Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (188)

Search Parameters:
Keywords = diesel removal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2219 KiB  
Article
Oil Spill Recovery of Petroleum-Derived Fuels Using a Bio-Based Flexible Polyurethane Foam
by Fabrizio Olivito, Zul Ilham, Wan Abd Al Qadr Imad Wan-Mohtar, Goldie Oza, Antonio Procopio and Monica Nardi
Polymers 2025, 17(14), 1959; https://doi.org/10.3390/polym17141959 - 17 Jul 2025
Viewed by 369
Abstract
In this study, we tested a flexible polyurethane (PU) foam, synthesized from bio-based components, for the removal of petroleum-derived fuels from water samples. The PU was synthesized via the prepolymer method through the reaction of PEG 400 with L-lysine ethyl ester diisocyanate (L-LDI), [...] Read more.
In this study, we tested a flexible polyurethane (PU) foam, synthesized from bio-based components, for the removal of petroleum-derived fuels from water samples. The PU was synthesized via the prepolymer method through the reaction of PEG 400 with L-lysine ethyl ester diisocyanate (L-LDI), followed by chain extension with 2,5-bis(hydroxymethyl)furan (BHMF), a renewable platform molecule derived from carbohydrates. Freshwater and seawater samples were artificially contaminated with commercial diesel, gasoline, and kerosene. Batch adsorption experiments revealed that the total sorption capacity (S, g/g) of the PU was slightly higher for diesel in both water types, with values of 67 g/g in freshwater and 70 g/g in seawater. Sorption kinetic analysis indicated that the process follows a pseudo-second-order kinetic model, suggesting strong chemical interactions. Equilibrium data were fitted using Langmuir and Freundlich isotherm models, with the best fit achieved by the Langmuir model, supporting a monolayer adsorption mechanism on homogeneous surfaces. The PU foam can be regenerated up to 50 times by centrifugation, maintaining excellent performance. This study demonstrates a promising application of this sustainable and bio-based polyurethane foam for environmental remediation. Full article
Show Figures

Graphical abstract

18 pages, 4826 KiB  
Article
Mass Distribution of Organic Carbon, S-Containing Compounds and Heavy Metals During Flotation of Municipal Solid Waste Incineration Fly Ash
by Weifang Chen, Peng Li, Shuyue Zhang and Yifan Chen
Recycling 2025, 10(4), 135; https://doi.org/10.3390/recycling10040135 - 8 Jul 2025
Viewed by 261
Abstract
Flotation was investigated to treat incineration fly ash with diesel, kerosene, TX-100, or SDS as a collector and methyl isobutyl carbinol (MIBC) or 2-Octyl alcohol as a frother. Fly ash was separated into light and residual materials. Comparison of yield, carbon and sulfur [...] Read more.
Flotation was investigated to treat incineration fly ash with diesel, kerosene, TX-100, or SDS as a collector and methyl isobutyl carbinol (MIBC) or 2-Octyl alcohol as a frother. Fly ash was separated into light and residual materials. Comparison of yield, carbon and sulfur removal showed that kerosene and MIBC showed the best performance. The results revealed that flotation was a method that could simultaneously achieve the removal of organics and S-containing compounds. Specifically, approximately 7.63–9.45% of the total mass was collected as light material, which was enriched with organic carbon. Contents of organic carbon reached 14.35 wt%–14.56 wt% in the light materials from those of 2.74 wt%–3.52 wt% in the original fly ash. Elemental analysis further proved that sulfur was also accumulated in light material. Approximately 78.84–81.69% of the organic carbon and 80.47–82.66% of the sulfur were removed. Decarbonization was primarily achieved through the flotation of organic materials, while desulfurization resulted from both flotation and the dissolution of soluble salts. Furthermore, the contents of the chloride and heavy metals in the residual fly ash also decreased. Particle size analysis showed that flotation was effective in the removal of smaller particles, and those particles were also rich in heavy metals. Overall, by selecting the right collector and frother, flotation was also able to reduce the leaching toxicity of heavy metals. The residual fly ash was safe for further disposal. Organic carbon, sulfur and heavy metals were accumulated in the light materials, which accounted for less than 10% of the original mass. The portion of fly ash needing further treatment was therefore greatly reduced. Full article
Show Figures

Figure 1

19 pages, 1124 KiB  
Article
A Targeted Approach to Critical Mineral Recovery from Low-Grade Magnesite Ore Using Magnetic and Flotation Techniques
by Mohammadbagher Fathi, Mostafa Chegini and Fardis Nakhaei
Minerals 2025, 15(7), 698; https://doi.org/10.3390/min15070698 - 30 Jun 2025
Viewed by 329
Abstract
As a critical mineral, magnesite plays a vital role in industries such as steelmaking, construction, and advanced technologies due to its high thermal stability and chemical resistance. However, the beneficiation of low-grade magnesite ores (~38.36% MgO) remains challenging due to the presence of [...] Read more.
As a critical mineral, magnesite plays a vital role in industries such as steelmaking, construction, and advanced technologies due to its high thermal stability and chemical resistance. However, the beneficiation of low-grade magnesite ores (~38.36% MgO) remains challenging due to the presence of iron, silica, and calcium-bearing impurities. This study proposes an integrated beneficiation strategy combining medium-intensity magnetic separation and flotation techniques to upgrade a low-grade magnesite ore. After grinding to 75 µm (d80), the sample was subjected to two-stage magnetic separation at 5000 Gauss to remove Fe-bearing minerals, reducing Fe2O3 below 0.5%. The non-magnetic fraction was then treated through a two-stage reverse flotation process using dodecylamine (350 g/t) and diesel oil (60 g/t) at pH 7 to reject silicate gangue. This was followed by a four-stage direct flotation using sodium oleate (250 g/t), sodium silicate (350 g/t), and SHMP (100 g/t) at pH 10 to selectively recover magnesite while suppressing Ca-bearing minerals. The optimized flowsheet achieved a final concentrate with MgO > 46.5%, SiO2 ≈ 1.05%, Fe2O3 ≈ 0.44%, and CaO ≈ 0.73%, meeting the specifications for refractory-grade magnesite. These results highlight the effectiveness of a combined magnetic–flotation route in upgrading complex, low-grade magnesite deposits for commercial use. Full article
Show Figures

Figure 1

28 pages, 6777 KiB  
Article
Upgrading/Deacidification of Biofuels (Gasoline, Kerosene, and Diesel-like Hydrocarbons) by Adsorption Using Activated Red-Mud-Based Adsorbents
by Nélio Teixeira Machado, Karen Marcela Barros da Costa, Silvio Alex Pereira da Mota, Luiz Eduardo Pizarro Borges and Andréia de Andrade Mancio da Mota
Energies 2025, 18(13), 3250; https://doi.org/10.3390/en18133250 - 21 Jun 2025
Viewed by 285
Abstract
This study explored the adsorption of carboxylic acids, especially free fatty acids (FFAs), present in biofuel (distilled fractions of bio-oil such as gasoline-like hydrocarbons, kerosene-like hydrocarbons, and diesel-like hydrocarbons) using red-mud-based adsorbents. The red mud was thermally activated at 40 °C and 600 [...] Read more.
This study explored the adsorption of carboxylic acids, especially free fatty acids (FFAs), present in biofuel (distilled fractions of bio-oil such as gasoline-like hydrocarbons, kerosene-like hydrocarbons, and diesel-like hydrocarbons) using red-mud-based adsorbents. The red mud was thermally activated at 40 °C and 600 °C and chemically activated with 0.25M, 1M, and 2M HCl. Analytical techniques were used to characterize the adsorbents’ properties. At the same time, the study examined factors like feed type, adsorbents, FFA contents, adsorbent percentage, activation temperature, acid solution concentration, and contact time to assess adsorption efficiency. The characterization results indicated that chemical activation with 0.25M HCl significantly increased the surface area to 84.3290 m2/g, surpassing that of the thermally activated samples (35.2450 m2/g at 400 °C). Adsorption experiments demonstrated that all chemically activated samples, with 5% adsorbent, adsorbed over 2000 mg of FFAs per gram of adsorbent, with CARM-1M HCl achieving 100% removal of acids from gasoline-like hydrocarbons. Kinetic modeling showed that the pseudo-second-order model best represented the adsorption data, as evidenced by high R2 values and close agreement between the experimental and calculated qe values. Therefore, adsorption with chemically activated red mud efficiently deacidifies biofuels, providing a cost-effective and promising approach for their upgrading. Full article
(This article belongs to the Special Issue Advances in Bioenergy and Waste-to-Energy Technologies)
Show Figures

Figure 1

18 pages, 2435 KiB  
Article
Sustainable Remediation Using Hydrocarbonoclastic Bacteria for Diesel-Range Hydrocarbon Contamination in Soil: Experimental and In Silico Evaluation
by Fernanda Espinosa-López, Karen Pelcastre-Guzmán, Anabelle Cerón-Nava, Alicia Rivera-Noriega, Marco A. Loza-Mejía and Alejandro Islas-García
Sustainability 2025, 17(12), 5535; https://doi.org/10.3390/su17125535 - 16 Jun 2025
Viewed by 612
Abstract
The increasing global oil consumption has led to significant soil contamination by hydrocarbons, notably diesel-range hydrocarbons. Soil bioremediation through bacterial bioaugmentation is an alternative to increase the degradation of organic pollutants such as petroleum products. Bioremediation is a sustainable practice that contributes to [...] Read more.
The increasing global oil consumption has led to significant soil contamination by hydrocarbons, notably diesel-range hydrocarbons. Soil bioremediation through bacterial bioaugmentation is an alternative to increase the degradation of organic pollutants such as petroleum products. Bioremediation is a sustainable practice that contributes to the Sustainable Development Goals (SDGs) because it is environmentally friendly, reduces the impact of human activities, and avoids the use of invasive and destructive methods in soil restoration. This study examines the bioremediation potential of hydrocarbonoclastic bacteria isolated from soil close to areas with a risk of spills due to pipelines carrying hydrocarbons. Among the isolated strains, Arthrobacter globiformis, Pantoea agglomerans, and Nitratireductor soli exhibited hydrocarbonoclast activity, achieving diesel removal of up to 90% in short-chain alkanes and up to 60% in long-chain hydrocarbons. The results from in silico studies, which included molecular docking and molecular dynamics simulations, suggest that the diesel removal activity can be explained by the bioavailability of the linear alkanes and their affinity for alkane monooxygenase AlkB present in the studied microorganisms, since long-chain hydrocarbons had lower enzyme affinity and lower aqueous solubility. The correlation of the experimental results with the computational analysis allows for greater insight into the processes involved in the microbial degradation of hydrocarbons with varying chain lengths. Furthermore, this methodology establishes a cost-effective approximation tool for the evaluation of the feasibility of using different microorganisms in bioremediation processes. Full article
Show Figures

Graphical abstract

58 pages, 949 KiB  
Review
Excess Pollution from Vehicles—A Review and Outlook on Emission Controls, Testing, Malfunctions, Tampering, and Cheating
by Robin Smit, Alberto Ayala, Gerrit Kadijk and Pascal Buekenhoudt
Sustainability 2025, 17(12), 5362; https://doi.org/10.3390/su17125362 - 10 Jun 2025
Viewed by 1564
Abstract
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past [...] Read more.
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past 2050. Thus, good environmental performance and effective emission control of ICE vehicles will continue to be of paramount importance if the world is to achieve the stated air and climate pollution reduction goals. In this study, we review 228 publications and identify four main issues confronting these objectives: (1) cheating by vehicle manufacturers, (2) tampering by vehicle owners, (3) malfunctioning emission control systems, and (4) inadequate in-service emission programs. With progressively more stringent vehicle emission and fuel quality standards being implemented in all major markets, engine designs and emission control systems have become increasingly complex and sophisticated, creating opportunities for cheating and tampering. This is not a new phenomenon, with the first cases reported in the 1970s and continuing to happen today. Cheating appears not to be restricted to specific manufacturers or vehicle types. Suspicious real-world emissions behavior suggests that the use of defeat devices may be widespread. Defeat devices are primarily a concern with diesel vehicles, where emission control deactivation in real-world driving can lower manufacturing costs, improve fuel economy, reduce engine noise, improve vehicle performance, and extend refill intervals for diesel exhaust fluid, if present. Despite the financial penalties, undesired global attention, damage to brand reputation, a temporary drop in sales and stock value, and forced recalls, cheating may continue. Private vehicle owners resort to tampering to (1) improve performance and fuel efficiency; (2) avoid operating costs, including repairs; (3) increase the resale value of the vehicle (i.e., odometer tampering); or (4) simply to rebel against established norms. Tampering and cheating in the commercial freight sector also mean undercutting law-abiding operators, gaining unfair economic advantage, and posing excess harm to the environment and public health. At the individual vehicle level, the impacts of cheating, tampering, or malfunctioning emission control systems can be substantial. The removal or deactivation of emission control systems increases emissions—for instance, typically 70% (NOx and EGR), a factor of 3 or more (NOx and SCR), and a factor of 25–100 (PM and DPF). Our analysis shows significant uncertainty and (geographic) variability regarding the occurrence of cheating and tampering by vehicle owners. The available evidence suggests that fleet-wide impacts of cheating and tampering on emissions are undeniable, substantial, and cannot be ignored. The presence of a relatively small fraction of high-emitters, due to either cheating, tampering, or malfunctioning, causes excess pollution that must be tackled by environmental authorities around the world, in particular in emerging economies, where millions of used ICE vehicles from the US and EU end up. Modernized in-service emission programs designed to efficiently identify and fix large faults are needed to ensure that the benefits of modern vehicle technologies are not lost. Effective programs should address malfunctions, engine problems, incorrect repairs, a lack of servicing and maintenance, poorly retrofitted fuel and emission control systems, the use of improper or low-quality fuels and tampering. Periodic Test and Repair (PTR) is a common in-service program. We estimate that PTR generally reduces emissions by 11% (8–14%), 11% (7–15%), and 4% (−1–10%) for carbon monoxide (CO), hydrocarbons (HC), and oxides of nitrogen (NOx), respectively. This is based on the grand mean effect and the associated 95% confidence interval. PTR effectiveness could be significantly higher, but we find that it critically depends on various design factors, including (1) comprehensive fleet coverage, (2) a suitable test procedure, (3) compliance and enforcement, (4) proper technician training, (5) quality control and quality assurance, (6) periodic program evaluation, and (7) minimization of waivers and exemptions. Now that both particulate matter (PM, i.e., DPF) and NOx (i.e., SCR) emission controls are common in all modern new diesel vehicles, and commonly the focus of cheating and tampering, robust measurement approaches for assessing in-use emissions performance are urgently needed to modernize PTR programs. To increase (cost) effectiveness, a modern approach could include screening methods, such as remote sensing and plume chasing. We conclude this study with recommendations and suggestions for future improvements and research, listing a range of potential solutions for the issues identified in new and in-service vehicles. Full article
Show Figures

Figure 1

20 pages, 2757 KiB  
Article
Multi-Criteria Decision Making: Sustainable Water Desalination
by Daniel Li, Mohamed Galal Hassan-Sayed, Nuno Bimbo, Clara Bartram and Ihab M. T. Shigidi
Water 2025, 17(12), 1729; https://doi.org/10.3390/w17121729 - 7 Jun 2025
Viewed by 673
Abstract
With an increasingly more urbanised global population, surface water and groundwater resources are being/have become outpaced by growing demand. The oceans could address this pertinent scarcity issue, once their high-salinity content is removed. Water desalination could thus be a crucial pathway towards addressing [...] Read more.
With an increasingly more urbanised global population, surface water and groundwater resources are being/have become outpaced by growing demand. The oceans could address this pertinent scarcity issue, once their high-salinity content is removed. Water desalination could thus be a crucial pathway towards addressing global water scarcity. However, conventional desalination is known to be highly energy-intensive, with limited scalability and potentially significant negative environmental impacts. Multi-criteria Decision Making (MCDM) presents a novel approach towards sustainable water desalination based on sustainability-related criteria. The Fuzzy Analytical Hierarchy Process (FAHP) was implemented to determine the most optimal small-scale, modularised, and remote reverse osmosis (RO) desalination plant configurations. Twelve configurations were assessed, based on four plant capacities (50, 100, 150, and 200 m3/day) and three diesel-to-solar photovoltaic energy configurations (100–0%, 75–25%, and 60–40%). The hybridised diesel-to-solar configurations were generally ranked higher, particularly when less reliant on diesel, and at small(er) capacities, in terms of the criteria: sustainability, overall efficiency, and standalone potential while maintaining competitive costs. This can likely be attributed to their relatively lower fuel and energy consumption and associated costs. Further research should aim to consider additional criteria, such as battery cost, as well as life cycle assessments that include transportation-related costs/emissions. Full article
(This article belongs to the Special Issue Novel Methods in Wastewater and Stormwater Treatment)
Show Figures

Figure 1

16 pages, 5244 KiB  
Article
Particle Deposition and Sustainable Ventilation Strategies for Clean Air in Diesel-Polluted Confined Spaces
by Peiyong Ni, Zhen Dong, Xiangli Wang, Xuewen Zhang and Xiang Li
Sustainability 2025, 17(11), 5029; https://doi.org/10.3390/su17115029 - 30 May 2025
Viewed by 394
Abstract
The deposition and dispersion of particulate matter from diesel combustion in confined spaces pose significant challenges to air quality and public health, with important implications for sustainable development goals. While previous studies have focused on particle behavior inside diesel engines, the external environmental [...] Read more.
The deposition and dispersion of particulate matter from diesel combustion in confined spaces pose significant challenges to air quality and public health, with important implications for sustainable development goals. While previous studies have focused on particle behavior inside diesel engines, the external environmental effects remain poorly understood. This study systematically investigated the mass concentrations and deposition characteristics of PM1, PM2.5, and PM10 particles in a 1 m3 environmental chamber under both sealed and ventilated conditions. The experimental results demonstrated that natural deposition ratios reached 50–75% after 8 h across all particle sizes. A comparative evaluation of ventilation strategies showed lateral ventilation achieved superior particle reduction ratios of 36%, outperforming direct ventilation at 14–22% and non-ventilated conditions at 23%. The study revealed that ventilation-induced convective removal was more effective than gravitational settling alone, providing important technical insights for air quality management in enclosed environments. These findings offer valuable scientific guidance for optimizing ventilation systems while contributing to the development of sustainable solutions for particulate pollution control. The research advances our understanding of particle behavior in confined spaces and supports technological innovations for cleaner air in urban infrastructure. Full article
(This article belongs to the Special Issue Sustainability and Indoor Environmental Quality)
Show Figures

Figure 1

31 pages, 928 KiB  
Article
Motivating Green Transition: Analyzing Fuel Demands in Turkiye Amidst the Climate Crisis and Economic Impact
by Emine Coruh, Mehmet Selim Yıldız, Faruk Urak, Abdulbaki Bilgic and Vedat Cengiz
Sustainability 2025, 17(11), 4851; https://doi.org/10.3390/su17114851 - 25 May 2025
Cited by 1 | Viewed by 834
Abstract
Decarbonizing the transportation sector is critical for sustainable development, particularly in rapidly urbanizing countries like Turkiye. This study analyzes fuel demand elasticities for diesel, gasoline, and LPG across 12 NUTS-1 regions of Turkiye in 2022, using a panel random effects SUR approach. The [...] Read more.
Decarbonizing the transportation sector is critical for sustainable development, particularly in rapidly urbanizing countries like Turkiye. This study analyzes fuel demand elasticities for diesel, gasoline, and LPG across 12 NUTS-1 regions of Turkiye in 2022, using a panel random effects SUR approach. The model accounts for regional variation and fuel interactions, producing robust estimates that uncover significant spatial and temporal differences in consumption patterns. Uniquely, diesel demand displays a significantly positive price elasticity, challenging the conventional assumption of inelasticity. Gasoline demand is moderately price-sensitive, while LPG appears relatively unresponsive. Strong cross-price elasticities—especially between diesel and gasoline—point to substitution effects that can inform more adaptive policy frameworks. Seasonal fluctuations and Istanbul’s outsized impact also shape national trends. These findings underscore the need for differentiated region- and fuel-specific strategies. While higher gasoline taxes may effectively reduce demand, lowering diesel and LPG use will require complementary measures such as infrastructure upgrades, behavioral incentives, and accelerated adoption of alternative fuels. The study advocates for regionally adjusted carbon pricing, removal of implicit subsidies, and targeted support for electric and hybrid vehicles. Aligning fiscal tools with actual demand behavior can enhance both the efficiency and equity of the transition to a low-carbon transportation system. Full article
(This article belongs to the Special Issue Energy Saving and Emission Reduction from Green Transportation)
Show Figures

Figure 1

10 pages, 989 KiB  
Proceeding Paper
Application of Quantum Computing Algorithms in the Synthesis of Control Systems for Dynamic Objects
by Noilakhon Yakubova, Komil Usmanov, Zafar Turakulov and Jaloliddin Eshbobaev
Eng. Proc. 2025, 87(1), 68; https://doi.org/10.3390/engproc2025087068 - 20 May 2025
Viewed by 250
Abstract
Currently, the main focus in the automation of technological processes is on developing control systems that enhance the quality of the control process. Because the systems being controlled are often complex, multidimensional, and nonlinear, quantum computing algorithms offer an effective solution. Although there [...] Read more.
Currently, the main focus in the automation of technological processes is on developing control systems that enhance the quality of the control process. Because the systems being controlled are often complex, multidimensional, and nonlinear, quantum computing algorithms offer an effective solution. Although there are several intelligent control methods available to improve the quality of technological processes, each has certain drawbacks. Quantum algorithms, which rely on the principles of quantum correlation and superposition, are designed to optimize control while minimizing energy and resource consumption. This article discusses the diesel fuel hydrotreating process, a critical step in oil refining. The primary goal of hydrotreating is to enhance fuel quality by removing sulfur, nitrogen, and oxygen compounds. To accurately model this process, it is essential to consider not only the external factors affecting it but also its physical characteristics. By doing so, the mathematical model becomes more precise. Based on this approach, a quantum fuzzy control system for the diesel fuel hydrotreating process was developed using quantum algorithms. These algorithms can rapidly analyze large amounts of data and make decisions. At the same time, a computer model of a fuzzy quantum control system for the process of hydrotreating diesel fuel was constructed, and a number of computational experiments were carried out. As a result, a 1.8% reduction in energy costs for the diesel fuel hydrotreating process was achieved. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

16 pages, 5802 KiB  
Article
Optimization and Performance Evaluation of Diesel Oxidation Catalysts for Methane Removal in Dual-Fuel Diesel–CNG Engines
by Piotr Wiśniowski, Magdalena Zimakowska-Laskowska, Paweł Mazuruk, Sławomir Taubert and Michał Stankiewicz
Energies 2025, 18(8), 1985; https://doi.org/10.3390/en18081985 - 12 Apr 2025
Viewed by 1812
Abstract
Compressed natural gas (CNG) in dual-fuel diesel engines offers environmental benefits but significantly increases unburned methane (CH4) emissions, especially at low engine loads. This study investigates the effectiveness of different catalytic converters in methane oxidation under transient test conditions (WHTC). Three [...] Read more.
Compressed natural gas (CNG) in dual-fuel diesel engines offers environmental benefits but significantly increases unburned methane (CH4) emissions, especially at low engine loads. This study investigates the effectiveness of different catalytic converters in methane oxidation under transient test conditions (WHTC). Three types of catalysts (Pt-, Rh-, and Pd-based) were evaluated using a combined approach of empirical engine bench tests and mathematical modelling. The results showed that, under actual exhaust gas temperature conditions, the average methane conversion efficiencies were 3.7% for Pt, 17.7% for Rh, and 31.3% for Pd catalysts. Increasing the exhaust gas temperature by 50% improved the conversion efficiencies to 7.3%, 51.8%, and 69.2%, respectively. Despite this enhancement, none of the catalysts reached the 90% efficiency threshold required to increase the CNG content of the fuel beyond 6% without exceeding emission limits. The results highlight the need for high-activity Pd-based catalysts and optimised thermal management strategies to enable the broader adoption of dual-fuel engines, while complying with Euro VI standards. Full article
(This article belongs to the Special Issue Emission Control Technology in Internal Combustion Engines)
Show Figures

Figure 1

23 pages, 3482 KiB  
Article
Eco-Friendly Biosurfactant: Tackling Oil Pollution in Terrestrial and Aquatic Ecosystems
by Kaio Wêdann Oliveira, Alexandre Augusto P. Selva Filho, Yslla Emanuelly S. Faccioli, Gleice Paula Araújo, Attilio Converti, Rita de Cássia F. Soares da Silva and Leonie A. Sarubbo
Fermentation 2025, 11(4), 199; https://doi.org/10.3390/fermentation11040199 - 8 Apr 2025
Viewed by 1176
Abstract
Spills involving fuels and lubricating oils in industrial environments caused by the fueling of machines, inadequate storage and the washing of equipment are significant sources of environmental pollution, impacting soil and water bodies. Such incidents alter the microbiological, chemical and physical properties of [...] Read more.
Spills involving fuels and lubricating oils in industrial environments caused by the fueling of machines, inadequate storage and the washing of equipment are significant sources of environmental pollution, impacting soil and water bodies. Such incidents alter the microbiological, chemical and physical properties of affected environments. The use of biosurfactants is an effective option for the cleaning of storage tanks and the remediation of contaminated soils and effluents. The scope of this work was to assess the production and application of a Starmerella bombicola ATCC 22214 biosurfactant to remediate marine and terrestrial environment polluted by oil. The production of the biosurfactant was optimized in terms of carbon/nitrogen sources and culture conditions using flasks. The performance of the biosurfactant was tested in clayey soil, silty soil, and standard sand, as well as smooth surfaces and industrial effluents contaminated with oils (fuel oils B1 for thermal power generation, diesel, and motor oil). The ideal culture medium for the production of the biosurfactant contained 2% glucose and 5% glycerol, with agitation at 200 rpm, fermentation for 180 h and a 5% inoculum, resulting in a yield of 1.5 g/L. The biosurfactant had high emulsification indices (86.6% for motor oil and 51.7% for diesel) and exhibited good stability under different pH values, temperatures and concentrations of NaCl. The critical micelle concentration was 0.4 g/L, with a surface tension of 26.85 mN/m. In remediation tests, the biosurfactant enabled the removal of no less than 99% of motor oil from different types of soil. The results showed that the biosurfactant produced by Starmerella bombicola is a promising agent for the remediation of environments contaminated by oil derivatives, especially in industrial environments and for the treatment of oily effluents. Full article
Show Figures

Figure 1

28 pages, 624 KiB  
Review
Advancements in Bio-Nanotechnology: Green Synthesis and Emerging Applications of Bio-Nanoparticles
by M. D. K. M. Gunasena, G. D. C. P. Galpaya, C. J. Abeygunawardena, D. K. A. Induranga, H. V. V. Priyadarshana, S. S. Millavithanachchi, P. K. G. S. S. Bandara and K. R. Koswattage
Nanomaterials 2025, 15(7), 528; https://doi.org/10.3390/nano15070528 - 31 Mar 2025
Cited by 2 | Viewed by 2206
Abstract
The field of bio-nanotechnology has seen significant advancements in recent years, particularly in the synthesis and application of bio-nanoparticles (BNPs). This review focuses on the green synthesis of BNPs using biological entities such as plants, bacteria, fungi, and algae. The utilization of these [...] Read more.
The field of bio-nanotechnology has seen significant advancements in recent years, particularly in the synthesis and application of bio-nanoparticles (BNPs). This review focuses on the green synthesis of BNPs using biological entities such as plants, bacteria, fungi, and algae. The utilization of these organisms for nanoparticle synthesis offers an eco-friendly and sustainable alternative to conventional chemical and physical methods, which often involve toxic reagents and high energy consumption. Phytochemicals present in plant extracts, unique metabolic pathways, and biomolecules in bacteria and fungi, and the rich biochemical composition of algae facilitate the production of nanoparticles with diverse shapes and sizes. This review further explores the wide-ranging applications of BNPs in various fields like therapeutics, fuel cells, energy generation, and wastewater treatment. In therapeutics, BNPs have shown efficacy in antimicrobial, anti-inflammatory, antioxidant, and anticancer activities. In the energy sector, BNPs are being integrated into fuel cells and other energy generation systems like bio-diesel to improve efficiency and sustainability. Their catalytic properties and large surface area enhance the performance of these devices. Wastewater treatment is another critical area where BNPs are employed for the removal of heavy metals, organic pollutants, and microbial contaminants, offering a cost-effective and environmentally friendly solution to water purification. This comprehensive review highlights the potential of bio-nanoparticles synthesized through green methods. It highlights the need for further research to optimize synthesis processes, understand mechanisms of action, and expand the scope of their applications. BNPs can be utilized to address advantages and some of the pressing challenges in medicine, energy, and environmental sustainability, paving the way for innovative and sustainable technological advancements in future prospects. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

25 pages, 5341 KiB  
Article
Natural Hydrocarbon-Contaminated Springs as a Reservoir of Microorganisms Useful for Bioremediation: Isolation and Multilevel Analysis of Hydrocarbonoclastic Bacteria from the Agri Valley (Southern Italy)
by Cristina Cavone, Pamela Monaco, Francesca Fantasma, Pietro Rizzo, Chiara Tarracchini, Silvia Petraro, Marco Ventura, Christian Milani, Fulvio Celico, Gino Naclerio and Antonio Bucci
Sustainability 2025, 17(7), 3083; https://doi.org/10.3390/su17073083 - 31 Mar 2025
Viewed by 570
Abstract
This research aimed to characterise hydrocarbonoclastic bacteria isolated from naturally hydrocarbon-contaminated springs and the surrounding soils in the Agri Valley (Southern Italy) and to assess the effectiveness of bioaugmentation using a four-strain microbial consortium for removing hydrocarbons from artificially diesel-contaminated lake waters in [...] Read more.
This research aimed to characterise hydrocarbonoclastic bacteria isolated from naturally hydrocarbon-contaminated springs and the surrounding soils in the Agri Valley (Southern Italy) and to assess the effectiveness of bioaugmentation using a four-strain microbial consortium for removing hydrocarbons from artificially diesel-contaminated lake waters in mesocosm experiments. Four novel bacterial strains were selected for the experimentation: Gordonia amicalis S2S5, Rhodococcus erythropolis S2W2, Acinetobacter tibetensis S2S8, and Acinetobacter puyangensis S1W1. The four isolates can use diesel oil as their sole carbon source, and some exhibited a relatively high emulsifying capacity and ability to adhere to hydrocarbons. Furthermore, genome analyses revealed the presence of genes associated with the degradation, detoxification, and transport of various contaminants. Mesocosm experiments demonstrated that the bioaugmentation enhanced the capacities of the native lake microbial communities to remove hydrocarbons, although drastic changes in their composition (analysed through Next-Generation Sequencing—NGS) were observed. Taken together, these results suggest that naturally contaminated environments can serve as a valuable reservoir of microorganisms with significant biotechnological potential, particularly in the field of bioremediation. However, a complete understanding of the ability of the isolated bacterial strains to efficiently degrade contaminants requires further research to fully assess their capabilities and limitations across different settings. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

13 pages, 6288 KiB  
Article
Solvothermal Synthesis of Unsupported NiMo Catalyst with High Activity in Hydrodesulfurization of 4,6-Dimethyldibenzothiophene
by José R. Contreras Bárbara, Rogelio Cuevas García, Diego A. Fabila Bustos, Iván Puente Lee and Macaria Hernández Chávez
Crystals 2025, 15(3), 245; https://doi.org/10.3390/cryst15030245 - 4 Mar 2025
Viewed by 832
Abstract
Environmental legislation has focused its attention on improving air quality. In this context, the presence of sulfur compounds in fuels, such as diesel and gasoline, is undesirable. When sulfur is combusted, compounds are emitted as SOx (SO2 and SO3) [...] Read more.
Environmental legislation has focused its attention on improving air quality. In this context, the presence of sulfur compounds in fuels, such as diesel and gasoline, is undesirable. When sulfur is combusted, compounds are emitted as SOx (SO2 and SO3) into the atmosphere, causing acid rain and respiratory diseases. For this reason, environmental norms have been established to reduce the sulfur content of fuels. Sulfur (mainly as alkylbenzothiophenes, dibenzothiophenes and alkyldibenzothiophenes) is removed in refineries through a process called hydrodesulfurization (HDS). HDS is performed at an industrial level with the use of NiMo, CoMo or NiW catalysts supported on alumina. Unsupported MoS2 (bulk) catalysts have recently attracted attention due to their high activity and selectivity in HDS. In this study, bulk NiMo catalyst precursors were synthesized using solvothermal methods with varying pH and solvothermal synthesis time. The precursors and catalysts were characterized using scanning electron microscopy with energy dispersive X-ray spectroscopy (EDS) microanalysis, X-ray diffraction (XRD), textural properties using liquid nitrogen physisorption at 77 K, Raman spectroscopy and high-resolution transmission electron microscopy (HTREM). The results indicate that the morphology of the NiMoO4 precursors synthesized in an ethanol/water mixture varies, forming “grains,” “flakes” or “rods,” depending on the dwell time and synthesis conditions. The catalytic activity results show that the bulk NiMo catalyst synthesized at 2 h presented higher selectivity and catalytic activity in the HDS of 4,6-DMDBT when compared to a supported reference catalyst (NiMo/γ-Al2O3). Full article
(This article belongs to the Special Issue Advances in Nanocomposites: Structure, Properties and Applications)
Show Figures

Figure 1

Back to TopTop