Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (473)

Search Parameters:
Keywords = diet–microbiota interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1024 KiB  
Review
The Impact of Environmental Factors on the Secretion of Gastrointestinal Hormones
by Joanna Smarkusz-Zarzecka, Lucyna Ostrowska and Marcelina Radziszewska
Nutrients 2025, 17(15), 2544; https://doi.org/10.3390/nu17152544 - 2 Aug 2025
Viewed by 252
Abstract
The enteroendocrine system of the gastrointestinal (GI) tract is the largest endocrine organ in the human body, playing a central role in the regulation of hunger, satiety, digestion, and energy homeostasis. Numerous factors—including dietary components, physical activity, and the gut microbiota—affect the secretion [...] Read more.
The enteroendocrine system of the gastrointestinal (GI) tract is the largest endocrine organ in the human body, playing a central role in the regulation of hunger, satiety, digestion, and energy homeostasis. Numerous factors—including dietary components, physical activity, and the gut microbiota—affect the secretion of GI hormones. This study aims to analyze how these factors modulate enteroendocrine function and influence systemic metabolic regulation. This review synthesizes the current scientific literature on the physiology and distribution of enteroendocrine cells and mechanisms of hormone secretion in response to macronutrients, physical activity, and microbial metabolites. Special attention is given to the interactions between gut-derived signals and central nervous system pathways involved in appetite control. Different GI hormones are secreted in specific regions of the digestive tract in response to meal composition and timing. Macronutrients, particularly during absorption, stimulate hormone release, while physical activity influences hormone concentrations, decreasing ghrelin and increasing GLP-1, PYY, and leptin levels. The gut microbiota, through fermentation and metabolite production (e.g., SCFAs and bile acids), modulates enteroendocrine activity. Species such as Akkermansia muciniphila are associated with improved gut barrier integrity and enhanced GLP-1 secretion. These combined effects contribute to appetite regulation and energy balance. Diet composition, physical activity, and gut microbiota are key modulators of gastrointestinal hormone secretion. Their interplay significantly affects appetite regulation and metabolic health. A better understanding of these relationships may support the development of personalized strategies for managing obesity and related disorders. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Graphical abstract

30 pages, 1428 KiB  
Review
The Oral–Gut Microbiota Axis Across the Lifespan: New Insights on a Forgotten Interaction
by Domenico Azzolino, Margherita Carnevale-Schianca, Luigi Santacroce, Marica Colella, Alessia Felicetti, Leonardo Terranova, Roberto Carlos Castrejón-Pérez, Franklin Garcia-Godoy, Tiziano Lucchi and Pier Carmine Passarelli
Nutrients 2025, 17(15), 2538; https://doi.org/10.3390/nu17152538 - 1 Aug 2025
Viewed by 178
Abstract
The oral–gut microbiota axis is a relatively new field of research. Although most studies have focused separately on the oral and gut microbiota, emerging evidence has highlighted that the two microbiota are interconnected and may influence each other through various mechanisms shaping systemic [...] Read more.
The oral–gut microbiota axis is a relatively new field of research. Although most studies have focused separately on the oral and gut microbiota, emerging evidence has highlighted that the two microbiota are interconnected and may influence each other through various mechanisms shaping systemic health. The aim of this review is therefore to provide an overview of the interactions between oral and gut microbiota, and the influence of diet and related metabolites on this axis. Pathogenic oral bacteria, such as Porphyromonas gingivalis and Fusobacterium nucleatum, can migrate to the gut through the enteral route, particularly in individuals with weakened gastrointestinal defenses or conditions like gastroesophageal reflux disease, contributing to disorders like inflammatory bowel disease and colorectal cancer. Bile acids, altered by gut microbes, also play a significant role in modulating these microbiota interactions and inflammatory responses. Oral bacteria can also spread via the bloodstream, promoting systemic inflammation and worsening some conditions like cardiovascular disease. Translocation of microorganisms can also take place from the gut to the oral cavity through fecal–oral transmission, especially within poor sanitary conditions. Some metabolites including short-chain fatty acids, trimethylamine N-oxide, indole and its derivatives, bile acids, and lipopolysaccharides produced by both oral and gut microbes seem to play central roles in mediating oral–gut interactions. The complex interplay between oral and gut microbiota underscores their crucial role in maintaining systemic health and highlights the potential consequences of dysbiosis at both the oral and gastrointestinal level. Some dietary patterns and nutritional compounds including probiotics and prebiotics seem to exert beneficial effects both on oral and gut microbiota eubiosis. A better understanding of these microbial interactions could therefore pave the way for the prevention and management of systemic conditions, improving overall health outcomes. Full article
(This article belongs to the Special Issue Exploring the Lifespan Dynamics of Oral–Gut Microbiota Interactions)
Show Figures

Figure 1

26 pages, 3684 KiB  
Article
Creation of Zinc (II)-Complexed Green Tea and Its Effects on Gut Microbiota by Daily Green Tea Consumption
by Tsukasa Orita, Daichi Ijiri, De-Xing Hou and Kozue Sakao
Molecules 2025, 30(15), 3191; https://doi.org/10.3390/molecules30153191 - 30 Jul 2025
Viewed by 360
Abstract
Although Zn (II)-(−)-Epigallocatechin gallate (EGCg) complex (Zn-EGCg) is known for its promising bioactivities, little attention has been paid to its incorporation into daily green tea consumption. In this study, we aimed to incorporate Zn (II) into green tea extract to promote the formation [...] Read more.
Although Zn (II)-(−)-Epigallocatechin gallate (EGCg) complex (Zn-EGCg) is known for its promising bioactivities, little attention has been paid to its incorporation into daily green tea consumption. In this study, we aimed to incorporate Zn (II) into green tea extract to promote the formation of Zn-EGCg complex within the tea matrix. We then investigated how the formation of Zn-complexed green tea extract (Zn-GTE) influences the gut microbiota in a Western diet (WD)-fed mouse model. Structural analyses using ultraviolet–visible spectroscopy (UV–Vis), Fourier-transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H NMR), and powder X-ray diffraction (PXRD) suggested that Zn (II) interacted with hydroxyl groups of polyphenols within the extract, consistent with Zn-EGCg formation, although the complex could not be unequivocally identified. Under intake levels equivalent to daily consumption, Zn-GTE administration restored WD-induced reductions in alpha-diversity and resulted in a distinct microbial composition compared to treatment with green tea extract (GTE) or Zn alone, as shown by beta-diversity analysis. Linear discriminant analysis Effect Size (LEfSe) analysis revealed increased abundances of bacterial taxa belonging to o_Clostridiales, o_Bacteroidales, and f_Rikenellaceae, and decreased abundances of g_Akkermansia in the Zn-GTE group compared to the GTE group. These findings highlight that Zn-GTE, prepared via Zn (II) supplementation to green tea, may exert distinct microbiota-modulating effects compared to its individual components. This study provides new insights into the role of dietary metal–polyphenol complexes, offering a food-based platform for studying metal–polyphenol interactions under physiologically relevant conditions. Full article
(This article belongs to the Special Issue Health Benefits and Applications of Bioactive Phenolic Compounds)
Show Figures

Graphical abstract

36 pages, 1502 KiB  
Review
A Critical Review on the Role of Lactic Acid Bacteria in Sourdough Nutritional Quality: Mechanisms, Potential, and Challenges
by Youssef Mimoune Reffai and Taoufiq Fechtali
Appl. Microbiol. 2025, 5(3), 74; https://doi.org/10.3390/applmicrobiol5030074 - 29 Jul 2025
Viewed by 298
Abstract
Sourdough fermentation, driven by the biochemical activity of lactic acid bacteria (LAB), presents a scientifically promising approach to addressing nutritional limitations in cereal-based staples. This review critically examines both the underlying mechanisms by which LAB enhance the nutritional profile of sourdough and the [...] Read more.
Sourdough fermentation, driven by the biochemical activity of lactic acid bacteria (LAB), presents a scientifically promising approach to addressing nutritional limitations in cereal-based staples. This review critically examines both the underlying mechanisms by which LAB enhance the nutritional profile of sourdough and the translational challenges in realizing these benefits. Key improvements explored include enhanced mineral bioavailability (e.g., up to 90% phytate reduction), improved protein digestibility, an attenuated glycemic response (GI ≈ 54 vs. ≈75 for conventional bread), and the generation of bioactive compounds. While in vitro and animal studies extensively demonstrate LAB’s potential to reshape nutrient profiles (e.g., phytate hydrolysis improving iron absorption, proteolysis releasing bioactive peptides), translating these effects into consistent human health outcomes proves complex. Significant challenges hinder this transition from laboratory to diet, including the limited bioavailability of LAB-derived metabolites, high strain variability, and sensitivity to fermentation conditions. Furthermore, interactions with the food matrix and host-specific factors, such as gut microbiota composition, contribute to inconsistent findings. This review highlights methodological gaps, particularly reliance on in vitro or animal models, and the lack of long-term, effective human trials. Although LAB hold significant promise for nutritional improvements in sourdough, translating these findings to validated human benefits necessitates continued efforts in mechanism-driven strain optimization, the standardization of fermentation processes, and rigorous human studies. Full article
Show Figures

Graphical abstract

18 pages, 2629 KiB  
Article
Dietary Interventions with Bletilla striata Polysaccharides and/or Composite Polysaccharides Remodel Liver Lipid Profiles and Ameliorate Gut Metabolic Disturbances in High-Fat Diet-Induced Obese Mice
by Peiting Zhang, Jinjin Dong, Jiamin Lu, Zijian Cai, Bingde Zhou, Qian Zhang, Chenglin Zhu and Luca Laghi
Foods 2025, 14(15), 2653; https://doi.org/10.3390/foods14152653 - 29 Jul 2025
Viewed by 186
Abstract
The global obesity epidemic and associated metabolic disorders present urgent public health challenges. This study employed a multi-omics approach (lipidomics, metabolomics, and gut microbiome analysis) to investigate how Bletilla striata polysaccharides (BSPs) and composite polysaccharides modulate liver lipid metabolism and gut microbiota in [...] Read more.
The global obesity epidemic and associated metabolic disorders present urgent public health challenges. This study employed a multi-omics approach (lipidomics, metabolomics, and gut microbiome analysis) to investigate how Bletilla striata polysaccharides (BSPs) and composite polysaccharides modulate liver lipid metabolism and gut microbiota in high-fat diet (HFD)-induced obese mice. HFD elevated hepatic phosphatidylcholines, cholesteryl esters (CEs), and acylcarnitines (CARs), alongside increased cecal choline and trimethylamine. BSP interventions reduced hepatic CEs, free fatty acids (FAs), CARs, and cecal sarcosine while restoring gut microbial diversity. Notably, BSP enriched beneficial genera, including Jeotgalicoccus and Atopostipes, and the network analysis revealed negative correlations between these genera and hepatic triglycerides (TGs), implicating the gut–liver axis in lipid metabolism regulation. These findings elucidate the anti-obesity mechanisms of polysaccharides through gut microbiota remodeling and cross-tissue metabolic interactions, providing a foundation for leveraging plant polysaccharides in developing safer, effective obesity therapies. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

26 pages, 1300 KiB  
Review
The Human Mycobiome: Composition, Immune Interactions, and Impact on Disease
by Laura Carrillo-Serradell, Jade Liu-Tindall, Violeta Planells-Romeo, Lucía Aragón-Serrano, Marcos Isamat, Toni Gabaldón, Francisco Lozano and María Velasco-de Andrés
Int. J. Mol. Sci. 2025, 26(15), 7281; https://doi.org/10.3390/ijms26157281 - 28 Jul 2025
Viewed by 692
Abstract
The fungal component of microbiota, known as the mycobiome, inhabits different body niches such as the skin and the gastrointestinal, respiratory, and genitourinary tracts. Much information has been gained on the bacterial component of the human microbiota, but the mycobiome has remained somewhat [...] Read more.
The fungal component of microbiota, known as the mycobiome, inhabits different body niches such as the skin and the gastrointestinal, respiratory, and genitourinary tracts. Much information has been gained on the bacterial component of the human microbiota, but the mycobiome has remained somewhat elusive due to its sparsity, variability, susceptibility to environmental factors (e.g., early life colonization, diet, or pharmacological treatments), and the specific in vitro culture challenges. Functionally, the mycobiome is known to play a role in modulating innate and adaptive immune responses by interacting with microorganisms and immune cells. The latter elicits anti-fungal responses via the recognition of specific fungal cell-wall components (e.g., β-1,3-glucan, mannan, and chitin) by immune system receptors. These receptors then regulate the activation and differentiation of many innate and adaptive immune cells including mucocutaneous cell barriers, macrophages, neutrophils, dendritic cells, natural killer cells, innate-like lymphoid cells, and T and B lymphocytes. Mycobiome disruptions have been correlated with various diseases affecting mostly the brain, lungs, liver and pancreas. This work reviews our current knowledge on the mycobiome, focusing on its composition, research challenges, conditioning factors, interactions with the bacteriome and the immune system, and the known mycobiome alterations associated with disease. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

13 pages, 436 KiB  
Opinion
It Is Time to Consider the Lost Battle of Microdamaged Piezo2 in the Context of E. coli and Early-Onset Colorectal Cancer
by Balázs Sonkodi
Int. J. Mol. Sci. 2025, 26(15), 7160; https://doi.org/10.3390/ijms26157160 - 24 Jul 2025
Viewed by 340
Abstract
The recent identification of early-onset mutational signatures with geographic variations by Diaz-Gay et al. is a significant finding, since early-onset colorectal cancer has emerged as an alarming public health challenge in the past two decades, and the pathomechanism remains unclear. Environmental risk factors, [...] Read more.
The recent identification of early-onset mutational signatures with geographic variations by Diaz-Gay et al. is a significant finding, since early-onset colorectal cancer has emerged as an alarming public health challenge in the past two decades, and the pathomechanism remains unclear. Environmental risk factors, including lifestyle and diet, are highly suspected. The identification of colibactin from Escherichia coli as a potential pathogenic source is a major step forward in addressing this public health challenge. Therefore, the following opinion manuscript aims to outline the likely onset of the pathomechanism and the critical role of acquired Piezo2 channelopathy in early-onset colorectal cancer, which skews proton availability and proton motive force regulation toward E. coli within the microbiota–host symbiotic relationship. In addition, the colibactin produced by the pks island of E. coli induces host DNA damage, which likely interacts at the level of Wnt signaling with Piezo2 channelopathy-induced pathological remodeling. This transcriptional dysregulation eventually leads to tumorigenesis of colorectal cancer. Mechanotransduction converts external physical cues to inner chemical and biological ones. Correspondingly, the proposed quantum mechanical free-energy-stimulated ultrafast proton-coupled tunneling, initiated by Piezo2, seems to be the principal and essential underlying novel oscillatory signaling that could be lost in colorectal cancer onset. Hence, Piezo2 channelopathy not only contributes to cancer initiation and impaired circadian regulation, including the proposed hippocampal ultradian clock, but also to proliferation and metastasis. Full article
(This article belongs to the Special Issue Advanced Research of Gut Microbiota and Toxins)
Show Figures

Figure 1

23 pages, 1654 KiB  
Review
The Small Intestinal Microbiota and the Gut–Brain Axis in Parkinson’s Disease: A Narrative Review
by Gloria Carrossa, Valentina Misenti, Sofia Faggin, Maria Cecilia Giron and Angelo Antonini
Biomedicines 2025, 13(7), 1769; https://doi.org/10.3390/biomedicines13071769 - 19 Jul 2025
Viewed by 704
Abstract
Researchers are increasingly focusing on understanding the microbiota’s influence on disease susceptibility and overall health. The vast number of microorganisms in our gastrointestinal tract and their extensive surface area underscore their undeniable impact on well-being. Viewing the gut microbiome as a distinct pool [...] Read more.
Researchers are increasingly focusing on understanding the microbiota’s influence on disease susceptibility and overall health. The vast number of microorganisms in our gastrointestinal tract and their extensive surface area underscore their undeniable impact on well-being. Viewing the gut microbiome as a distinct pool of microbial genetic information that interacts with the human genome highlights its pivotal role in genetically predisposed diseases. Investigating this complex crosstalk may lead to the development of novel therapeutic strategies—such as targeting dysbiosis—to complement conventional treatments and improve patient care. Parkinson’s disease (PD) is a multifactorial condition originating from a combination of genetic and environmental risk factors. Compelling evidence points to the enteric nervous system as an initial site of pathological processes that later extend to the brain—a pattern known as the ‘body-first’ model. Furthermore, most patients with PD exhibit both qualitative and quantitative alterations in the composition of the gut microbiota, including dysbiosis and small intestinal overgrowth. Nonetheless, the existing literature predominantly addresses fecal microbiota, while knowledge of upper intestinal sections, like the duodenum, remains scarce. Given the potential for microbiota modulation to impact both motor and gastrointestinal symptoms, further research exploring the therapeutic roles of balanced diets, probiotics, and fecal transplants in PD is warranted. Full article
Show Figures

Figure 1

15 pages, 1142 KiB  
Article
The Estimated Intake of S100B Relates to Microbiota Biodiversity in Different Diets
by Tehreema Ghaffar, Veronica Volpini, Serena Platania, Olga Vassioukovitch, Alessandra Valle, Federica Valeriani, Fabrizio Michetti and Vincenzo Romano Spica
Biomolecules 2025, 15(7), 1047; https://doi.org/10.3390/biom15071047 - 18 Jul 2025
Viewed by 370
Abstract
The S100B protein, known for its role in the central and enteric nervous systems, has recently been identified in dietary sources such as milk, dairy products, fruits, and vegetables. Given its potential interaction with the gut microbiota, this study explores the relationship between [...] Read more.
The S100B protein, known for its role in the central and enteric nervous systems, has recently been identified in dietary sources such as milk, dairy products, fruits, and vegetables. Given its potential interaction with the gut microbiota, this study explores the relationship between dietary intake of S100B and microbiota biodiversity across different diets. A comprehensive study was conducted, estimating S100B concentrations in 13 dietary patterns recommended in different countries. This is the first study to provide a comparative estimation of S100B exposure from the diet and to explore its potential ecological and epidemiological relevance. The association between S100B levels and microbiota biodiversity was statistically analyzed, showing a direct correlation. Microbial diversity was assessed using the Shannon index, based on data extracted from studies reporting microbiota composition across dietary patterns. Additionally, the relative risk of Crohn’s disease was assessed in different populations to examine potential links between dietary patterns, S100B, and chronic disease prevention. A moderate positive correlation (R2 = 0.537) was found between S100B concentration and Shannon index, suggesting that diets higher in S100B (e.g., Mediterranean diet) were associated with higher microbial alpha-diversity. Furthermore, Western-style diets, with the lowest S100B levels, exhibited a higher relative risk for Crohn’s disease (R2 = 0.780). These findings highlight the potential role of dietary S100B content in modulating gut microbiota diversity and reducing chronic disease risk. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Graphical abstract

27 pages, 3492 KiB  
Article
Amelioration of Metabolic Syndrome by Co-Administration of Lactobacillus johnsonii CRL1231 and Wheat Bran in Mice via Gut Microbiota and Metabolites Modulation
by Matias Russo, Antonela Marquez, Estefanía Andrada, Sebastián Torres, Arlette Santacruz, Roxana Medina and Paola Gauffin-Cano
Metabolites 2025, 15(7), 466; https://doi.org/10.3390/metabo15070466 - 9 Jul 2025
Viewed by 381
Abstract
Background/Objectives: Lactobacillus johnsonii CRL1231 (Lj CRL1231) is a strain with feruloyl esterase (FE) activity that enhances ferulic acid (FA) release from wheat bran (WB) and has potential as a probiotic for metabolic syndrome (MS). Given the potential health benefits of FA and [...] Read more.
Background/Objectives: Lactobacillus johnsonii CRL1231 (Lj CRL1231) is a strain with feruloyl esterase (FE) activity that enhances ferulic acid (FA) release from wheat bran (WB) and has potential as a probiotic for metabolic syndrome (MS). Given the potential health benefits of FA and its microbial metabolites, this study aimed to evaluate the therapeutic effect of Lj CRL1231 co-administered with WB in a mouse model of metabolic syndrome (MS) induced by a high-fat diet (HFD). Methods: Mice were divided into three groups and fed for 14 weeks as follows: the Control group (standard diet), the MS group (HFD+WB), and the MS+Lj group (HFD+WB and Lj CRL1231-dose 108 cells/day). Specifically, we analyzed the changes in the intestinal microbiota (IM), colonic FE activity, generation of FA-derived and fermentation metabolites, and metabolic and inflammatory parameters. Results: Improvements in the MS+Lj group compared to the MS group included the following: a—a 38% increase in colonic FE activity, leading to elevated levels of FA-derived metabolites (e.g., dihydroferulic, dihydroxyphenylpropionic, and hydroxyphenylpropionic acids); b—a significant shift in the IM composition, with a 3.4-fold decrease in Firmicutes and a 2.9-fold increase in Bacteroidetes; c—a decrease in harmful bacteria (Desulfovibrio) by 93%, and beneficial bacteria like Bifidobacterium increased significantly (6.58 log cells/g); d—a 33% increase in total SCFAs; e—a 26% reduction in the adiposity index; f—a 12% increase in HDL cholesterol and a 19% reduction in triglycerides; g—normalized glucose and insulin resulting in a 2-fold lower HOMA-IR index; h—an improved inflammatory profile by decreasing TNF-α, IFN-γ, and IL-6 (3-, 5-, and 2-fold, respectively) and increasing IL-10 by 2-fold; i—alleviation of liver damage by normalizing of transaminases AST (19.70 ± 2.97 U/L) and ALT (13.12 ± 0.88 U/L); j—evidence of reduced oxidative damage. Conclusions: The co-administration of L. johnsonii CRL1231 and WB exerts a synergistic effect in mitigating the features of MS in HFD-fed mice. This effect is mediated by modulation of the gut microbiota, increased release of bioactive FA-derived compounds, and restoration of metabolic and inflammatory homeostasis. This strategy represents a promising dietary approach for MS management through targeted microbiota–metabolite interactions. Full article
Show Figures

Graphical abstract

13 pages, 2419 KiB  
Article
Modulation of Gut Microbial Composition by Lactobacillus delbrueckii subsp. lactis CKDB001 Supplementation in a High-Fat-Diet-Induced Obese Mice
by Jaeryang Chu, Chae-Won No, Hyunchae Joung, Kyung Hwan Kim, Chang Hun Shin, Jisu Lee and Jung-Heun Ha
Nutrients 2025, 17(13), 2251; https://doi.org/10.3390/nu17132251 - 7 Jul 2025
Viewed by 416
Abstract
Background/Objectives: Lactobacillus delbrueckii subsp. lactis CKDB001 (LL) has demonstrated anti-inflammatory, antioxidant, and lipid-regulatory effects in vitro and in vivo, including attenuation of hepatic steatosis and modulation of lipid metabolism. Given the known interactions between host metabolism and gut microbiota, these findings suggest [...] Read more.
Background/Objectives: Lactobacillus delbrueckii subsp. lactis CKDB001 (LL) has demonstrated anti-inflammatory, antioxidant, and lipid-regulatory effects in vitro and in vivo, including attenuation of hepatic steatosis and modulation of lipid metabolism. Given the known interactions between host metabolism and gut microbiota, these findings suggest a potential role for LL in modulating microbial composition under conditions of diet-induced obesity. This study aimed to investigate the microbiome-related effects of LL using an established murine model. To evaluate the effect of LL supplementation on gut microbial composition and predict microbial metabolic functions in mice with high-fat diet-induced obesity. Methods: Male C57BL/6J mice were fed a high-fat diet and administered LL orally for 12 weeks. Fecal samples were collected and analyzed using 16S rRNA gene sequencing. Microbial taxonomic profiles were assessed using linear discriminant analysis effect size, and functional predictions were performed using PICRUSt2. Results: LL supplementation significantly altered the gut microbiota by increasing the relative abundance of Lactobacillus and other commensal taxa while reducing the prevalence of pro-inflammatory genera such as Alistipes and Bilophila. Functional prediction analysis revealed a downregulation of lipopolysaccharide and ADP-L-glycero-β-D-manno-heptose biosynthesis pathways. Microbial functions associated with carbohydrate metabolism and short-chain fatty acid production were enriched in the LL-treated group. Conclusions: LL modulated gut microbial composition and suppressed pro-inflammatory microbial pathways while enhancing beneficial metabolic functions in high-fat diet-fed mice. These findings support the potential of LL as a safe and effective microbiota-targeted probiotic for managing obesity-related metabolic disorders. Full article
(This article belongs to the Special Issue Prebiotics and Probiotics in Metabolism Disorder—2nd Edition)
Show Figures

Figure 1

28 pages, 933 KiB  
Review
Therapeutic Horizons: Gut Microbiome, Neuroinflammation, and Epigenetics in Neuropsychiatric Disorders
by Shabnam Nohesara, Hamid Mostafavi Abdolmaleky, Ahmad Pirani and Sam Thiagalingam
Cells 2025, 14(13), 1027; https://doi.org/10.3390/cells14131027 - 4 Jul 2025
Viewed by 783
Abstract
Neuroinflammation is a hallmark of many neuropsychiatric disorders (NPD), which are among the leading causes of disability worldwide. Emerging evidence highlights the significant role of the gut microbiota (GM)–immune system–brain axis in neuroinflammation and the pathogenesis of NPD, primarily through epigenetic mechanisms. Gut [...] Read more.
Neuroinflammation is a hallmark of many neuropsychiatric disorders (NPD), which are among the leading causes of disability worldwide. Emerging evidence highlights the significant role of the gut microbiota (GM)–immune system–brain axis in neuroinflammation and the pathogenesis of NPD, primarily through epigenetic mechanisms. Gut microbes and their metabolites influence immune cell activity and brain function, thereby contributing to neuroinflammation and the development and progression of NPD. The enteric nervous system, the autonomic nervous system, neuroendocrine signaling, and the immune system all participate in bidirectional communication between the gut and the brain. Importantly, the interaction of each of these systems with the GM influences epigenetic pathways. Here, we first explore the intricate relationship among intestinal microbes, microbial metabolites, and immune cell activity, with a focus on epigenetic mechanisms involved in NPD pathogenesis. Next, we provide background information on the association between inflammation and epigenetic aberrations in the context of NPD. Additionally, we review emerging therapeutic strategies—such as prebiotics, probiotics, methyl-rich diets, ketogenic diet, and medications—that may modulate the GM–immune system–brain axis via epigenetic regulation for the prevention or treatment of NPD. Finally, we discuss the challenges and future directions in investigating the critical role of this axis in mental health. Full article
Show Figures

Figure 1

13 pages, 915 KiB  
Article
Relationship of SCFAs to Maternal and Child Anthropometric Measurements
by Małgorzata Szczuko, Natalia Szabunia, Julia Radkiewicz, Dominika Jamioł-Milc, Tomasz Machałowski and Maciej Ziętek
Int. J. Mol. Sci. 2025, 26(13), 6424; https://doi.org/10.3390/ijms26136424 - 3 Jul 2025
Viewed by 341
Abstract
Short-chain fatty acids (SCFAs) are involved in metabolism and physiological processes. We decided to investigate whether SCFAs are engaged in the metabolic programming of the offspring by the mother’s microbiota, which interact during pregnancy, delivery, and breastfeeding. We decided to determine whether there [...] Read more.
Short-chain fatty acids (SCFAs) are involved in metabolism and physiological processes. We decided to investigate whether SCFAs are engaged in the metabolic programming of the offspring by the mother’s microbiota, which interact during pregnancy, delivery, and breastfeeding. We decided to determine whether there are correlations between 4-week-old infant feces SCFA concentrations, their weight at birth, and mothers’ anthropometric measurements. The study included 82 women with four-week-old newborns from whom stools were collected. SCFAs were determined using gas chromatography with a flame ionization detector. Correlations were observed between SCFA content in newborns’ feces and mothers’ weight and body mass index (BMI) before delivery and at the time of delivery. In addition, associations were identified between weight gain of pregnant women and SCFAs. Analysis of neonatal data showed associations between fatty acid content and infants’ weight and diet, including breastfeeding. We provide indirect evidence for the association of infant SCFA levels with metabolic programming by maternal gut microbiota metabolites. At the same time, we confirm the influence of increased SCFA levels on higher maternal and neonatal body weight and branched-chain short-chain fatty acids (BCFAs) on neonatal body weight. We provide new preventive and intervention directions for future efforts to improve the health care of pregnant women and their offspring. Full article
(This article belongs to the Special Issue Inflammation in Pregnancy and Childbirth)
Show Figures

Figure 1

23 pages, 1294 KiB  
Review
Evolving Dynamics of Fermented Food Microbiota and the Gut Microenvironment: Strategic Pathways to Enhance Human Health
by Antonia Terpou, Divakar Dahiya and Poonam Singh Nigam
Foods 2025, 14(13), 2361; https://doi.org/10.3390/foods14132361 - 3 Jul 2025
Viewed by 1118
Abstract
The growing interest in health-promoting diets has brought fermented foods into the spotlight due to their unique microbial compositions and bioactive metabolites. Fermented foods and their beneficial microbiota are expected to stimulate the overall industry’s expansion over the next few years as their [...] Read more.
The growing interest in health-promoting diets has brought fermented foods into the spotlight due to their unique microbial compositions and bioactive metabolites. Fermented foods and their beneficial microbiota are expected to stimulate the overall industry’s expansion over the next few years as their beneficial health effects become established. This narrative review explores the evolving dynamics of fermented food microbiota and their interactions with the gut microenvironment, emphasizing strategic pathways to enhance human health. Fermented foods, both industrially produced and traditionally prepared, serve as carriers of beneficial microorganisms such as lactic acid bacteria, yeasts, and certain fungi that transform food substrates into bioactive compounds including short-chain fatty acids (SCFAs), exopolysaccharides, and bioactive peptides. Simultaneously, their bioactive metabolites are the subject of passionate investigation by the scientific community, uncovering novel beneficial aspects that have not been elucidated until now. These metabolites contribute to improved gut barrier function, modulation of immune responses, and overall metabolic health. Notably, microbial fermentation can reshape the intrinsic properties of food, offering therapeutic potential beyond basic nutrition. The interactions between food-derived microbes and the host gut microbiota suggest a synergistic mechanism influencing gastrointestinal and systemic health outcomes. Nevertheless, there remains a significant gap in the comprehensive evaluation of the existing literature in this specific research area. Further research is needed to standardize fermented food formulations, validate the effects of individual microbial strains, and optimize their application in personalized nutrition and functional food development. Accordingly, this review highlights the association between the microbiota of fermented foods and their metabolites with the gut microenvironment, emphasizing their potential health-promoting properties. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

27 pages, 520 KiB  
Review
Sustainable Plant-Based Diets and Food Allergies: A Scoping Review Inspired by EAT-Lancet
by Giuseppe Mazzola, Carlo Cattaneo, Eleonora Patta, Tariq A. Alalwan, Domenico Azzolino, Simone Perna and Mariangela Rondanelli
Appl. Sci. 2025, 15(13), 7296; https://doi.org/10.3390/app15137296 - 28 Jun 2025
Cited by 1 | Viewed by 419
Abstract
Background: The escalating prevalence of food allergies, alongside the global call for environmentally sustainable dietary transitions, has drawn attention to plant-based dietary models—particularly those inspired by the EAT-Lancet Commission. These frameworks not only reduce reliance on animal-sourced foods, benefiting planetary health, but [...] Read more.
Background: The escalating prevalence of food allergies, alongside the global call for environmentally sustainable dietary transitions, has drawn attention to plant-based dietary models—particularly those inspired by the EAT-Lancet Commission. These frameworks not only reduce reliance on animal-sourced foods, benefiting planetary health, but may also play a role in modulating immune tolerance and allergic responses. Methods: This scoping review followed PRISMA guidelines and included 53 peer-reviewed studies published between 2000 and 2024, retrieved from PubMed, Scopus, and Google Scholar. Eligible articles were classified into two thematic domains: prevention of food allergy onset (n = 31) and modulation of allergic symptoms in sensitized individuals (n = 22). Included studies comprised randomized controlled trials (n = 6), observational studies (n = 17), systematic reviews and meta-analyses (n = 11), and narrative/scoping reviews (n = 19). Results: Sustainable plant-based diets were consistently associated with a lower incidence of allergic sensitization and reduced symptom severity. These effects were partly due to the exclusion of common allergens (e.g., dairy, eggs, and shellfish) but more importantly due to immunomodulatory mechanisms. Fermentable fibers can enhance short-chain fatty acid (SCFA)-producing bacteria (e.g., Faecalibacterium prausnitzii), elevating butyrate and acetate levels, which interact with G-protein-coupled receptors 43 and 109A (GPR43 and GPR109A) to induce regulatory T cells (Tregs) and reinforce epithelial integrity via tight junction proteins such as occludin and claudin-1. Polyphenols (e.g., quercetin and luteolin) can inhibit Th2-driven inflammation by stabilizing mast cells and downregulating IL-4 and IL-1. Conclusions: Following sustainable dietary guidelines such as those proposed by the EAT-Lancet Commission may confer dual benefits: promoting environmental health and reducing the burden of allergic diseases. By emphasizing plant-based patterns rich in fiber and polyphenols, these diets support microbiota-mediated immune education, mucosal barrier function, and immunological tolerance. When properly supervised, they represent a promising tool for allergy prevention and symptom management. Larger randomized trials and long-term population studies are needed to confirm and operationalize these findings in clinical and public health contexts. Full article
(This article belongs to the Special Issue New Diagnostic and Therapeutic Approaches in Food Allergy)
Show Figures

Figure 1

Back to TopTop