Tantry, I.Q.; Ahmad, W.; Siddiqui, S.; Alam, M.; Abbas, K.; Moinuddin; Hassan, M.I.; Habib, S.; et al. Apoptosis: A Comprehensive Overview of Signaling Pathways, Morphological Changes, and Physiological Significance and Therapeutic Implications. Cells 2024, 13, 1838. [Google Scholar] [CrossRef]
- Naponelli, V.; Rocchetti, M.T.; Mangieri, D. Apigenin: Molecular Mechanisms and Therapeutic Potential against Cancer Spreading. Int. J. Mol. Sci. 2024, 25, 5569. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Ashraf, G.M.; Sheikh, K.; Khan, A.; Ali, S.; Ansari, M.M.; Adnan, M.; Pasupuleti, V.R.; Hassan, M.I. Potential Therapeutic Implications of Caffeic Acid in Cancer Signaling: Past, Present, and Future. Front. Pharmacol. 2022, 13, 845871. [Google Scholar] [CrossRef] [PubMed]
- Kocot, J.; Kiełczykowska, M.; Luchowska-Kocot, D.; Kurzepa, J.; Musik, I. Antioxidant Potential of Propolis, Bee Pollen, and Royal Jelly: Possible Medical Application. Oxid. Med. Cell. Longev. 2018, 2018, 7074209. [Google Scholar] [CrossRef] [PubMed]
- Plasay, M.; Muslimin, L. The Effect of Administration of Honey on Physical Activity in Malondialdehyde, Glutathione, and Superoxide Dismutase Blood Levels in Male Rat. J. Med. Chem. Sci. 2024, 7, 590–597. [Google Scholar]
- Dalal, R.; Grujic, D. Epinephrine. In StatPearls; StatPearls: Treasure Island, FL, USA, 2024; Available online: https://www.ncbi.nlm.nih.gov/books/NBK482160/ (accessed on 7 July 2025).
- Rakha, M.K.; Nabil, Z.I.; Hussein, A.A. Cardioactive and Vasoactive Effects of Natural Wild Honey Against Cardiac Malperformance Induced by Hyperadrenergic Activity. Glob. J. Pharmacol. 2008, 2, 20–25. [Google Scholar] [CrossRef]
- Chu, J.; Hua, L.; Liu, X.; Xiong, H.; Jiang, F.; Zhou, W.; Wang, L.; Xue, G. Superoxide dismutase alterations in COVID-19: Implications for disease severity and mortality prediction in the context of omicron variant infection. Front. Immunol. 2024, 15, 1362102. [Google Scholar] [CrossRef]
- Zhang, S.; Li, S.; Xie, S.; Cui, L.; Gao, Y.; Wang, Y. The Role of Ca2+/PI3K/Akt/eNOS/NO Pathway in Astragaloside IV–Induced Inhibition of Endothelial Inflammation Triggered by Angiotensin II. Mediat. Inflamm. 2024, 2024, 3193950. [Google Scholar] [CrossRef]
- Zhang, F.; Yan, Y.; Zhang, L.; Li, D.; Li, L.; Lian, W.; Xia, C.; He, J.; Xu, J.; Zhang, W. Pharmacological activities and therapeutic potential of galangin, a promising natural flavone, in age-related diseases. Phytomedicine 2023, 120, 155061. [Google Scholar] [CrossRef]
- Kamisah, Y.; Jalil, J.; Yunos, N.M.; Zainalabidin, S. Cardioprotective Properties of Kaempferol: A Review. Plants 2023, 12, 2096. [Google Scholar] [CrossRef]
- Abdelbagi, O.; Taha, M.; Al-Kushi, A.G.; Alobaidy, M.A.; Baokbah, T.A.S.; Sembawa, H.A.; Azher, Z.A.; Obaid, R.; Babateen, O.; Bokhari, B.T.; et al. Protective Effects of Galangin Against Cyclophosphamide-Induced Cardiotoxicity via Suppressing NF-κB and Improving Mitochondrial Biogenesis in Rats. Medicina 2025, 61, 335. [Google Scholar] [CrossRef]
- Hercberg, S.; Galan, P.; Preziosi, P.; Bertrais, S.; Mennen, L.; Malvy, D.; Roussel, A.-M.; Favier, A.; Briançon, S. The SU.VI.MAX Study: A Randomized, Placebo-Controlled Trial of the Health Effects of Antioxidant Vitamins and Minerals. Arch. Intern. Med. 2004, 164, 2335–2342. [Google Scholar] [CrossRef] [PubMed]
- Nagyová, A.; Krajčovičová Kudláčková, M.; Horská, A.; Smolková, B.; Blažíček, P.; Rašlová, K.; Collins, A.; Dušinská, M. Lipid peroxidation in men after dietary supplementation with a mixture of antioxidant nutrients. Free Radic. Res. 2004, 38, 597–602. [Google Scholar]
- El-Shafey, A.; Seliem, M.; El-Zawahry, S.; Shahen, E.; Mahmoud, D. Effect of honey bee on some antioxidant enzymes and lipid profile in hypercholesterolemic male albino rats. Zagazig Univ. Med. J. 2015, 21, 1–11. [Google Scholar] [CrossRef]
- Erejuwa, O.O.; Sulaiman, S.A.; Ab Wahab, M.S.; Sirajudeen, K.N.S.; Md Salleh, M.S.; Gurtu, S. Differential Responses to Blood Pressure and Oxidative Stress in Streptozotocin-Induced Diabetic WKY and Spontaneously Hypertensive Rats: Effects of Antioxidant (Honey) Treatment. Int. J. Mol. Sci. 2011, 12, 1888–1907. [Google Scholar] [CrossRef] [PubMed]
- Erejuwa, O.O.; Sulaiman, S.A.; Ab Wahab, M.S. Honey: A Novel Antioxidant. Molecules 2012, 17, 4400–4423. [Google Scholar] [CrossRef]
- Erejuwa, O.O.; Sulaiman, S.A.; Ab Wahab, M.S.; Sirajudeen, K.N.S.; Salleh, M.S.M.; Gurtu, S. Honey improves antioxidant defense system in kidneys of streptozotocin-induced diabetic rats. Int. J. Mol. Sci. 2011, 12, 861–870. [Google Scholar] [CrossRef]
- Guerrero, J.A.; Navarro-Nuñez, L.; Lozano, M.L.; Martínez, C.; Vicente, V.; Gibbins, J.M.; Rivera, J. Flavonoids inhibit the platelet TxA2 signalling pathway and antagonize TxA2 receptors (TP) in platelets and smooth muscle cells. Br. J. Clin. Pharmacol. 2007, 64, 133–144. [Google Scholar] [CrossRef]
- Zhu, H.; Xia, Q.; Jiang, H.; Wang, F.; Yu, L.; Zhang, L. Pinocembrin shows antithrombotic activity in thrombosis-induced experimental rats. Pharmacogn. Mag. 2022, 18, 746–751. [Google Scholar] [CrossRef]
- Mink, P.J.; Scrafford, C.G.; Barraj, L.M.; Harnack, L.; Hong, C.-P.; Nettleton, J.A.; Jacobs, D.R., Jr. Flavonoid intake and cardiovascular disease mortality: A prospective study in postmenopausal women. Am. J. Clin. Nutr. 2007, 85, 895–909. [Google Scholar] [CrossRef]
- Rangel-López, A.; González-Cabello, H.; Paniagua-Medina, M.E.; López-Romero, R.; Arriaga-Pizano, L.A.; Lozano-Ramírez, M.; Pérez-Barragán, J.J.; Márquez-González, H.; López-Sánchez, D.M.; Mata-Rocha, M.; et al. Levels of Plasma Endothelin-1, Circulating Endothelial Cells, Endothelial Progenitor Cells, and Cytokines after Cardiopulmonary Bypass in Children with Congenital Heart Disease: Role of Endothelin-1 Regulation. Int. J. Mol. Sci. 2024, 25, 8895. [Google Scholar] [CrossRef]
- Nagata, S.; Yoshizumi, M.; Tsuchiya, K.; Kirima, K.; Kyaw, M.; Tamaki, T. Quercetin inhibits Shc- and phosphatidylinositol 3-kinase-mediated c-Jun N-terminal kinase activation by angiotensin II in cultured rat aortic smooth muscle cells. Mol. Pharmacol. 2001, 60, 656–665. [Google Scholar]
- Wang, Y.; Jo, E.K.; González-Zamora, J.; Ohta, K.; Griendling, K.K.; Liao, J.K. Differential activation of mitogen-activated protein kinases in smooth muscle cells by angiotensin II. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 940–946. [Google Scholar] [CrossRef]
- Wei, Y.; Qiu, X.; Qiu, Y.; Qu, L.; Chu, X.; Luo, L. Quercetin reduces oxidative stress and inhibits activation of c-Jun N-terminal kinase/activator protein-1 signaling in experimental mouse model of abdominal aortic aneurysm. Mol. Med. Rep. 2014, 10, 2353–2360. [Google Scholar] [CrossRef]
- Datta, S.R.; Dudek, H.; Tao, X.; Masters, S.; Fu, H.; Gotoh, Y.; Greenberg, M.E. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997, 91, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Vlahos, C.J.; Matter, W.F.; Hui, K.Y.; Brown, R.F. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem. 1994, 269, 5241–5248. [Google Scholar] [CrossRef] [PubMed]
- Duarte, J.; Pérez-Palencia, R.; Vargas, F.; Ocete, M.A.; Pérez-Vizcaíno, F.; Zarzuelo, A.; Tamargo, J. Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive rats. Br. J. Pharmacol. 2001, 133, 117–124. [Google Scholar] [CrossRef]
- Egert, S.; Bosy-Westphal, A.; Seiberl, J.; Wagner, A.E.; Frank, J.; Schrezenmeir, J.; Rimbach, G.; Müller, M.J. Quercetin reduces systolic blood pressure and plasma oxidised LDL concentrations in overweight subjects with high cardiovascular risk: A double-blind, placebo-controlled, crossover study. Br. J. Nutr. 2009, 102, 1065–1074. [Google Scholar] [CrossRef]
- Graefe, E.U.; Wittig, J.; Mueller, S.; Riethling, A.K.; Uehleke, B.; Drewelow, B.; Pforte, H.; Jacobasch, G.; Derendorf, H.; Veit, M. Pharmacokinetics and bioavailability of quercetin glycosides in humans. J. Clin. Pharmacol. 2001, 41, 492–499. [Google Scholar] [CrossRef]
- Middleton, E.; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000, 52, 673–751. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Wang, Y.-J.; Dong, M.-Q.; Li, G.-R. Acacetin Is a Promising Drug Candidate for Cardiovascular Diseases. Am. J. Chin. Med. 2024, 52, 1661–1692. [Google Scholar] [CrossRef] [PubMed]
- Kodama, I.; Kamiya, K.; Toyama, J. Cellular Electropharmacology of Antiarrhythmic Drugs. Jpn. J. Pharmacol. 1997, 74, 195–223. [Google Scholar] [CrossRef]
- Hohnloser, S.H.; Singh, B.N. Proarrhythmia with Class III antiarrhythmic drugs: Definition, electrophysiologic mechanisms, incidence, predisposing factors, and clinical implications. J. Cardiovasc. Electrophysiol. 1995, 6 Pt 2, 920–936. [Google Scholar]
- Li, G.-R.; Wang, H.-B.; Qin, G.-W.; Jin, M.-W.; Tang, Q.; Sun, H.-Y.; Lau, C.P. Acacetin, a Natural Flavone, Selectively Inhibits Human Atrial Repolarization Potassium Currents and Prevents Atrial Fibrillation in Dogs. Circulation 2008, 117, 2449–2457. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Li, T.; Qin, H.; Wang, X.; He, S.; Fan, Z.; Ye, Q.; Du, Y. Acacetin as a Natural Cardiovascular Therapeutic: Mechanisms and Preclinical Evidence. Front. Pharmacol. 2025, 16, 1493981. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Shishodia, S. Suppression of Nuclear Factor-κB Activation as a Therapeutic Strategy for Inflammatory Disorders. Biochim. Biophys. Acta 2004, 1697, 69–84. [Google Scholar] [CrossRef]
- Nie, J.; Chang, Y.; Li, Y.; Zhou, Y.; Qin, J.; Sun, Z.; Wang, Z.; Li, X.; Yu, D.; Zhang, Y.; et al. Caffeic Acid Phenethyl Ester (Propolis Extract) Ameliorates Insulin Resistance by Inhibiting JNK and NF-κB Inflammatory Pathways in Diabetic Mice and HepG2 Cell Models. J. Agric. Food Chem. 2017, 65, 9041–9053. [Google Scholar] [CrossRef]
- Xu, Y.C.; Leung, S.W.S.; Leung, G.P.H.; Man, R.Y.K. Kaempferol enhances endothelium-dependent relaxation in porcine coronary artery through BK channels. Br. J. Pharmacol. 2015, 172, 3003–3014. [Google Scholar] [CrossRef]
- Luo, R.; Tian, L.; Yang, Y. Galangin inhibits oxidized low-density lipoprotein-induced angiogenic activity in human aortic endothelial cells by downregulating lncRNA H19. Nan Fang Yi Ke Da Xue Xue Bao 2024, 44, 52–59. [Google Scholar] [CrossRef]
- Pakdeechote, P.; Poasakate, A.; Prasatthong, P.; Wongmekiat, O. Galangin Mitigates Aortic Dysfunction and Hypertrophy in Rats with Metabolic Syndrome. Heliyon 2023, 9, e16500. [Google Scholar] [CrossRef]
- Santoso, M.I.; Paradiso, G.; Russo, G.L. Role of Flavonoids in Brain Health: Antioxidant, Anti-inflammatory, and Neuroprotective Effects. Int. J. Mol. Sci. 2024, 25, 5041. [Google Scholar] [CrossRef]
- Block, M.L.; Zecca, L.; Hong, J.-S. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat. Rev. Neurosci. 2007, 8, 57–69. [Google Scholar] [CrossRef]
- Chen, P.; Huo, X.; Liu, W.; Li, K.; Sun, Z.; Tian, J. Apigenin exhibits anti-inflammatory effects in LPS-stimulated BV-2 microglia via activation of GSK3β/Nrf2 and suppression of NF-κB. Immunopharmacol. Immunotoxicol. 2020, 42, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.; Lei, C.; Zou, M.; Cai, X.; Xiang, Y.; Xie, Y.; Li, X.; Huang, D.; Wang, Y. Neuroprotective effect of apigenin against cerebral ischemia/reperfusion injury in vitro and in vivo. J. Int. Med. Res. 2020, 48, 300060520945859. [Google Scholar] [CrossRef] [PubMed]
- Chesworth, J.; Gamage, T.; Ullah, F.; Sonego, M.; Millington, P.; Fernández, I.; Liang, H.; Karl, T.; Münch, G.; Niedermayer, G.; et al. Chronic apigenin supplementation reduces microglia activation but does not reverse memory decline in GFAP-IL6 mice. Front. Neurosci. 2021, 15, 699329. [Google Scholar] [CrossRef]
- Spiegel, M. Theoretical Insights into the Oxidative Stress-Relieving Properties of Pinocembrin—An Isolated Flavonoid from Honey and Propolis. J. Phys. Chem. B 2023, 127, 8769–8779. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Pan, L.; Liu, Q.; Huang, Y.; Tang, Y.; Lin, B.; Liao, Y.; Luo, H.; Meng, X. Pinocembrin Activation of DPP9 Inhibits NLRP1 Inflammasome Activation to Alleviate Cerebral Ischemia/Reperfusion-Induced Lung and Intestinal Injury. Immunol. Res. 2024, 73, 13. [Google Scholar] [CrossRef]
- Liu, R.; Gao, M.; Yang, Z.; Du, G. Pinocembrin Protects Rat Brain Against Oxidation and Apoptosis Induced by Ischemia–Reperfusion Both In Vivo and In Vitro. Brain Res. 2008, 1216, 136–146. [Google Scholar] [CrossRef]
- Meng, F.; Liu, R.; Gao, M.; Wang, Y.; Yu, X.; Xuan, Z.; Sun, J.; Yang, F.; Wu, C.; Du, G. Pinocembrin Attenuates Blood–Brain Barrier Injury Induced by Global Cerebral Ischemia–Reperfusion in Rats. Brain Res. 2011, 1391, 93–101. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, H.; Lin, Y.; Song, L.; Xie, W. Pinocembrin Ameliorates Post-Infarct Heart Failure through Activation of Nrf2/HO-1 Signaling Pathway. Mol. Med. 2021, 27, 63. [Google Scholar] [CrossRef]
- Santos, S.; Maia, M.; Barros, A.; Gouvinhas, I. Assessment of Phenolic Content, Antioxidant and Anti-Aging Activities of Honey from Pittosporum undulatum Vent. Naturalized in the Azores Archipelago (Portugal). Appl. Sci. 2023, 13, 1788. [Google Scholar] [CrossRef]
- Tan, W.; Tian, Y.; Zhang, Q.; Miao, X.; Kuang, H.; Yang, W. Antioxidant and Antibacterial Activity of Apis laboriosa Honey against Salmonella enterica Serovar Typhimurium. Front. Nutr. 2023, 10, 1181492. [Google Scholar] [CrossRef] [PubMed]
- Weston, R.J. The Contribution of Catalase and Other Natural Products to the Antibacterial Activity of Honey: A Review of the Evidence. Food Chem. 2000, 71, 495–498. [Google Scholar] [CrossRef]
- Kwakman, P.H.S.; Zaat, S.A.J. Antibacterial Components of Honey. IUBMB Life 2012, 64, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, A.; Fonseca, H.; Rodrigues, F.; Delerue-Matos, C.; Gouvinhas, I.; Garcia, J. Honey Therapy in Diabetic Foot Ulcers: A Promising Strategy for Effective Wound Healing. Appl. Sci. 2023, 13, 12820. [Google Scholar] [CrossRef]
- Molan, P.C. The role of honey in the management of wounds. J. Wound Care 1999, 8, 415–418. [Google Scholar] [CrossRef]
- White, J.W.; Subers, M.H.; Schepartz, A.I. The identification of inhibine, the antibacterial factor in honey, as hydrogen peroxide and its origin in a glucose-oxidase system. Biochim. Biophys. Acta 1963, 73, 57–70. [Google Scholar] [CrossRef]
- Mandal, M.D.; Mandal, S. Honey: Its medicinal property and antibacterial activity. Asian Pac. J. Trop. Biomed. 2011, 1, 154–160. [Google Scholar] [CrossRef]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P.P.; Zhang, J.; Bravo Lamas, L.; Martínez Flórez, S.; Agudo Toyos, P.; et al. Phenolic Compounds in Honey and Their Associated Health Benefits: A Review. Molecules 2018, 23, 2322. [Google Scholar] [CrossRef]
- Jenkins, R.; Burton, N.; Cooper, R. Manuka honey inhibits cell division in methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 2011, 66, 2536–2542. [Google Scholar] [CrossRef]
- Kwakman, P.H.S.; Te Velde, A.A.; de Boer, L.; Speijer, D.; Vandenbroucke-Grauls, C.M.J.E.; Zaat, S.A.J. How honey kills bacteria. FASEB J. 2011, 25, 2576–2582. [Google Scholar] [CrossRef]
- Tonks, A.J.; Cooper, R.A.; Jones, K.P.; Blair, S.; Parton, J.; Tonks, A. Honey stimulates inflammatory cytokine production from monocytes. Cytokine 2003, 21, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Efem, S.E. Clinical observations on the wound healing properties of honey. Br. J. Surg. 1988, 75, 679–681. [Google Scholar] [CrossRef] [PubMed]
- Majtan, J. Honey: An immunomodulator in wound healing. Wound Repair Regen. 2023, 31, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Tashkandi, H. Honey in Wound Healing: An Updated Review. Open Life Sci. 2021, 16, 1091–1100. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, C.N.; Wang, X.-H.; Leung, S.; Andrae-Nightingale, L.M.; Schmidt, S.J.; Engeseth, N.J. Selection and Use of Honey as an Antioxidant in a French Salad Dressing System. J. Agric. Food Chem. 2008, 56, 8650–8657. [Google Scholar] [CrossRef] [PubMed]
- McKibben, D.; Engeseth, N.J. Honey as a Protective Agent against Lipid Oxidation in Ground Turkey. J. Agric. Food Chem. 2002, 50, 592–595. [Google Scholar] [CrossRef] [PubMed]
- Wesołowska, M.; Dżugan, M. The Use of the Photochem Device in Evaluation of Antioxidant Activity of Polish Honey. Foods 2017, 10, 1568–1574. [Google Scholar] [CrossRef]
- Brudzynski, K.; Miotto, D. The Relationship between the Content of Polyphenols in Honey and Its Antioxidant Activity. Pol. J. Food Nutr. Sci. 2015, 65, 71–80. [Google Scholar] [CrossRef]
- Decker, E.A.; Park, Y. Healthier Meat Products as Functional Foods. Meat Sci. 2010, 86, 49–55. [Google Scholar] [CrossRef]
- Weston, R.J.; Mitchell, K.R.; Allen, K.L. Antibacterial phenolic components of New Zealand manuka honey. Food Chem. 1999, 64, 295–301. [Google Scholar] [CrossRef]
- Khalil, M.I.; Sulaiman, S.A.; Boukraa, L. Antioxidant properties of honey and its role in preventing health disorders. Open Nutraceuticals J. 2010, 3, 6–16. [Google Scholar] [CrossRef]
- Gheldof, N.; Wang, X.H.; Engeseth, N.J. Identification and quantification of antioxidant components of honeys from various floral sources. J. Agric. Food Chem. 2002, 50, 5870–5877. [Google Scholar] [CrossRef] [PubMed]
- Schramm, D.D.; Karim, M.; Schrader, H.R.; Holt, R.R.; Cardetti, M.; Keen, C.L. Honey with high levels of antioxidants can provide protection to healthy human subjects. J. Agric. Food Chem. 2003, 51, 1732–1735. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.I.; Mahaneem, M.; Jamalullail, S.M.S.; Alam, N.; Sulaiman, S.A. Evaluation of radical scavenging activity and colour intensity of nine Malaysian honeys of different origin. J. ApiProd. ApiMed. Sci. 2011, 3, 4–11. [Google Scholar] [CrossRef]
- Ferreira, I.C.F.R.; Aires, E.; Barreira, J.C.M.; Estevinho, L.M. Antioxidant activity of Portuguese honey samples: Different contributions of the entire honey and phenolic extract. Food Chem. 2009, 114, 1438–1443. [Google Scholar] [CrossRef]
- Meda, A.; Lamien, C.E.; Romito, M.; Millogo, J.; Nacoulma, O.G. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005, 91, 571–577. [Google Scholar] [CrossRef]
- Al-Waili, N.S.; Salom, K.; Butler, G.; Al Ghamdi, A.A. Honey and microbial infections: A review supporting the use of honey for microbial control. J. Med. Food 2011, 14, 1079–1096. [Google Scholar] [CrossRef]
- Bertoncelj, J.; Doberšek, U.; Jamnik, M.; Golob, T. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem. 2007, 105, 822–828. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M.; Tulipani, S.; Romandini, S.; Bertoli, E.; Battino, M. Contribution of honey in nutrition and human health: A review. Mediterr. J. Nutr. Metab. 2010, 3, 15–23. [Google Scholar] [CrossRef]
Components Group | Examples | Concentration Range | Function/Relevance |
---|---|---|---|
flavonoids | quercetin, kaempferol, myricetin, chrysin, pinobanksin, pinocembrin, hesperetin | trace–varies by floral source | antioxidant, anti-inflammatory, antimicrobial |
phenolic acids | gallic acid, caffeic acid, p-coumaric acid, ferulic acid, vanillic acid, syringic acid, chlorogenic acid, ellagic acid, 4-hydroxybenzoic acid | trace–high variability | antioxidant, antimicrobial, and chemotaxonomic markers |
volatile organic compounds | linalool, lilac aldehyde/alcohol isomers, benzaldehyde, 2-phenylethanol, acetic acid, furfural, isophorone, vomifoliol, dmhbme | trace (<0.1%) | aroma, flavor, antimicrobial, and antioxidant activity |
organic acids | gluconic acid (dominant), acetic acid, formic acid, citric acid | 0.57–1.0% | acidity, preservation, antimicrobial, taste |
sugars | fructose (38–40%), glucose (31–35%), maltose (7–10%), sucrose (1–5%) | ~79.6–80% total sugars | energy source, sweetness, osmotic preservation, Maillard reaction, antioxidants |
proteins and enzymes | glucose oxidase, diastase, invertase, catalase, albumins | 0.266–0.50% | antimicrobial (via hydrogen peroxide), wound healing, and digestion of sugars |
amino acids | proline (dominant), glutamic acid, aspartic acid, phenylalanine | 0.05–0.1% | nutritional value, Maillard reaction precursors |
vitamins | vitamin C, B-complex (B1, B2, B3, B5, B6, B9), vitamin k, vitamin e | trace–0.5% total | antioxidant, metabolic cofactor, immune support |
minerals and trace elements | potassium, calcium, iron, magnesium, zinc, manganese, selenium | 0.04–0.17% | enzymatic cofactors, antioxidant defense (e.g., Se, Zn) |
other phytochemicals | carotenoids, sugar alcohols, alkaloids, tannins | trace | antioxidant, immune modulation |
colloids and nitrogenous compounds | colloidal proteins, peptides, nitrogenous bases | ~0.043% nitrogen compounds | structural and biological activity enhancers |
Type of Study | Honey Type/Compound | Therapeutic Area | Key Findings/Effects | Mechanism/Activity | References |
---|---|---|---|---|---|
clinical trial | multifloral honey | wound healing | enhanced healing of diabetic ulcers | antimicrobial, anti-inflammatory | [25] |
clinical and in vitro | buckwheat honey | antioxidant | increased serum antioxidant capacity; protected endothelial cells | ROS inhibition, GSH restoration, lipid peroxidation prevention | [58,59,60] |
in vitro | quercetin, caffeine, phenethyl ester | anticancer (antiangiogenic) | inhibited tube formation, endothelial proliferation | suppression of angiogenesis | [65] |
in vitro | quercetin, flavonoids | anticancer | enhanced p53 and fas-ligand expression in tumor cells | induced apoptosis | [76] |
animal model | honey + caffeine | anticancer | reduced colon tumorigenesis | synergistic inhibition of tumor growth | [70] |
in vitro | chrysin | anticancer (glioma, leukemia) | triggered apoptosis, p21 activation, caspase-3 activation | p38-MAPK, proteasome inhibition | [72,73,74] |
galangin | anticancer | induced selective DNA fragmentation in HL-60 cells | apoptotic signaling | [64] | |
review | honey polyphenols | cancer, sleep regulation | emphasized the multifunctionality of polyphenols | multi-targeted pathways | [69] |
various honeys | antimicrobial | effective against bacteria and fungi | enzymatic activity, H2O2, low pH, phenolics | [53] | |
clinical study | raw honey | gastrointestinal health | relieved gastritis symptoms | antibacterial, mucosal protection | [56,57] |
animal study | Iranian honey | anti-inflammatory/neuroprotective | reduced neuroinflammation markers | cytokine suppression, antioxidant enzymes | [53] |
animal model | tualang honey | antidiabetic cardiovascular | lowered blood glucose, improved lipid profile | antioxidant, insulin sensitivity | [47,48,49] |
in vitro | gelam honey | antioxidant | strong free radical scavenging | high flavonoid content | [53] |
manuka honey | antibacterial | inhibited S. aureus, E. coli growth | MGO content, H2O2 release | [51,52] | |
various honey types | antioxidant/food processing | High ORAC values; effective in lipid stabilization | polyphenol content | [53,54] | |
clinical study | honey vs. corn syrup | cardiovascular antioxidant support | improved levels of vitamin C, β-carotene, uric acid, GSH | serum antioxidant response | [25,60] |
biochemical | button sage and buckwheat | food/antioxidant quality | high antioxidant equivalents (21.3 × 10−5; 4.32 × 10−3) | phenolic marker analysis | [54,55] |
analytical | various honeys | bioavailability | phenolics detectable in plasma after consumption | confirmed absorption | [61] |
clinical | processed honeys | food/health maintenance | still elevated plasma antioxidant levels | synergistic polyphenol interaction | [62] |
reviews | honey phytochemicals | oncology | emphasized chemopreventive relevance | multi-pathway targeting | [67,68] |
in vitro/in vivo | CAPE, chrysin, pinocembrin | anti-inflammatory immunomodulatory | reduced pro-inflammatory cytokines, enhanced immune response | NF-κB inhibition, MAPK modulation, caspase activation | [71,72,73,74] |
Honey Type | Country/Floral Source | Antioxidant Method(s) | Total Antioxidant Activity/Results | References |
---|---|---|---|---|
manuka honey | New Zealand/Leptospermum scoparium | DPPH, FRAP, ORAC | high antioxidant activity; strong radical scavenging in DPPH assay | [149] |
tualang honey | Malaysia/wild rainforest | DPPH, FRAP | comparable to vitamin C in scavenging activity; high phenolic content | [150] |
buckwheat honey | USA, Europe/Fagopyrum spp. | DPPH, ORAC | one of the highest antioxidant capacities; similar to 1 mM α-tocopherol | [151,152] |
gelam honey | Malaysia/Melaleuca cajuputi | FRAP, ABTS | high reducing power and flavonoid concentration | [153] |
heather honey | Europe/Calluna vulgaris | DPPH, FRAP | high total phenolic content; strong metal chelating activity | [154] |
acacia honey | Europe/Robinia pseudoacacia | DPPH, FRAP | low to moderate antioxidant activity due to lower polyphenol levels | [155] |
sidr honey | Yemen/Ziziphus spina-christi | DPPH, FRAP | moderate activity; antioxidant potential varies by region | [156] |
eucalyptus honey | Mediterranean/Eucalyptus spp. | DPPH, FRAP, TAC | rich in phenolic acids; moderate to high activity | [157] |
multifloral honey | various regions | DPPH, FRAP | highly variable depending on floral origin and processing | [158] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tlak Gajger, I.; Dar, S.A.; Ahmed, M.M.M.; Aly, M.M.; Vlainić, J. Antioxidant Capacity and Therapeutic Applications of Honey: Health Benefits, Antimicrobial Activity and Food Processing Roles. Antioxidants 2025, 14, 959. https://doi.org/10.3390/antiox14080959
Tlak Gajger I, Dar SA, Ahmed MMM, Aly MM, Vlainić J. Antioxidant Capacity and Therapeutic Applications of Honey: Health Benefits, Antimicrobial Activity and Food Processing Roles. Antioxidants. 2025; 14(8):959. https://doi.org/10.3390/antiox14080959
Chicago/Turabian StyleTlak Gajger, Ivana, Showket Ahmad Dar, Mohamed Morsi M. Ahmed, Magda M. Aly, and Josipa Vlainić. 2025. "Antioxidant Capacity and Therapeutic Applications of Honey: Health Benefits, Antimicrobial Activity and Food Processing Roles" Antioxidants 14, no. 8: 959. https://doi.org/10.3390/antiox14080959
APA StyleTlak Gajger, I., Dar, S. A., Ahmed, M. M. M., Aly, M. M., & Vlainić, J. (2025). Antioxidant Capacity and Therapeutic Applications of Honey: Health Benefits, Antimicrobial Activity and Food Processing Roles. Antioxidants, 14(8), 959. https://doi.org/10.3390/antiox14080959