Particle Deposition and Sustainable Ventilation Strategies for Clean Air in Diesel-Polluted Confined Spaces
Abstract
1. Introduction
2. Experimental Devices and Methods
3. Setup of Particle Diffusion Model
4. Results and Discussion
4.1. Measured Particle Concentration
4.2. Simulated Particle Concentration Distributions in the Closed Environment Chamber
4.3. Influence of Ventilation on the Particle Concentrations
4.4. Comparison of Ventilation Effect
4.5. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thangavel, P.; Park, D.; Lee, Y.C. Recent insights into particulate matter (PM2.5)-mediated toxicity in humans: An overview. Int. J. Environ. Res. Public Health 2022, 19, 7511. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Li, Z.L.; Yu, L.; Wang, X.L.; Lu, X.C. Review of the state-of-the-art of particulate matter emissions from modern gasoline fueled engines. Appl. Energy 2019, 238, 1269–1298. [Google Scholar] [CrossRef]
- Yilmaz, N.; Vigil, F.M.; Donaldson, B. Fuel effects on PAH formation, toxicity and regulated pollutants: Detailed comparison of biodiesel blends with propanol, butanol and pentanol. Sci. Total Environ. 2022, 849, 157839. [Google Scholar] [CrossRef] [PubMed]
- Popovicheva, O.B.; Irimiea, C.; Carpentier, Y.; Ortega, I.K.; Kireeva, E.D.; Shonija, N.K.; Schwarz, J.; Vojtisek-Lom, M.; Focsa, C. Chemical composition of diesel/biodiesel particulate exhaust by FTIR spectroscopy and mass spectrometry: Impact of fuel and driving cycle. Aerosol Air Qual. Res. 2017, 17, 1717–1734. [Google Scholar] [CrossRef]
- Liang, F.C.; Liu, F.C.; Huang, K.Y.; Yang, Y.X.; Li, J.X.; Xiao, Q.Y.; Chen, J.C.; Liu, X.Q.; Cao, J.; Shen, C. Long-term exposure to fine particulate matter and cardiovascular disease in China. J. Am. Coll. Cardiol. 2020, 75, 707–717. [Google Scholar] [CrossRef]
- Kyung, S.Y.; Jeong, S.H. Particulate-matter related respiratory diseases. Tuberc. Respir. Dis. 2020, 83, 116–121. [Google Scholar] [CrossRef]
- Braithwaite, I.; Zhang, S.; Kirkbride, J.B.; Osborn, D.P.J.; Hayes, J.F. Air pollution (particulate matter) exposure and associations with depression, anxiety, bipolar, psychosis and suicide risk: A systematic review and meta-analysis. Environ. Health Perspect. 2019, 127, 126002. [Google Scholar] [CrossRef]
- Puett, R.C.; Hart, J.E.; Suh, H.; Mittleman, M.; Laden, F. Particulate matter exposures, mortality, and cardiovascular disease in the health professionals follow-up study. Environ. Health Perspect. 2011, 119, 1130–1135. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, K.W.; Kim, S.D.; Lee, B.K.; Han, J.S. Fine particulate matter characteristics and its impact on visibility impairment at two urban sites in Korea: Seoul and Incheon. Atmos. Environ. 2006, 40, 593–605. [Google Scholar] [CrossRef]
- Mukherjee, A.; Agrawal, M. World air particulate matter: Sources, distribution and health effects. Environ. Chem. Lett. 2017, 15, 283–309. [Google Scholar] [CrossRef]
- Anwar, M.N.; Shabbir, M.; Tahir, E.; Iftikhar, M.; Saif, H.; Murtaza, M.A.; Khokhar, M.F.; Rehan, M.; Aghbashlo, M. Emerging challenges of air pollution and particulate matter in China, India, and Pakistan and mitigating solutions. J. Hazard. Mater. 2021, 416, 125851. [Google Scholar] [CrossRef] [PubMed]
- Birmili, W.; Tomsche, L.; Sonntag, A.; Opelt, C.; Weinhold, K.; Nordmann, S.; Schmidt, W. Variability of aerosol particles in the urban atmosphere of Dresden (Germany): Effects of spatial scale and particle size. Meteorol. Z. 2013, 22, 195–211. [Google Scholar] [CrossRef]
- Wang, S.G.; Feng, X.Y.; Zeng, X.Q.; Ma, Y.X.; Shang, K.Z. A study on variations of concentrations of particulate matter with different sizes in Lanzhou, China. Atmos. Environ. 2009, 43, 2823–2828. [Google Scholar] [CrossRef]
- Shu, Z.Z.; Liu, Y.B.; Zhao, T.L.; Zhou, Y.B.; Habtemicheal, B.A.; Shen, L.J.; Hu, J.; Ma, X.D.; Sun, X.Y. Long-term variations in aerosol optical properties, types, and radiative forcing in the Sichuan Basin, Southwest China. Sci. Total Environ. 2022, 807, 151490. [Google Scholar] [CrossRef]
- Xu, G.Y.; Ren, X.D.; Xiong, K.N.; Li, L.Q.; Bi, X.C.; Wu, Q.L. Analysis of the driving factors of PM2.5 concentration in the air: A case study of the Yangtze River Delta, China. Ecol. Indic. 2020, 110, 105889. [Google Scholar] [CrossRef]
- Xing, Y.; Brimblecombe, P. Role of vegetation in deposition and dispersion of air pollution in urban parks. Atmos. Environ. 2019, 201, 73–83. [Google Scholar] [CrossRef]
- Zuo, L.; Mei, D.Q.; Yuan, Y.N.; Zhu, Z.N.; Mei, C.W. A comparative study on the size distribution and carbon components of particulate matters from typical sources. Environ. Prog. Sustain. Energy 2020, 39, e13462. [Google Scholar] [CrossRef]
- Huang, S.; Chen, P.X.; Hu, K.Y.; Qiu, Y.C.; Feng, W.W.; Ren, Z.P.; Wang, X.L.; Huang, T.; Wu, D.S. Characteristics and source identification of fine particles in the Nanchang subway, China. Build Environ. 2021, 199, 107925. [Google Scholar] [CrossRef]
- Carteni, A.; Cascetta, F.; Henke, I.; Molitierno, C. The role of particle resuspension within PM concentrations in underground subway systems. Int. J. Environ. Sci. Technol. 2020, 17, 4075–4094. [Google Scholar] [CrossRef]
- Park, J.H.; Woo, Y.H.; Park, J.C. Major factors affecting the aerosol particulate concentration in the underground stations. Indoor Built Environ. 2014, 23, 629–639. [Google Scholar] [CrossRef]
- Licbinsky, R.; Faimon, J.; Tanda, S.; Hegrova, J.; Goessler, W.; Uberhuberova, J. Changes in the elemental composition of particulate matter in a speleotherapeutic cave. Atmos. Pollut. Res. 2020, 11, 1142–1154. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, M.J.; Gao, Z.; Zhang, J.S.; Buccolieri, R. Neighborhood-scale dispersion of traffic-related PM2.5: Simulations of nine typical residential cases from Nanjing. Sustain. Cities Soc. 2023, 90, 104393. [Google Scholar] [CrossRef]
- Liu, S.Y.; Wei, C.H.; Zhu, W.C.; Zhang, M. Temperature-and pressure-dependent gas diffusion in coal particles: Numerical model and experiments. Fuel 2020, 266, 117054. [Google Scholar] [CrossRef]
- Sarnat, S.E.; Coull, B.A.; Schwartz, J.; Gold, D.R.; Suh, H.H. Factors affecting the association between ambient concentrations and personal exposures to particles and gases. Environ. Health Perspect. 2006, 114, 649–654. [Google Scholar] [CrossRef]
- Zhang, P.; Hong, B.; He, L.; Cheng, F.; Zhao, P.; Wei, C.L.; Liu, Y.H. Temporal and spatial simulation of atmospheric pollutant PM2.5 changes and risk assessment of population exposure to pollution using optimization algorithms of the back propagation-artificial neural network model and GIS. Int. J. Environ. Res. Public Health 2015, 12, 12171–12195. [Google Scholar] [CrossRef]
- Deng, S.X.; Ma, J.; Zhang, L.L.; Jia, Z.K.; Ma, L.Y. Microclimate simulation and model optimization of the effect of roadway green space on atmospheric particulate matter. Environ. Pollut. 2019, 246, 932–944. [Google Scholar] [CrossRef]
- Izadi, T.; Mehrabian, M.A.; Ahmadi, G.; Abouali, O. Numerical analysis of the mirco-particles distribution inside an underground subway system due to train piston effect. J. Wind. Eng. Ind. Aerodyn. 2021, 211, 104533. [Google Scholar] [CrossRef]
- Goldasteh, I.; Ahmadi, G.; Ferro, A.R. Wind tunnel study and numerical simulation of dust particle resuspension from indoor surfaces in turbulent flows. J. Adhes. Sci. Technol. 2013, 27, 1563–1579. [Google Scholar] [CrossRef]
- Rodriguez, R.; Murzyn, F.; Mehel, A.; Larrarte, F. Dispersion of ultrafine particles in the wake of car models: A wind tunnel study. J. Wind Eng. Ind. Aerod. 2020, 198, 104109. [Google Scholar] [CrossRef]
- Mao, G.P.; Shao, S. Experimental research on the flame temperature of n-butanol–diesel fuel blends in atmospheric conditions. J. Energy Eng. 2016, 142, 4015037. [Google Scholar] [CrossRef]
- Abdullah, I.S.; Khalid, A.; Jaat, N.; Nursal, R.S.; Koten, H.; Karagoz, Y. A study of ignition delay, combustion process and emissions in a high ambient temperature of diesel combustion. Fuel 2021, 297, 120706. [Google Scholar] [CrossRef]
- Mao, G.P.; Shi, T.C.; Huang, M.; Hu, P. Investigating the fractal dimension of flame fronts of the biodiesel-diesel blends combustion in atmospheric conditions and engine cylinders: An experimental study. Int. J. Therm. Sci. 2024, 197, 108802. [Google Scholar] [CrossRef]
- Ye, S.Q.; Zhang, D.P.; Chen, B.; Xu, J.P.; Mei, D.Q.; Yuan, Y.Y. Study on microstructure and extinction characteristics of particulate matter in diesel engine fueled with different biodiesels. Environ. Sci. Pollut. Res. 2023, 30, 22458–72240. [Google Scholar] [CrossRef]
- Ni, P.Y.; Zhang, Z.H.; Xu, H.Y.; Wang, X.L.; Xia, Q. Diffusion and hygroscopicity of particles from diesel and biodiesel combustion in an environmental chamber. Energy Rep. 2022, 8, 8271–8281. [Google Scholar] [CrossRef]
- Guo, J.W.; Chen, Z.X.; Shen, B.X.; Wang, J.; Yang, L. Numerical study on characteristics of particle deposition efficiency on different walls of 90° square bend. Powder Technol. 2020, 364, 572–583. [Google Scholar] [CrossRef]
- Hong, W.P.; Wang, X.; Zheng, J.X. Numerical study on particle deposition in rough channels with different structure parameters of rough elements. Adv. Powder Technol. 2018, 29, 2895–2903. [Google Scholar] [CrossRef]
- Marzouk, O.A.; Huckaby, E.D. Simulation of a swirling gas-particle flow using different k-epsilon models and particle-parcel relationships. Eng. Lett. 2010, 18, 1–12. [Google Scholar]
- Guan, W.L.; Xia, Y.S.; Dong, C.J.; Ren, C.X.; Zhang, W. The effect of particle size on aluminum dust dispersion based on numerical simulation. J. Loss Prev. Process Ind. 2024, 89, 105290. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.Y.; Zhang, X.X.; Liu, S.; Franky, K.; Li, W.W.; Bi, W.F. The effects of warm air heater on the dispersion and deposition of particles in an enclosed environment. Aerosol Air Qual. Res. 2021, 21, 200620. [Google Scholar] [CrossRef]
- Liu, D.; Li, X.R.; Xie, L.; Chang, J.; Kang, Y.N.; Zhang, Z. Experimental studies on the particulate matter emission characteristics of a lateral swirl combustion system for direct injection diesel engines. Environ. Pollut. 2023, 330, 121756. [Google Scholar] [CrossRef]
- Aljohani, S.; Aljohani, K.; Kandasamy, M.; Vellaiyan, S.; Nagappan, B. Enhancement of diesel engine performance and emission reduction using ZnS nanoparticles and water emulsions with electrostatic precipitator integration. Case Stud. Therm. Eng. 2025, 71, 106157. [Google Scholar] [CrossRef]
- Ferree, P.L.; Polat, M.; Nøjgaard, J.K.; Jensen, K.A. Airborne particulate matter and diesel engine exhaust on infrastructure construction sites in the Copenhagen metropolitan area. Ann. Work. Expo. Health 2024, 68, 791–803. [Google Scholar] [CrossRef]
- Liu, X.R.; Li, F.; Cai, H.; Zhou, B.; Shi, S.S.; Liu, J.X. A numerical investigation on the mixing factor and particle deposition velocity for enclosed spaces under natural ventilation. Build. Simul. 2019, 12, 465–473. [Google Scholar] [CrossRef]
- Song, X.Y.; Lu, Q.C.; Peng, Z.R. Spatial distribution of fine particulate matter in underground passageways. Int. J. Environ. Res. Public Health 2018, 15, 1574. [Google Scholar] [CrossRef]
- Kwon, S.B.; Namgung, H.G.; Jeong, W.; Park, D.; Eom, J.K. Transient variation of aerosol size distribution in an underground subway station. Environ. Monit. Assess. 2016, 188, 362. [Google Scholar] [CrossRef]
Case Name | Ventilation Mode | Inlet Velocity (m/s) | Diagram |
---|---|---|---|
Case 1 | Closed | 0 | |
Case 2 | Directly facing ventilation | 0.2 | |
Case 3 | 0.4 | ||
Case 4 | 0.6 | ||
Case 5 | Side ventilation | 0.4 | |
Case 6 |
Variables | Value |
---|---|
Initial temperature (K) | 343.15 |
Spray start time (s) | 0 |
Spray end time (s) | 30 |
Cone angle (°) | 7.5 |
Cone outside radius (m) | 0.005 |
Particle velocity (m/s) | 0.3 |
Total particulate flow (kg/s) | 5.63 × 10−8 |
Minimum diameter of particles (m) | 3 × 10−7 |
Maximum diameter of particles (m) | 1 × 10−5 |
Mean particle diameter (m) | 1 × 10−6 |
Number of particle diameters | 10 |
Parameters | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 |
---|---|---|---|---|---|---|
m1 (kg) | 1.3 × 10−6 | 1.45 × 10−6 | 1.39 × 10−6 | 1.31 × 10−6 | 1.09 × 10−6 | 1.18 × 10−6 |
Q (m3/h) | 0 | 28.8 | 57.6 | 86.4 | 57.6 | 57.6 |
tv (s) | 0 | 30 | 30 | 30 | 30 | 30 |
Va (m3) | 0 | 0.24 | 0.48 | 0.72 | 0.48 | 0.48 |
ACH (1/h) | 0 | 28.8 | 57.6 | 86.4 | 57.6 | 57.6 |
(%) * | 23 (0) | 14 (11) | 18 (14) | 22 (18) | 36 (33) | 30 (27) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, P.; Dong, Z.; Wang, X.; Zhang, X.; Li, X. Particle Deposition and Sustainable Ventilation Strategies for Clean Air in Diesel-Polluted Confined Spaces. Sustainability 2025, 17, 5029. https://doi.org/10.3390/su17115029
Ni P, Dong Z, Wang X, Zhang X, Li X. Particle Deposition and Sustainable Ventilation Strategies for Clean Air in Diesel-Polluted Confined Spaces. Sustainability. 2025; 17(11):5029. https://doi.org/10.3390/su17115029
Chicago/Turabian StyleNi, Peiyong, Zhen Dong, Xiangli Wang, Xuewen Zhang, and Xiang Li. 2025. "Particle Deposition and Sustainable Ventilation Strategies for Clean Air in Diesel-Polluted Confined Spaces" Sustainability 17, no. 11: 5029. https://doi.org/10.3390/su17115029
APA StyleNi, P., Dong, Z., Wang, X., Zhang, X., & Li, X. (2025). Particle Deposition and Sustainable Ventilation Strategies for Clean Air in Diesel-Polluted Confined Spaces. Sustainability, 17(11), 5029. https://doi.org/10.3390/su17115029