Solvothermal Synthesis of Unsupported NiMo Catalyst with High Activity in Hydrodesulfurization of 4,6-Dimethyldibenzothiophene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Bulk NiMo Catalyst Precursors by Solvothermal Methods
2.2. Characterization Techniques of Bulk Catalyst Precursors
2.2.1. Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS)
2.2.2. X-Ray Diffraction (XRD)
2.2.3. Textural Properties Using Liquid Nitrogen Physisorption at 77 K
2.2.4. Raman Spectroscopy
2.2.5. High-Resolution Transmission Electron Microscopy (HR-TEM)
2.3. Catalyst Activation
2.4. Catalytic Test
3. Results and Discussion
3.1. Physicochemical Characterization of Bulk Catalyst Precursors
Elemental Composition Determined by Energy Dispersive X-Ray Spectroscopy (EDS)
3.2. X-Ray Diffraction (XRD)
3.3. Scanning Electron Microscopy (SEM)
3.4. Textural Properties by Nitrogen Physisorption at 77 K
3.5. Characterization of Sulfurized Bulk Catalysts
3.5.1. Raman Spectroscopy Analysis
3.5.2. High-Resolution Transmission Electron Microscopy (HR-TEM)
3.6. Catalytic Activity in HDS of 4,6-Dimethyldibenzothiophene (4,6-DMDBT)
Product Distribution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nadeina, K.A.; Budukva, S.V.; Vatutina, Y.V.; Mukhacheva, P.P.; Gerasimov, E.Y.; Pakharukova, V.P.; Klimov, O.V.; Noskov, A.S. Unsupported Ni—Mo—W hydrotreating catalyst: Influence of the atomic ratio of active metals on the HDS and HDN activity. Catalysts 2022, 12, 1671. [Google Scholar] [CrossRef]
- Singh, J.; Kaushik, R.; Chawla, M. Hazardous Gases: Risk Assessment on the Environment and Human Health, 1st ed.; Academic Press: London, UK, 2021; pp. 375–389. [Google Scholar]
- Wang, E.; Yang, F.; Song, M.; Chen, G.; Zhang, Q.; Wang, F.; Bing, L.; Wang, G.; Han, D. Recent advances in the unsupported catalysts for the hydrodesulfurization of fuel. Fuel Process. Technol. 2022, 235, 107386. [Google Scholar] [CrossRef]
- Üner, D. Advances in Refining Catalysis, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017; p. 124. [Google Scholar]
- Weng, X.; Cao, L.; Zhang, G.; Chen, F.; Zhao, L.; Zhang, Y.; Gao, J.; Xu, C. Ultradeep Hydrodesulfurization of Diesel: Mechanisms, Catalyst Design Strategies, and Challenges. Ind. Eng. Chem. Res. 2020, 59, 21261–21274. [Google Scholar] [CrossRef]
- Chianelli, R.R.; Berhault, G.; Torres, B. Unsupported Transition Metal Sulfide Catalysts: 100 years of Science and Application. Catal. Today 2009, 147, 275–286. [Google Scholar] [CrossRef]
- Lai, W.; Chen, Z.; Zhu, J.; Yang, L.; Zheng, J.; Yi, X.; Fang, W. A NiMoS flower-like structure with self-assembled nanosheets as high-performance hydrodesulfurization catalysts. Nanoscale 2016, 8, 3823–3833. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Hu, A.; Dai, Q.; Yang, Q.; Hou, R.; Liu, Z. Study on the Performance of Ni−MoS2 Catalysts with Different MoS2 Structures for Dibenzothiophene Hydrodesulfurization. ACS Omega 2023, 8, 41182–41193. [Google Scholar] [CrossRef]
- Chowdari, R.K.; De León, J.N.; Fuentes-Moyado, S. Effect of sulfidation conditions on the unsupported flower-like bimetallic oxide microspheres for the hydrodesulfurization of dibenzothiophene. Catal. Today 2022, 394–396, 13–34. [Google Scholar] [CrossRef]
- Yang, C.; Dai, Q.; Hu, A.; Yuan, H.; Yang, Q. The Influence of Metal–Support Interactions on the Performance of Ni-MoS2/Al2O3 Catalysts for Dibenzothiophene Hydrodesulfurization. Processes 2023, 11, 3181. [Google Scholar] [CrossRef]
- De León, J.D.; Chowdari, R.K.; Antúnez-García, J.; Fuentes-Moyado, S. Recent Insights in Transition Metal Sulfide Hydrodesulfurization Catalysts for the production of ultra low sulfur diesel: A short review. Catalysts 2019, 9, 87. [Google Scholar] [CrossRef]
- Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef]
- Liu, H.; Yin, C.; Li, X.; Chai, Y.; Li, Y.; Liu, C. Effect of NiMo phases on the hydrodesulfurization activities of dibenzothiophene. Catal. Today 2017, 282, 222–229. [Google Scholar] [CrossRef]
- Rammal, M.B.; Omanovic, S. Synthesis and characterization of NiO, MoO3, and NiMoO4 nanostructures through a green, facile method and their potential use as electrocatalysts for water splitting. Mater. Chem. Phys. 2020, 255, 123570. [Google Scholar] [CrossRef]
- Théodet, M.; Quilfen, C.; Martínez, C.; Aymonier, C. Continuous supercritical synthesis of unsupported and high specific surface area catalyst precursors for deep-hydrodesulfurization. J. Supercrit. Fluids 2016, 117, 252–259. [Google Scholar] [CrossRef]
- Condon, J.B. Surface Area and Porosity Determinations by Physisorption, 1st ed.; Elsevier: Amsterdam, The Netherland, 2006; pp. 6–14. [Google Scholar]
- Olivas, A.; Galván, D.H.; Alonso, G.; Fuentes, S. Trimetallic NiMoW unsupported catalysts for HDS. Appl. Catal. A 2009, 352, 10–16. [Google Scholar] [CrossRef]
- Bishop, D.; Thomas, P.; Ray, A. Raman spectra of nickel (II) sulfide. Mater. Res. Bull. 1998, 33, 1303–1306. [Google Scholar] [CrossRef]
- Jiménez Sandoval, S.; Yang, D.Y.; Frindt, R.F.; Irwin, J. Raman study and lattice dynamics of single molecular layers of MoS2. Phys. Rev. B Condens. Matter 1991, 44, 3955–3962. [Google Scholar] [CrossRef]
- Kabe, T.; Akamatsu, K.; Ishihara, A.; Otsuki, S.; Godo, M.; Zhang, Q.; Qian, W. Deep hydrodesulfurization of light gas oil. 1. Kinetics and mechanisms of dibenzothiophene hydrodesulfurization. Ind. Eng. Chem. Res. 1997, 36, 5146–5152. [Google Scholar] [CrossRef]
- Ma, X.; Sakanishi, K.; Mochida, I. Hydrodesulfurization reactivities of various sulfur compounds in diesel fuel. Ind. Eng. Chem. Res. 1994, 33, 218–222. [Google Scholar] [CrossRef]
- Whitehurst, D.; Isoda, T.; Mochida, I. Present State of the Art and Future Challenges in the Hydrodesulfurization of Polyaromatic Sulfur Compounds. Advan. Catal. 1998, 42, 345–471. [Google Scholar]
- Yoosuk, B.; Kim, J.H.; Song, C.; Ngamcharussrivichai, C.; Prasassarakich, P. Highly active MoS2, CoMoS2 and NiMoS2 unsupported catalysts prepared by hydrothermal synthesis for hydrodesulfurization of 4,6-dimethyldibenzothiophene. Catal. Today 2008, 130, 14–23. [Google Scholar] [CrossRef]
- Zhao, Y.; Prins, R. Mechanisms of hydrodenitrogenation of alkylamines and hydrodesulfurization of alkanethiols on NiMo/Al2O3, CoMo/Al2O3, and Mo/Al2O3. J. Catal. 2005, 229, 213–226. [Google Scholar] [CrossRef]
- Topsoe, N.Y.; Topsoe, H. FTIR studies of Mo/Al2O3-based catalysts: II. Evidence for the presence of SH groups and their role in acidity and activity. J. Catal. 1993, 139, 641–651. [Google Scholar] [CrossRef]
PrecEtOH(2 h) | PrecEtOH(6 h) | Theoretical | |
---|---|---|---|
Atom | % Atomic | % Atomic | % Atomic |
Ni | 18.01 | 15.12 | 16.6 |
Mo | 15.26 | 15.04 | 16.6 |
O | 66.73 | 64.84 | 66.6 |
Total | 100% | 100% | 100% |
Ni/Mo | 1.18 | 1.01 | 1 |
Catalyst | Pseudo-First Order Rate Constant k’ (h−1 × Atoms of Mo) |
---|---|
CatEtOH(2 h) | 1.073 × 10−20 |
CatEtOH(6 h) | 1.030 × 10−21 |
Cat. of Ref. NiMo/γ-Al2O3 | 5.857 × 10−21 |
Products | Name | Structure |
---|---|---|
4,6-DMDCH | 4,6-Dimethyldicyclohexyl | |
4,6-DMCHT | 4,6-Dimethylcyclohexyltoluene | |
4,6-DMDFL | 4,6-Dimethylbiphenyl | |
TH-4,6-DMDBT | Tetrahydro-4,6-dimethyldibenzothiophene | |
HH-4,6-DMDBT | Hexahydro-4,6-dimethyldibenzothiophene | |
T | Toluene | |
MCH | Methylcyclohexane |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras Bárbara, J.R.; Cuevas García, R.; Fabila Bustos, D.A.; Lee, I.P.; Hernández Chávez, M. Solvothermal Synthesis of Unsupported NiMo Catalyst with High Activity in Hydrodesulfurization of 4,6-Dimethyldibenzothiophene. Crystals 2025, 15, 245. https://doi.org/10.3390/cryst15030245
Contreras Bárbara JR, Cuevas García R, Fabila Bustos DA, Lee IP, Hernández Chávez M. Solvothermal Synthesis of Unsupported NiMo Catalyst with High Activity in Hydrodesulfurization of 4,6-Dimethyldibenzothiophene. Crystals. 2025; 15(3):245. https://doi.org/10.3390/cryst15030245
Chicago/Turabian StyleContreras Bárbara, José R., Rogelio Cuevas García, Diego A. Fabila Bustos, Iván Puente Lee, and Macaria Hernández Chávez. 2025. "Solvothermal Synthesis of Unsupported NiMo Catalyst with High Activity in Hydrodesulfurization of 4,6-Dimethyldibenzothiophene" Crystals 15, no. 3: 245. https://doi.org/10.3390/cryst15030245
APA StyleContreras Bárbara, J. R., Cuevas García, R., Fabila Bustos, D. A., Lee, I. P., & Hernández Chávez, M. (2025). Solvothermal Synthesis of Unsupported NiMo Catalyst with High Activity in Hydrodesulfurization of 4,6-Dimethyldibenzothiophene. Crystals, 15(3), 245. https://doi.org/10.3390/cryst15030245