Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (507)

Search Parameters:
Keywords = diamond composite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 10667 KiB  
Article
Influence of Nitrogen and Hydrogen Addition on Composition, Morphology, Adhesion, and Wear Resistance of Amorphous Carbon Coatings Produced by RFCVD Method on Surface-Hardened Ultra-Fine Grained Bainitic 30HGSNA Steel
by Karol Wunsch, Tomasz Borowski, Emilia Skołek, Agata Roguska, Rafał Chodun, Michał Urbańczyk, Krzysztof Kulikowski, Maciej Spychalski, Andrzej Wieczorek and Jerzy Robert Sobiecki
Coatings 2025, 15(8), 877; https://doi.org/10.3390/coatings15080877 - 26 Jul 2025
Viewed by 262
Abstract
Ultra-fine-grained bainitic (UFGB) steels offer excellent mechanical properties, which can be further improved by applying diamond-like carbon (DLC) coatings. However, poor adhesion between the coating and substrate remains a key limitation. Since the steel’s microstructure degrades at high temperatures, enhancing adhesion without heating [...] Read more.
Ultra-fine-grained bainitic (UFGB) steels offer excellent mechanical properties, which can be further improved by applying diamond-like carbon (DLC) coatings. However, poor adhesion between the coating and substrate remains a key limitation. Since the steel’s microstructure degrades at high temperatures, enhancing adhesion without heating the substrate is essential. This study investigates surface hardening combined with simultaneous nitrogen and hydrogen doping during the Radio Frequency Chemical Vapor Deposition (RFCVD) process to improve coating performance. Varying gas compositions were tested to assess their effects on coating properties. Nitrogen incorporation decreased hardness from 12 GPa to 9 GPa but improved adhesion, while hydrogen limited damage after coating failure. Optimizing the gas mixture led to enhanced adhesion and wear resistance. Raman and X-ray photoelectron spectroscopy (XPS) analyses confirmed that the optimized coatings had the highest sp3 bond content and elevated nitrogen levels. While both hardness and adhesion contributed to wear resistance, no direct link to coating thickness was found. Overall, co-doping with nitrogen and hydrogen is an effective approach to improve adhesion and wear resistance without requiring high processing temperatures or complex equipment. Full article
(This article belongs to the Special Issue Recent Advances in Surface Functionalisation, 2nd Edition)
Show Figures

Figure 1

22 pages, 11182 KiB  
Article
Application of Laser Thermal Deformation Sintering in the Manufacture of Drum-Type Diamond Tools
by Oleksii Kaglyak, Leonid Golovko, Oleksii Goncharuk, Svitlana Voloshko, Oleksandr Kapustynskyi and Nikolaj Višniakov
J. Manuf. Mater. Process. 2025, 9(8), 251; https://doi.org/10.3390/jmmp9080251 - 24 Jul 2025
Viewed by 273
Abstract
An analysis of the existing methods of sintering diamond-containing composites is presented. On the basis of mathematical modeling and experimental studies, the conditions of the laser liquid-phase sintering of diamond-containing composites under which they retain their strength are determined. The energy and technological [...] Read more.
An analysis of the existing methods of sintering diamond-containing composites is presented. On the basis of mathematical modeling and experimental studies, the conditions of the laser liquid-phase sintering of diamond-containing composites under which they retain their strength are determined. The energy and technological parameters of the laser irradiation process are characterized, which determine the range of laser processing modes within which no oxidation and crack formation occur, and a high-quality composite with specified geometrical parameters is formed. It has been proven that composites consisting of synthetic diamond grains and a metal bond do not lose strength under the condition that the temperature during laser heating does not exceed 1600 °C and the exposure time is 0.3 s. Electron microscopy and X-ray diffractometry were used for experimental studies of the microstructure and phase composition of the sintered layers. A new design and manufacturing method for a drum-type abrasive tool with replaceable diamond inserts for grinding large-sized aircraft and shipbuilding products are proposed. Components of a laser technological complex for the implementation of the process of sintering the diamond-containing layer of the abrasive inserts of the drum have been developed. Full article
Show Figures

Figure 1

13 pages, 880 KiB  
Review
Inclusions, Nitrogen Occurrence Modes, and C-N Isotopic Compositions of Diamonds as Indicators for Exploring the Genesis Mechanism of Diamond: A Review
by Xiao-Xia Wang, Yang-Yang Wang, Xiaodong Yao, Tianyin Chang, Xiang Li, Xiaomin Wang and Zihao Zhao
Minerals 2025, 15(7), 728; https://doi.org/10.3390/min15070728 - 12 Jul 2025
Viewed by 191
Abstract
Diamond, a crucial carbon phase in the deep Earth, forms under ultrahigh-pressure (UHP, P > 4 GPa) conditions and serves as an important indicator mineral for the UHP environment. Based on their host rocks, diamonds are classified into mantle-derived diamonds, UHP metamorphic diamonds, [...] Read more.
Diamond, a crucial carbon phase in the deep Earth, forms under ultrahigh-pressure (UHP, P > 4 GPa) conditions and serves as an important indicator mineral for the UHP environment. Based on their host rocks, diamonds are classified into mantle-derived diamonds, UHP metamorphic diamonds, impact diamonds, etc. While carbon constitutes the primary component of diamonds, nitrogen represents one of the most significant impurity elements. The study of the occurrence mode of nitrogen and the C-N isotope composition is essential for exploring the formation mechanism of diamond. Nitrogen primarily exists in diamonds as either isolated atoms (N) or aggregated forms (N2 or N4), with the dominant mode being controlled by temperature and residence time in the mantle. As temperature and residence time increase, isolated nitrogen progressively transforms into aggregated forms. As a result, mantle-derived diamonds typically contain nitrogen predominantly as N2 or N4, whereas metamorphic diamonds and impact diamonds mainly retain isolated N. Global C-N isotopic composition of over 4400 diamonds reveals a wide compositional range, with δ13C ranging from −38.5‰ to +5.0‰, and δ15N from −39.4‰ to +15.0‰. These values significantly exceed the typical mantle δ13C and δ15N values of −5‰ ± 3‰, indicating that the diamond formation may be influenced by subducted crustal materials. During crystallization, diamonds can encapsulate surrounding materials as inclusions, which are divided into three types based on their formation sequence relative to the host diamond: preformed, syngenetic, and epigenetic. Syngenetic inclusions are particularly valuable for constraining crystallization conditions and the genesis of diamonds. Furthermore, geochronology studies of radioactive isotope-bearing syngenetic inclusions are helpful to clarify the age of diamond formation. Usually, mantle-derived diamonds exhibit Archean age, whereas metamorphic diamonds are associated with subduction, showing younger ages that could be associated with metamorphic events. Therefore, the formation conditions and genesis of diamonds can be clearly constrained through integrating investigations of inclusions, nitrogen occurrence modes, and C-N isotopic compositions. The characteristics of occurrence modes, inclusions, and C-N isotope compositions of different types of diamonds are systematically reviewed in this paper, providing critical insights into their genesis and contributing to a deeper understanding of diamond formation processes in Earth’s interior. Full article
Show Figures

Figure 1

15 pages, 5168 KiB  
Article
Effects of Pulse Ion Source Arc Voltage on the Structure and Friction Properties of Ta-C Thin Films on NBR Surface
by Sen Feng, Wenzhuang Lu, Fei Guo, Can Wang and Liang Zou
Coatings 2025, 15(7), 809; https://doi.org/10.3390/coatings15070809 - 10 Jul 2025
Viewed by 308
Abstract
Nitrile rubber (NBR) is prone to adhesion and hysteresis deformation when in contact with hard materials, leading to wear failure. To mitigate this issue, the deposition of diamond-like carbon (DLC) films onto the rubber surface is a commonly employed method. By utilizing pulsed [...] Read more.
Nitrile rubber (NBR) is prone to adhesion and hysteresis deformation when in contact with hard materials, leading to wear failure. To mitigate this issue, the deposition of diamond-like carbon (DLC) films onto the rubber surface is a commonly employed method. By utilizing pulsed arc ion plating technology and adjusting the arc voltage of the pulsed arc ion source, tetrahedral amorphous carbon (ta-C) films with varying sp3 content were prepared on the surface of NBR. The effects of arc voltage on the structural composition and friction performance of NBR/ta-C materials were examined. A scanning electron microscopy analysis revealed that the ta-C film applied to the surface of NBR was uniform and dense, exhibiting typical network crack characteristics. The results of Raman spectroscopy and X-ray photoelectron spectroscopy indicated that as the arc voltage increased, the sp3 content in the film initially rose before declining, reaching a maximum of 72.28% at 300 V. Mechanical tests demonstrated that the bonding strength and friction performance of the film are primarily influenced by the percentage of sp3 content. Notably, the ta-C film with lower sp3 content demonstrates enhanced wear resistance. At 200 V, the sp3 content of the film is 58.16%, resulting in optimal friction performance characterized by a stable friction coefficient of 0.38 and minimal wear weight loss. This performance is attributed to the protective qualities of the ta-C film and the formation of a graphitized transfer film. These results provide valuable insights for the design and development of wear-resistant rubber materials. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

18 pages, 12442 KiB  
Article
Properties of Diamond-like Coatings in Tribological Systems Lubricated with Ionic Liquid
by Krystyna Radoń-Kobus and Monika Madej
Coatings 2025, 15(7), 799; https://doi.org/10.3390/coatings15070799 - 8 Jul 2025
Viewed by 344
Abstract
The paper shows the effect of using a lubricant in the form of an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6), on the tribological properties of a hydrogenated diamond-like coating (DLC) doped with tungsten a-C:H:W. The coatings were deposited on 100Cr6 steel by [...] Read more.
The paper shows the effect of using a lubricant in the form of an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6), on the tribological properties of a hydrogenated diamond-like coating (DLC) doped with tungsten a-C:H:W. The coatings were deposited on 100Cr6 steel by plasma-enhanced chemical vapor deposition PECVD. Tribological tests were carried out on a TRB3 tribometer in a rotary motion in a ball–disc combination. 100Cr6 steel balls were used as a counter-sample. Friction and wear tests were carried out for discs made of 100Cr6 steel and 100Cr6 steel discs with a DLC coating. They were performed under friction conditions with and without lubrication under 10 N and 15 N loads. The ionic liquid BMIM-PF6 was used as a lubricant. Coating thickness was observed on a scanning microscope, and the linear analysis of chemical composition on the cross-section was analyzed using the EDS analyzer. The confocal microscope with an interferometric mode was used for analysis of the geometric structure of the surface before and after the tribological tests. The contact angle of the samples for distilled water, diiodomethane and ionic liquid was tested on an optical tensiometer. The test results showed good cooperation of the DLC coating with the lubricant. It lowered the coefficient of friction in comparison to steel about 20%. This indicates the synergistic nature of the interaction: DLC coating–BMIM-PF6 lubricant–100Cr6 steel. Full article
(This article belongs to the Special Issue Tribological and Mechanical Properties of Coatings)
Show Figures

Figure 1

20 pages, 13699 KiB  
Article
Modeling and Cutting Mechanics in the Milling of Polymer Matrix Composites
by Krzysztof Ciecieląg, Andrzej Kawalec, Michał Gdula and Piotr Żurek
Materials 2025, 18(13), 3017; https://doi.org/10.3390/ma18133017 - 25 Jun 2025
Viewed by 305
Abstract
The study investigates the problem of modeling cutting-force components through response surface methodology and reports the results of an investigation into the impact of machining parameters on the cutting mechanics of polymer–matrix composites. The novelty of this study is the modeling of cutting [...] Read more.
The study investigates the problem of modeling cutting-force components through response surface methodology and reports the results of an investigation into the impact of machining parameters on the cutting mechanics of polymer–matrix composites. The novelty of this study is the modeling of cutting forces and the determination of mathematical models of these forces. The models describe the values of forces as a function of the milling parameters. In addition, the cutting resistance of the composites was determined. The influence of the material and rake angle of individual tools on the cutting force components was also determined. Measurements of the main (tangential) cutting force showed that, using large rake angles for uncoated carbide tools, one could obtain maximum force values that were similar to those obtained with polycrystalline diamond tools with a small rake angle. The results of the analysis of the tangential component of cutting resistance showed that, regardless of the rake angle, the values range from 140 N to 180 N. An analysis of the feed component of cutting resistance showed that the maximum values of this force ranged from 46 N to 133 N. The results showed that the highest values of the feed component of cutting resistance occurred during the machining of polymer composites with carbon fibers and that they were most affected by feed per tooth. It was also shown that the force models determined during milling with diamond insert tools had the highest coefficient of determination in the range of 0.90–0.99. The cutting resistance analysis showed that the values tested are in the range of 3.8 N/mm2 to 15.5 N/mm2. Full article
(This article belongs to the Special Issue Cutting Processes for Materials in Manufacturing—Second Edition)
Show Figures

Figure 1

21 pages, 3361 KiB  
Article
Alternative Supports for Electrocatalysis of the Oxygen Evolution Reaction in Alkaline Media
by Gwénaëlle Kéranguéven, Ivan Filimonenkov, Thierry Dintzer and Matthieu Picher
Electrochem 2025, 6(3), 23; https://doi.org/10.3390/electrochem6030023 - 25 Jun 2025
Viewed by 432
Abstract
The anodic stability of tungsten carbide (WC) and iron oxide with a spinel structure (Fe3O4) were compared against similar data for nanostructured, boron-doped diamond (BDD), and the benchmark Vulcan XC72 carbon, in view of their eventual application as alternative [...] Read more.
The anodic stability of tungsten carbide (WC) and iron oxide with a spinel structure (Fe3O4) were compared against similar data for nanostructured, boron-doped diamond (BDD), and the benchmark Vulcan XC72 carbon, in view of their eventual application as alternative supports for the anion exchange membrane electrolyzer anode. To this end, metal oxide composites were prepared by the in situ autocombustion (ISAC) method, and the anodic behavior of materials (composites as well as supports alone) was investigated in 1 M NaOH electrolyte by the rotating ring–disc electrode method, which enables the separation oxygen evolution reaction and materials’ degradation currents. Among all supports, BDD has proven to be the most stable, while Vulcan XC72 is the least stable under the anodic polarization, with Fe3O4 and WC demonstrating intermediate behavior. The Co3O4-BDD, -Fe3O4, -WC, and -Vulcan composites prepared by the ISAC method were then tested as catalysts of the oxygen evolution reaction. The Co3O4-BDD and Co3O4-Fe3O4 composites appear to be competitive electrocatalysts for the OER in alkaline medium, showing activity comparable to the literature and higher support stability towards oxidation, either in cyclic voltammetry or chronoamperometry stability tests. On the contrary, WC- and Vulcan-based composites are prone to degradation. Full article
(This article belongs to the Topic Electrocatalytic Advances for Sustainable Energy)
Show Figures

Graphical abstract

14 pages, 2535 KiB  
Article
Influence of Different Adhesives and Surface Treatments on Shear and Tensile Bond Strength and Microleakage with Micro-CT of Repaired Bulk-Fill Composites
by Handan Yıldırım-Işık and Mediha Büyükgöze-Dindar
Polymers 2025, 17(12), 1680; https://doi.org/10.3390/polym17121680 - 17 Jun 2025
Viewed by 350
Abstract
The repair of defective composite restorations, particularly bulk-fill composites, offers a conservative alternative to complete replacement. However, establishing durable adhesion between aged and fresh composites remains a clinical challenge due to the altered surface properties of aged materials. This in vitro study investigated [...] Read more.
The repair of defective composite restorations, particularly bulk-fill composites, offers a conservative alternative to complete replacement. However, establishing durable adhesion between aged and fresh composites remains a clinical challenge due to the altered surface properties of aged materials. This in vitro study investigated the effects of different surface treatment protocols (no treatment, diamond bur roughening, and air abrasion) and adhesive systems (G-Premio Bond, Clearfil SE Bond, and Adper Single Bond 2) on the shear bond strength (µSBS), tensile bond strength (µTBS), and microleakage of repaired bulk-fill composites. Results demonstrated that both surface treatment and adhesive type significantly affected bond strength (p < 0.05). Mechanical surface treatments, particularly diamond bur roughening and air abrasion, enhanced µSBS and µTBS compared to untreated controls. The highest µSBS and µTBS values were observed with diamond bur treatment combined with Adper Single Bond 2, reaching mean values of 25.8 ± 2.1 MPa and 28.3 ± 1.8 MPa, respectively. Air abrasion with Clearfil SE Bond also significantly increased bond strengths (µSBS: 22.1 ± 2.0 MPa; µTBS: 23.5 ± 1.7 MPa) relative to no treatment (p < 0.05). Micro-computed tomography analysis revealed that Clearfil SE Bond following diamond bur roughening resulted in the lowest microleakage scores, with a mean leakage volume of 0.12 ± 0.04 µm. These findings underscore the importance of mechanical surface conditioning and appropriate adhesive selection to enhance both bond strength and sealing efficacy in composite repair procedures. Full article
(This article belongs to the Special Issue Advances in Polymer Composites II)
Show Figures

Figure 1

11 pages, 7517 KiB  
Article
Effect of Size on Phase Mixing Patterns in Rapidly Solidified Au–Ge Nanoparticles
by Olha Khshanovska, Vladyslav Ovsynskyi and Aleksandr Kryshtal
Nanomaterials 2025, 15(12), 924; https://doi.org/10.3390/nano15120924 - 14 Jun 2025
Viewed by 403
Abstract
We investigated the morphological patterns, crystalline structures and their thermal stability in solidified Au–Ge nanoparticles ranging in size from 10 to 500 nm. Liquid Au–Ge alloy nanoparticles with hypoeutectic composition were rapidly cooled from a temperature of 500 °C in a TEM and [...] Read more.
We investigated the morphological patterns, crystalline structures and their thermal stability in solidified Au–Ge nanoparticles ranging in size from 10 to 500 nm. Liquid Au–Ge alloy nanoparticles with hypoeutectic composition were rapidly cooled from a temperature of 500 °C in a TEM and characterized using advanced TEM techniques. We demonstrated that Au–Ge nanoparticles 10–80 nm in size predominantly solidified into a Janus-like morphology with nearly pure single-crystalline hcp Au and diamond cubic Ge domains. These particles remained stable up to the eutectic temperature, indicating that Ge doping and particle size play key roles in stabilizing the hcp Au phase. In turn, larger nanoparticles exhibited a metastable core–shell morphology with polycrystalline Ge shell and hcp Au-Ge alloy core under solidification. It was shown that the mentioned morphology and crystalline structure evolved into the equilibrium Janus morphology with fcc Au and diamond Ge domains at temperatures above ≈160 °C. Full article
(This article belongs to the Special Issue Nanoscale Microscopy Techniques for Energy Materials)
Show Figures

Graphical abstract

17 pages, 7868 KiB  
Article
The Effectiveness of Different Cleaning Methods for Clear Orthodontic Aligners: Impacts on Physical, Mechanical, and Chemical Properties—An In Vivo Study
by Athar Alweneen and Nasser Alqahtani
Polymers 2025, 17(12), 1620; https://doi.org/10.3390/polym17121620 - 11 Jun 2025
Viewed by 923
Abstract
Maintaining the cleanliness of orthodontic aligners is crucial for oral hygiene and preserving the optical properties of aligners. In this randomized clinical trial, we compared the effectiveness of different cleaning methods for the maintenance of Invisalign clear aligners. Twelve adult patients received five [...] Read more.
Maintaining the cleanliness of orthodontic aligners is crucial for oral hygiene and preserving the optical properties of aligners. In this randomized clinical trial, we compared the effectiveness of different cleaning methods for the maintenance of Invisalign clear aligners. Twelve adult patients received five aligners, each worn for 10 days. The aligners were divided based on the cleaning method: tooth brushing with whitening toothpaste, vinegar, Fittydent Super Cleansing Tablets, Invisalign cleaning crystals, and only water. Scanning electron microscopy (SEM) was used to detect surface morphology changes; color changes (ΔE) were evaluated using a spectrophotometer. Fourier transform infrared spectroscopy (FTIR) with a diamond hemisphere was used to study the aligners’ chemical compositions. Nanoindentation testing was used to assess changes in the elastic modulus. SEM confirmed the effectiveness of Invisalign cleaning crystals in maintaining cleanliness, revealing a surface similar to that of the control group with no adverse effects. Color stability analysis revealed significant ΔE value differences; whitening toothpaste had significantly lower ΔE values than water and Invisalign cleaning crystals. The elastic modulus and FTIR analyses indicated no significant differences between the cleaning methods. Therefore, Invisalign cleaning crystals and whitening toothpaste are safe for aligner maintenance, showing successful and aesthetically pleasing results. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

12 pages, 7645 KiB  
Article
Searching Optimum Self-Brazing Powder Mixtures Intended for Use in Powder Metallurgy Diamond Tools—A Statistical Approach
by Andrzej Romański, Piotr Matusiewicz and Elżbieta Cygan-Bączek
Materials 2025, 18(12), 2726; https://doi.org/10.3390/ma18122726 - 10 Jun 2025
Viewed by 379
Abstract
This paper presents a study on optimising self-brazing powder mixtures for powder metallurgy diamond tools, specifically focusing on wire saws used in cutting natural stone. The research aimed to understand the relationship between the chemical composition of powder mixtures and the hardness of [...] Read more.
This paper presents a study on optimising self-brazing powder mixtures for powder metallurgy diamond tools, specifically focusing on wire saws used in cutting natural stone. The research aimed to understand the relationship between the chemical composition of powder mixtures and the hardness of the sintered matrix. The experimental process involved the use of various commercially available powders, including carbonyl iron, carbonyl nickel, atomised bronze, atomised copper, and ferrophosphorus. The samples made of different powder mixtures were compacted and sintered and then characterised by dimensional change, density, porosity, and hardness. The obtained results were statistically analysed using an analysis of variance (ANOVA) tool to create linear regression models that relate the material properties to their chemical composition. The investigated materials exhibited excellent sintering behaviour and very low porosity, which are beneficial for diamond retention. Very good sinterability of powder mixtures can be achieved by tin bronze addition, which provides a sufficient content of the liquid phase and promotes the shrinkage during sintering. Statistical analysis revealed that hardness was primarily affected by phosphorous content, with nickel having a lesser but still significant impact. The statistical model can predict the hardness of the matrix based on its chemical composition. This model, with a determination coefficient of approximately 80%, can be valuable for developing new metal matrices for diamond-impregnated tools, particularly for wire saw beads production. Full article
Show Figures

Figure 1

15 pages, 2890 KiB  
Article
The Interface of Additive Manufactured Tungsten–Diamond Composites
by Xuehao Gao, Dongxu Cheng, Zhe Sun, Yihe Huang, Wentai Ouyang, Cunxiao Lan, Zhaoqing Li and Lin Li
Materials 2025, 18(11), 2574; https://doi.org/10.3390/ma18112574 - 30 May 2025
Viewed by 444
Abstract
Tungsten–diamond metal matrix composites (MMCs) fabricated via L-PBF show potential for applications in nuclear facility shielding, heat sinks, precision cutting/grinding tools, and aerospace hot-end components. In this paper, tungsten (W), diamond (D), and diamond with Ni coating (D-Ni) powders are used to fabricate [...] Read more.
Tungsten–diamond metal matrix composites (MMCs) fabricated via L-PBF show potential for applications in nuclear facility shielding, heat sinks, precision cutting/grinding tools, and aerospace hot-end components. In this paper, tungsten (W), diamond (D), and diamond with Ni coating (D-Ni) powders are used to fabricate W+D and W+(D-Ni) composites by L-PBF technology. The results show that at the interface of the W+D sample, the W powder melts while the D powder remains in a solid state during L-PBF processing, and W and C elements gradually diffuse into each other. Due to the high cooling rate of L-PBF processing, the C phase forms a diamond-like carbon (DLC) phase with an amorphous structure, and the W phase becomes a supersaturated solid solution of the C element. At the interface of the W+(D-Ni) sample, the diffusion capacity of Ni and W elements in the solid state is weaker than in the molten state. C and W elements diffuse into the Ni melt, forming a rich Ni area of the DLC phase, while Ni and W elements diffuse into the solid D powder, forming a lean Ni area of the DLC phase. In the rich Ni area of the DLC phase, Ni segregation leads to the precipitation of nanocrystals (several hundred nanometers), whereas in the lean Ni area of the DLC phase, the diffusion capacity of Ni and W elements in the solid D powder is limited, resulting in nanocrystalline sizes of only about tens of nanometers. During W dendrite growth, the addition of the Ni coating and the expelling of the C phenomenon leads to W grain refinement at the interface, which reduces the number and length of cracks in the W+(D-Ni) sample. This paper contributes to the theoretical development and engineering applications of tungsten–diamond MMCs fabricated by L-PBF. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

21 pages, 6935 KiB  
Article
Internal Structure and Inclusions: Constraints on the Origin of the Tancheng Alluvial Diamonds from the North China Craton
by Qing Lv, Fei Liu, Yue-Jin Ge, Zhao-Ying Li, Xiao Liu, Yong-Lin Yao, Yu-Feng Wang, Hai-Qin Wang, Sheng-Hu Li, Xiao-Dong Ma, Yong Zhang, Jia-Hong Xu and Ahmed E. Masoud
Minerals 2025, 15(6), 588; https://doi.org/10.3390/min15060588 - 30 May 2025
Viewed by 422
Abstract
The internal growth patterns and surface micromorphology of diamonds provide a record of their multi-stage evolution, from initial formation within the mantle to their eventual ascent to the Earth’s surface via deeply derived kimberlite magmas. In this study, gemological microscopic examination, Diamond View [...] Read more.
The internal growth patterns and surface micromorphology of diamonds provide a record of their multi-stage evolution, from initial formation within the mantle to their eventual ascent to the Earth’s surface via deeply derived kimberlite magmas. In this study, gemological microscopic examination, Diamond ViewTM, Raman spectroscopy, and electron probe analysis were employed to analyze the surface features, internal patterns, and inclusions of the Tancheng alluvial diamonds in Shandong Province, China. The results show that surface features of octahedra with triangular and sharp edges, thick steps with irregular contours or rounded edges, and thin triangular or serrated layers are developed on diamonds during deep-mantle storage, as well as during the growth process of diamonds, when they are not subjected to intense dissolution. The rounding of octahedral and cubic diamond edges and their transformation into tetrahedral (THH) shapes are attributed to resorption in kimberlitic magma. These characteristics indicate that the Tancheng diamonds were commonly resorbed by carbonate–silicate melts during mantle storage. Abnormal birefringence phenomena, including irregular extinction patterns, petaloid and radial extinction patterns, and banded birefringence, were formed during the diamond growth stage. In contrast, fine grid extinction patterns and composite superimposed extinction patterns are related to later plastic deformation. The studied diamonds mainly contain P-type inclusions of olivine and graphite, with a minority of E-type inclusions, including coesite and omphacite. The pressure of entrapment of olivine inclusions within the Tancheng diamonds ranges from 4.3 to 5.9 GPa, which is consistent with that of coesite inclusions, which yield pressure ranging from 5.2 to 5.5 GPa, and a temperature range of 1083–1264 °C. Overall, the evidence suggests that Tancheng diamonds probably originated from hybrid mantle sources metasomatized by the subduction of ancient oceanic lithosphere. Full article
Show Figures

Graphical abstract

26 pages, 9900 KiB  
Article
The Preparation of a GO/ZnO/nHAp Composite Coating and the Study of Its Performance Optimization for Pure Titanium Implants
by Jiang Wu, Yu Zuo, Zhaoxi Xu, Lang Wang, Jiaju Zou, Zijian Jia, Chunmei Wang and Guoliang Zhang
Micromachines 2025, 16(6), 637; https://doi.org/10.3390/mi16060637 - 28 May 2025
Viewed by 693
Abstract
In this study, a graphene oxide (GO)/zinc oxide (ZnO)/hydroxyapatite (nHAp) composite coating was constructed on a pure titanium surface by microarc oxidation (MAO) pretreatment combined with hydrothermal technology (HT), thereby making it possible to explore the performance optimization of this coating for Ti-based [...] Read more.
In this study, a graphene oxide (GO)/zinc oxide (ZnO)/hydroxyapatite (nHAp) composite coating was constructed on a pure titanium surface by microarc oxidation (MAO) pretreatment combined with hydrothermal technology (HT), thereby making it possible to explore the performance optimization of this coating for Ti-based implants. Scanning electron microscopy (SEM), an energy dispersion spectrometer (EDS), Fourier transform infrared spectroscopy (FTIR), Ramam spectroscopy (Ramam), etc., confirmed that the GO/ZnO/nHAp composites were successfully loaded onto the pure Ti surfaces. Through nanoindentation, differential thermal analysis (DiamondTG/DTA), and dynamic polarization potential detection, the GO/ZnO/nHAp composite coating imparts excellent nanohardness (2.7 + 1.0 GPa), elastic modulus (53.5 + 1.0 GPa), thermal stability, and corrosion resistance to pure Ti implants; hemolysis rate analysis, CCK-8, alkaline phosphatase (ALP) detection, alizarin red staining, and other experiments further show that the coating improves the hemocompatibility, biocompatibility, and bone guidance of the Ti implant surface. Studies have shown that GO/ZnO/nHAp composite coatings can effectively optimize the mechanical properties, corrosion resistance, biocompatibility, and bone guidance of pure Ti implants, so that they can obtain an elastic modulus that matches human bone. Full article
Show Figures

Figure 1

19 pages, 7263 KiB  
Article
Design and Fabrication of Heat Exchangers Using Thermally Conductive Polymer Composite
by Jian Liu, David Cheng, Wang Pan, Khin Oo, Ty-Liyiah McCrimmon and Shuang Bai
Appl. Mech. 2025, 6(2), 38; https://doi.org/10.3390/applmech6020038 - 27 May 2025
Viewed by 1165
Abstract
Polymer heat exchangers (HXs) are lightweight and cost-effective due to the affordability of raw polymer materials. However, the inherently low thermal conductivity (TC) of polymers limits their application in HXs. To enhance thermal conductivity polymer composites, two types of diamond powders, with particle [...] Read more.
Polymer heat exchangers (HXs) are lightweight and cost-effective due to the affordability of raw polymer materials. However, the inherently low thermal conductivity (TC) of polymers limits their application in HXs. To enhance thermal conductivity polymer composites, two types of diamond powders, with particle sizes of 0.25 µm and 16.7 µm, were used as fillers, while Acrylonitrile Butadiene Styrene (ABS) served as the matrix. Composite polymer samples were fabricated, and their density and thermal conductivity were tested and compared. The results indicate that fillers with larger particle sizes tend to exhibit higher thermal conductivity. A polymer HX based on a Triply Periodic Minimal Surface (TPMS) structure was designed. The factors influencing the efficiency of polymer HXs were analyzed and compared with those of metal HXs. In polymer HXs, the polymer wall is the primary source of heat resistance. Additionally, the mechanical strength of 3D-printed polymer parts was evaluated. Finally, an HX was successfully fabricated using a polymer composite containing 50 wt% diamond powder via 3D printing. Full article
(This article belongs to the Special Issue Thermal Mechanisms in Solids and Interfaces)
Show Figures

Figure 1

Back to TopTop