Inclusions, Nitrogen Occurrence Modes, and C-N Isotopic Compositions of Diamonds as Indicators for Exploring the Genesis Mechanism of Diamond: A Review
Abstract
1. Introduction
2. Reconstruction of Diamond Genesis
2.1. The Occurrence Mode of Nitrogen Impurity in Diamonds
2.2. Carbon–Nitrogen Isotope Composition of Diamonds
2.3. Inclusions in Diamonds
3. Conclusions and Prospects
- (1)
- Mantle-derived diamonds are hosted in kimberlite, lamprophyre, and alkaline mafic-ultramafic rocks. These diamonds have been stored at mantle depths since their formation, with nitrogen mainly existing in aggregated form (N2/N4). The C-N isotopic composition of mantle-derived diamonds indicates that carbon predominantly comes from primordial mantle reservoirs, as evidenced by their characteristic isotopic signatures. However, negative carbon isotopic drift and positive nitrogen isotopic drift have been distinguished, recording crustal carbon contributions. Based on the chemical composition of inclusions within the diamond, it can be classified into two or three types. Radioactive isotope-bearing syngenetic inclusions are ideal for determining the formation age of diamonds. Mantle-derived diamonds typically yield Archean crystallization ages, consistent with their prolonged residence in stable lithospheric roots. In the future, in situ analyses will be an important aspect, and statistical big data on global diamond research will provide an important scientific basis for the global deep carbon cycle.
- (2)
- Metamorphic diamonds are usually formed in ultrahigh-pressure metamorphic belts. Nitrogen in metamorphic diamonds mainly exists in the isolated form due to the relatively short mantle residence. Additionally, crustal carbon plays a critical role in the formation of metamorphic diamonds. It crystallizes from carbon-saturated metamorphic fluids that were released from the subducted plate. As a result, the formation age of metamorphic diamonds is similar to that of the subduction events, which is much younger than mantle-derived diamonds. During this process, inclusions were trapped in diamonds, recording the medium from which the diamond crystallized. It is worth noting that the presence of H-groups in the crystallization medium (such as fluids, melts, or supercritical fluids) may catalyze the transformation of sp2 to sp3 carbon during diamond growth, resulting in significant differences with mantle-derived diamonds (only sp3 carbon). Subduction-related diamond is one of the most important targets for studying the deep carbon cycling.
- (3)
- Impact diamonds form through an instantaneous solid-state transformation of precursor carbon phases during hypervelocity meteorite collisions, and graphite coexists with diamond. Compared with the former two types of diamonds, there are no nitrogen defects in impact diamonds. The analysis of carbon isotopic composition and inclusions indicates a mixture of carbon sources. As humans continue to explore space, impact diamonds may become another important target for the exploration of future diamond deposits.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bureau, H.; Langenhorst, F.; Auzende, A.L.; Frost, D.J.; Imène, E.; Siebert, J. The growth of fibrous, cloudy and polycrystalline diamonds. Geochim. Cosmochim. Acta 2012, 77, 202–214. [Google Scholar] [CrossRef]
- Dasgupta, R.; Chi, H.; Shimizu, N.; Buono, A.S.; Walker, D. Carbon solution and partitioning between metallic and silicate melts in a shallow magma ocean: Implications for the origin and distribution of terrestrial carbon. Geochim. Cosmochim. Acta 2013, 102, 191–212. [Google Scholar] [CrossRef]
- Frezzotti, M.L. Diamond growth from organic compounds in hydrous fluids deep within the Earth. Nat. Commun. 2019, 10, 4952. [Google Scholar] [CrossRef] [PubMed]
- Konn, C.; Charlou, J.L.; Holm, N.G.; Mousis, O. The production of methane, hydrogen, and organic compounds in ultramafic-hosted hydrothermal vents of the Mid-Atlantic ridge. Astrobiology 2015, 15, 381–399. [Google Scholar] [CrossRef]
- Rimmer, P.; Shorttle, O. Origin of life’s building blocks in carbon- and nitrogen-rich surface hydrothermal vents. Life 2019, 9, 12. [Google Scholar] [CrossRef]
- Vitale Brovarone, A.; Martinez, I.; Elmaleh, A.; Compagnoni, R.; Chaduteau, C.; Ferraris, C.; Esteve, I. Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps. Nat. Commun. 2017, 8, 14134. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, L.; Tao, R.; Fei, Y. The formation of graphite-rich eclogite vein in S.W. Tianshan (China) and its implication for deep carbon cycling in subduction zone. Chem. Geol. 2019, 533, 119430–119448. [Google Scholar] [CrossRef]
- Zhu, Y.F. Dolomite decomposition texture in ultrahigh pressure metamorphic marble: New evidence forthe deep recycling of continental materials. Acta Petrol. Sin. 2005, 21, 347–354. [Google Scholar]
- Burton, M.R.; Sawyer, G.M.; Granieri, D. Deep Carbon Emissions from Volcanoes. Rev. Mineral. Geochem. 2013, 75, 323–354. [Google Scholar] [CrossRef]
- Dasgupta, R.; Hirschmann, M.M. The deep carbon cycle and melting in earth’s interior. Earth Planet. Sci. Lett. 2010, 298, 1–13. [Google Scholar] [CrossRef]
- Kelemen, P.B.; Manning, C.E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc. Natl. Acad. Sci. USA 2015, 112, E3997–E4006. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tao, R.; Zhu, J. Some Problems of Deep Carbon Cycle in Subduction Zone. Bull. Mineral. Petrol. Geochem. 2017, 36, 185–196. [Google Scholar]
- Lewis, H.C. On a diamondiferous peridotite, and the genesis of the diamond. Geol. Mag. 1887, 4, 22–24. [Google Scholar] [CrossRef]
- Boyd, F.R.; Gurney, J.J. Diamonds and the African lithosphere. Science 1986, 232, 472–477. [Google Scholar] [CrossRef]
- Cartigny, P. Stable Isotopes and the Origin of Diamond. Elements 2005, 1, 79–84. [Google Scholar] [CrossRef]
- Enggist, A.; Luth, R.W. Phase relations of phlogopite and pyroxene with magnesite from 4 to 8 GPa: KCMAS-H2O and KCMAS-H2O-CO2. Contrib. Mineral. Petrol. 2016, 171, 88–105. [Google Scholar] [CrossRef]
- Kramers, J.D. Lead, uranium, strontium, potassium and rubidium in inclusion-bearing diamonds and mantle-derived xenoliths from southern Africa. Earth Planet. Sci. Lett. 1979, 42, 58–70. [Google Scholar] [CrossRef]
- Russell, J.K.; Porritt, L.A.; Lavallée, Y.; Dingwell, D.B. Kimberlite ascent by assimilation-fuelled buoyancy. Nature 2012, 481, 352–356. [Google Scholar] [CrossRef]
- Sparks, R.S.J. Kimberlite volcanism. Annu. Rev. Earth Planet. Sci. 2013, 41, 497–528. [Google Scholar] [CrossRef]
- Williams, A.S. The Genesis of the Diamond; Ernest Benn Limited: London, UK, 1932; pp. 778–780. [Google Scholar]
- Xiong, F.; Yang, J.; Dilek, Y.; Xu, X.; Zhang, Z. Origin and significance of diamonds and other exotic minerals in the Dingqing ophiolite peridotites, eastern Bangong-Nujiang suture zone, Tibet. Lithosphere 2017, 10, 142–155. [Google Scholar] [CrossRef]
- Yang, J.S.; Wu, W.W.; Lian, D.Y.; Rui, H.C. Peridotites, chromitites and diamonds in ophiolites. Nat. Rev. Earth Environ. 2021, 2, 198–212. [Google Scholar] [CrossRef]
- Zheng, J.; Griffin, W.L.; O’Reilly, S.Y.; Yang, J.; Li, T.; Zhang, M.; Zhang, R.Y.; Liou, J.G. Mineral Chemistry of Peridotites from Paleozoic, Mesozoic and Cenozoic Lithosphere: Constraints on Mantle Evolution beneath Eastern China. J. Petrol. 2006, 47, 2233–2256. [Google Scholar] [CrossRef]
- Shirey, S.B.; Cartigny, P.; Frost, D.J.; Keshav, S.; Nestola, F.; Nimis, P.; Pearson, D.G.; Sobolev, N.V.; Walter, M.J. Diamonds and the Geology of Mantle Carbon. Rev. Mineral. Geochem. 2013, 75, 355–421. [Google Scholar] [CrossRef]
- Yang, J.S.; Robinson, P.T.; Dilek, Y. Diamonds in Ophiolites. Elements 2014, 10, 127–130. [Google Scholar] [CrossRef]
- Pearson, D.G.; Carlson, R.W.; Shirey, S.B.; Boyd, F.R.; Nixon, P.H. Stabilisation of Archaean lithospheric mantle: A Re-Os isotope study of peridotite xenoliths from the Kaapvaal craton. Earth Planet. Sci. Lett. 1995, 134, 341–357. [Google Scholar] [CrossRef]
- Stachel, T.; Harris, J.W.; Tappert, R.; Brey, G.P. Peridotitic diamonds from the Slave and the Kaapvaal cratons-similarities and differences based on a preliminary data set. Lithos 2003, 71, 489–503. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, Y.; Sun, H.; Wang, Y.; Liu, J.; Yang, K.; Gu, H.; Hou, Z.; Tian, Y.; Wu, W.; et al. Initiation of the North China Craton destruction: Constraints from the diamond-bearing alkaline basalts from Lan’gan, China. Gondwana Res. 2020, 80, 228–243. [Google Scholar] [CrossRef]
- Zheng, J.; Lu, F.; Guo, H.; Ren, Y. Fluid inclusions in diamond. Chin. Sci. Bull. 1994, 39, 253–256. [Google Scholar]
- Zheng, J.; Yu, C.; Lu, F. Geochemistry and Zircon U-Pb Dating of Kimberlite Rock Inclusions in Basaltic Rocks from Liaoning Province: Tracing the Early Evolution of the Lower Crust of North China. Chin. Sci. Earth Sci. 2004, 34, 412–422. [Google Scholar]
- Stachel, T.; Harris, J.W. Formation of diamond in the Earth’s mantle. J. Phys. Condens. Matter 2009, 21, 364206–364216. [Google Scholar] [CrossRef]
- Pechnikov, V.A.; Kaminsky, F.V. Diamond potential of metamorphic rocks in the Kokchetav Massif, northern Kazakhstan. Eur. J. Mineral. 2008, 20, 395–413. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, Y.; Schertl, H.P.; Sobolev, N.V.; Wang, Y.Y.; Sun, H.; Jin, D.; Tan, D.B. Deep carbon cycling during subduction revealed by coexisting diamond-methane-magnesite in peridotite. Natl. Sci. Rev. 2023, 10, nwad203. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Okay, A.I.; Ji, S.; Sengor, A.M.C.; Wen, S.; Liu, Y.; Jiang, L. Diamond from the Dabie shan metamorphic rocks and its implication for tectonic setting. Science 1992, 256, 80–82. [Google Scholar]
- Yang, J.; Xu, X.; Zhang, Z.; Rong, H.; Li, Y.; Xiong, F.; Liang, F.; Liu, Z.; Liu, F.; Li, J.; et al. Ophiolite-type diakond and deep genesis of chromitite. Acta Geosci. Sin. 2013, 34, 643–653. [Google Scholar]
- Koeberl, C.; Masaitis, V.L.; Shafranovsky, G.I.; Gilmour, I.; Langenhorst, F.; Schrauder, M. Diamond from the Popigai impact structure, Russia. Geology 1997, 25, 967–970. [Google Scholar] [CrossRef]
- Hough, R.M.; Gilmour, I.; Pillinger, C.T.; Arden, J.W.; Gilkess, K.W.R.; Yuan, J.; Milledge, H.J. Diamond and Silicon Carbide in Impact Melt Rock from the Ries Impact Crater. Nature 1995, 378, 41–44. [Google Scholar] [CrossRef]
- Chen, M.; Shu, J.; Xie, X.; Tan, D.; Mao, H.-K. Natural diamond formation by self-redox of ferromagnesian carbonate. Proc. Natl. Acad. Sci. USA 2018, 115, 2676–2680. [Google Scholar] [CrossRef]
- Huss, G.R. Meteoritic Nanodiamonds: Messengers from the Stars. Elements 2005, 1, 97–100. [Google Scholar] [CrossRef]
- Cartigny, P. Mantle-related carbonados? Geochemical insights from diamonds from the Dachine komatiite (French Guiana). Earth Planet. Sci. Lett. 2010, 296, 329–339. [Google Scholar] [CrossRef]
- Evans, T.; Qi, Z.D. The kinetics of the aggregation of nitrogen atoms in diamond. Proc. R. Soc. London. A Math. Phys. Sci. 1982, 381, 159–178. [Google Scholar]
- Navon, O.; Hutcheon, I.D.; Rossman, G.R.; Wasserburg, G.J. Mantle-derived fluids in diamond microinclusions. Nature 1988, 335, 784–789. [Google Scholar] [CrossRef]
- Smith, C.B.; Walter, M.J.; Bulanova, G.P.; Mikhail, S.; Kohn, S.C. Diamonds from Dachine, French Guiana: A unique record of early Proterozoic subduction. Lithos 2016, 265, 82–95. [Google Scholar] [CrossRef]
- Barron, L.M.; Lishmund, S.R.; Oakes, G.M.; Barron, B.J.; Sutherland, F.L. Subduction model for the origin of some diamonds in the Phanerozoic of eastern New South Wales. Aust. J. Earth Sci. 1996, 43, 257–267. [Google Scholar] [CrossRef]
- Kvasnytsya, V.M.; Wirth, R. Impact diamonds from meteorite craters and neogene placers in Ukraine. Mineral. Petrol. 2022, 116, 169–187. [Google Scholar] [CrossRef]
- Craven, J.A.; Harte, B.; Fisher, D.; Schulze, D.J. Diffusion in diamond. I. carbon isotope mapping of natural diamond. Mineral. Mag. 2009, 73, 193–200. [Google Scholar] [CrossRef]
- Dobrzhinetskaya, L.F. Microdiamonds-frontier of ultrahigh-pressure metamorphism: A review. Gondwana Res. 2012, 21, 207–223. [Google Scholar] [CrossRef]
- Palot, M.; Cartigny, P.; Harris, J.W.; Kaminsky, F.V.; Stachel, T. Evidence for deep mantle convection and primordial heterogeneity from nitrogen and carbon stable isotopes in diamond. Earth Planet. Sci. Lett. 2012, 357, 179–193. [Google Scholar] [CrossRef]
- Smit, K.V.; Shirey, S.B.; Stern, R.A.; Steele, A.; Wang, W. Diamond growth from C-H-N-O recycled fluids in the zimbabwe lithosphere: Evidence from CH4 micro-inclusions and δ13C-δ15N-N content in marange mixed habit diamonds. Lithos 2016, 265, 68–81. [Google Scholar] [CrossRef]
- Spetsius, Z.V.; Cliff, J.; Griffin, W.L.; O’Reilly, S.Y. Carbon isotopes of eclogite-hosted diamonds from the nyurbinskaya kimberlite pipe, yakutia: The metasomatic origin of diamonds. Chem. Geol. 2017, 455, 131–147. [Google Scholar] [CrossRef]
- Thomassot, E.; Cartigny, P.; Harris, J.W.; Viljoen, K.S. Methane-related diamond crystallization in the earth’s mantle: Stable isotope evidences from a single diamond-bearing xenolith. Earth Planet. Sci. Lett. 2007, 257, 362–371. [Google Scholar] [CrossRef]
- Thomassot, E.; Cartigny, P.; Harris, J.W.; Lorand, J.P.; Rollion-Bard, C.; Chaussidon, M. Metasomatic diamond growth: A multi-isotope study (13C, 15N, 33S, 34S) of sulphide inclusions and their host diamonds from Jwaneng (Botswana). Earth Planet. Sci. Lett. 2009, 282, 79–90. [Google Scholar] [CrossRef]
- Van Rythoven, A.D.; Schulze, D.J.; Hauri, E.H.; Wang, J.; Shirey, S. Intra-crystal co-variations of carbon isotopes and nitrogen contents in diamond from three North American Cratons. Chem. Geol. 2017, 467, 12–29. [Google Scholar] [CrossRef]
- Wiggers de Vries, D.F.; Bulanova, G.P.; De Corte, K.; Pearson, D.G.; Craven, J.A.; Davies, G.R. Micron-scale coupled carbon isotope and nitrogen abundance variations in diamonds: Evidence for episodic diamond formation beneath the Siberian Craton. Geochim. Cosmochim. Acta 2013, 100, 176–199. [Google Scholar] [CrossRef]
- Smith, E.M.; Shirey, S.B.; Nestola, F.; Bullock, E.S.; Wang, J.; Richardson, S.H.; Wang, W. Large gem diamonds from metallic liquid in Earth’s deep mantle. Science 2016, 354, 1403–1405. [Google Scholar] [CrossRef] [PubMed]
- Coltice, N.; Simon, L.; Lécuyer, C. Carbon isotope cycle and mantle structure. Geophys. Res. Lett. 2006, 31, 325–341. [Google Scholar] [CrossRef]
- Deines, P.; Stachel, T.; Harris, J.W. Systematic regional variations in diamond carbon isotopic composition and inclusion chemistry beneath the Orapa kimberlite Cluster, in Botswana. Lithos 2009, 112 (Suppl. S2), 776–784. [Google Scholar] [CrossRef]
- Kirkley, M.B.; Gurney, J.J.; Otter, M.L.; Hill, S.J.; Daniels, L.R. The application of C isotope measurements to the identification of the sources of C in diamonds: A review. Appl. Geochem. 1991, 6, 477–494. [Google Scholar] [CrossRef]
- Mikhail, S.; McCubbin, F.M.; Jenner, F.E.; Shirey, S.B.; Rumble, D.; Bowden, R. Diamondites: Evidence for a distinct tectono-thermal diamond-forming event beneath the Kaapvaal craton. Contrib. Mineral. Petrol. 2019, 174, 71–86. [Google Scholar] [CrossRef]
- Smart, K.A.; Chacko, T.; Stachel, T.; Muehlenbachs, K.; Stern, R.A.; Heaman, L.M. Diamond growth from oxidized carbon sources beneath the northern Slave Craton, Canada: A δ13C-N study of eclogite-hosted diamonds from the Jericho kimberlite. Geochim. Cosmochim. Acta 2011, 75, 6027–6047. [Google Scholar] [CrossRef]
- Imamura, K.; Ogasawara, Y.; Yurimoto, H.; Kusakabe, M. Carbon isotope heterogeneity in metamorphic diamond from the Kokchetav uhp dolomite marble, northern Kazakhstan. Int. Geol. Rev. 2013, 55, 453–467. [Google Scholar] [CrossRef]
- Hough, R.M.; Gilmour, I.; Pillinger, C.T. Carbon isotope study of impact diamonds in Chicxulub ejecta at Cretaceous-Tertiary boundary sites in Mexico and the western interior of the United States. Spec. Pap. Geol. Soc. Am. 1999, 339, 215–222. [Google Scholar]
- Meyer, H.O.A.; Boyd, F.R. Composition and origin of crystalline inclusions in natural diamonds. Geochim. Cosmochim. Acta 1972, 36, 1255–1273. [Google Scholar] [CrossRef]
- Hervig, R.L.; Smith, J.V.; Steele, I.M.; Gurney, J.J.; Meyer, H.O.A.; Harris, J.W. Diamonds-minor elements in silicate inclusions-pressure-temperature implications. J. Geophys. Res. 1980, 85, 6919–6929. [Google Scholar] [CrossRef]
- Phillips, D.; Harris, J.W.; Viljoen, K.S. Mineral chemistry and thermobarometry of inclusions from De Beers Pool diamonds, Kimberley, South Africa. Lithos 2004, 77, 155–179. [Google Scholar] [CrossRef]
- Zedgenizov, D.A.; Ragozin, A.L.; Shatsky, V.S.; Griffin, W.L. Diamond formation during metasomatism of mantle eclogite by chloride-carbonate melt. Contrib. Mineral. Petrol. 2018, 173, 84. [Google Scholar] [CrossRef]
- Taylor, L.A.; Liu, Y. Sulfide inclusions in diamonds: Not monosulfide solid solution. Russ. Geol. Geophys. 2009, 50, 1201–1211. [Google Scholar] [CrossRef]
- Tao, R.; Fei, Y. Recycled calcium carbonate is an efficient oxidation agent under deep upper mantle conditions. Commun. Earth Environ. 2021, 2, 45. [Google Scholar] [CrossRef]
- Sun, W. Oxygen fugacity of Earth. Geochimica 2020, 49, 1–21. [Google Scholar]
- Taylor, W.R.; Jaques, A.L.; Ridd, M. Nitrogen-defect aggregation characteristics of some australasian diamonds-time-temperature constraints on the source regions of pipe and alluvial diamonds. Am. Mineral. 1990, 75, 1290–1310. [Google Scholar]
- Menneken, M.; Nemchin, A.A.; Geisler, T.; Pidgeon, R.T.; Wilde, S.A. Hadean diamonds in zircon from jack hills, western Australia. Nature 2007, 448, 917–920. [Google Scholar] [CrossRef]
- Meyer, H.O.A. Inclusions in diamond. Mantle Xenoliths; Nixon, P.H., Ed.; Wiley: Chichester, UK, 1987; pp. 501–523. [Google Scholar]
- Tappert, R.; Tappert, M.C. Diamonds in Nature: A Guide to Rough Diamonds; Springer: Berlin/Heidelberg, Germany, 2011; pp. 101–112. [Google Scholar]
- Stachel, T.; Harris, J.W. The origin of cratonic diamonds-constraints from mineral inclusions. Ore Geol. Rev. 2008, 34, 5–32. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Li, S.-G.; Gu, X.-F.; Xu, S.-T.; Chen, G.-B. Ultrahigh-pressure eclogite transformed from mafic granulite in the Dabie orogen, east-central China. J. Metamorph. Geol. 2007, 25, 975–989. [Google Scholar] [CrossRef]
- Rozen, O.; Zorin, Y.; Zayachkovsky, A. A find of the diamonds linked with eclogites of the Precambrian Kokchetav massif. Dokl. Acad. Nauk. SSSR 1972, 203, 674–676. [Google Scholar]
- Sobolev, N.V.; Shatsky, V.S. Diamond inclusions in garnets from metamorphic rocks: A new environment for diamond formation. Nature 1990, 343, 742–746. [Google Scholar] [CrossRef]
- Song, S.; Zhang, L.; Niu, Y.; Su, L.; Jian, P.; Liu, D. Geochronology of diamond-bearing zircons from garnet peridotite in the North Qaidam UHPM belt, Northern Tibetan Plateau: A record of complex histories from oceanic lithosphere subduction to continental collision. Earth Planet. Sci. Lett. 2005, 234, 99–118. [Google Scholar] [CrossRef]
- Zheng, Y.-F. Metamorphic chemical geodynamics in continental subduction zones. Chem. Geol. 2012, 328, 5–48. [Google Scholar] [CrossRef]
- Carswell, D.A.; van Roermund, H.L.M. On multiphase mineral inclusions associated with microdiamond formation in mantle-derived peridotite lens at Bardane on Fjortoft, west Norway. Eur. J. Mineral. 2005, 17, 31–42. [Google Scholar] [CrossRef]
- Frezzotti, M.L.; Huizenga, J.M.; Compagnoni, R.; Selverstone, J. Diamond formation by carbon saturation in C-O-H fluids during cold subduction of oceanic lithosphere. Geochim. Cosmochim. Acta 2014, 143, 68–86. [Google Scholar] [CrossRef]
- Frezzotti, M.L.; Selverstone, J.; Sharp, Z.D.; Compagnoni, R. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nat. Geosci. 2011, 4, 703–706. [Google Scholar] [CrossRef]
- Girnis, A.V.; Brey, G.P.; Bulatov, V.K.; Höfer, H.E.; Woodland, A.B. Graphite to diamond transformation during sediment–peridotite interaction at 7.5 and 10.5 GPa. Lithos 2018, 310, 302–313. [Google Scholar] [CrossRef]
- Janák, M.; Froitzheim, N.; Yoshida, K.; Sasinková, V.; Nosko, M.; Kobayashi, T.; Hirajima, T.; Vrabec, M. Diamond in metasedimentary crustal rocks from Pohorje, Eastern Alps: A window to deep continental subduction. J. Metamorph. Geol. 2015, 33, 495–512. [Google Scholar] [CrossRef]
- Logvinova, A.M.; Taylor, L.A.; Fedorova, E.N.; Yelisseyev, A.P.; Wirth, R.; Howarth, G.; Reutsky, V.N.; Sobolev, N.V. A unique diamondiferous peridotite xenolith from the Udachnaya kimberlite pipe, Yakutia: Role of subduction in diamond formation. Russ. Geol. Geophys. 2015, 56, 306–320. [Google Scholar] [CrossRef]
- Sokol, A.G.; Tomilenko, A.A.; Bul’bak, T.A.; Palyanova, G.A.; Palyanov, Y.N.; Sobolev, N.V. Stability of methane in reduced C-O-H fluid at 6.3 GPa and 1300–1400 °C. Dokl. Earth Sci. 2017, 474, 680–683. [Google Scholar] [CrossRef]
- Stachel, T.; Luth, R.W. Diamond formation-where, when and how? Lithos 2015, 220, 200–220. [Google Scholar] [CrossRef]
- Poli, S. Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids. Nat. Geosci. 2015, 8, 633–636. [Google Scholar] [CrossRef]
- Deines, P. The carbon isotopic composition of diamonds: Relationship to diamond shape, color, occurrence and vapor composition. Geochim. Cosmochim. Acta 1980, 44, 943–961. [Google Scholar] [CrossRef]
- Luth, R.W.; Stachel, T. The buffering capacity of lithospheric mantle: Implications for diamond formation. Contrib. Mineral. Petrol. 2014, 168, 1083. [Google Scholar] [CrossRef]
- Sieber, M.J.; Yaxley, G.M.; Hermann, J. Investigation of fluid driven carbonation of A hydrated, forearc mantle wedge using serpentinite cores in high pressure experiments. J. Petrol. 2020, 61, egaa035. [Google Scholar] [CrossRef]
- Weiss, Y.; McNeill, J.; Pearson, D.G.; Nowell, G.M.; Ottley, C.J. Highly saline fluids from a subducting slab as the source for fluid-rich diamonds. Nature 2015, 524, 339–342. [Google Scholar] [CrossRef]
- Yelisseyev, A.; Meng, G.S.; Afanasyev, V.; Pokhilenko, N.; Pustovarov, V.; Isakova, A.; Lin, Z.S.; Lin, H.Q. Optical properties of impact diamonds from the Popigai astrobleme. Diam. Relat. Mater. 2013, 37, 8–16. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.-X.; Wang, Y.-Y.; Yao, X.; Chang, T.; Li, X.; Wang, X.; Zhao, Z. Inclusions, Nitrogen Occurrence Modes, and C-N Isotopic Compositions of Diamonds as Indicators for Exploring the Genesis Mechanism of Diamond: A Review. Minerals 2025, 15, 728. https://doi.org/10.3390/min15070728
Wang X-X, Wang Y-Y, Yao X, Chang T, Li X, Wang X, Zhao Z. Inclusions, Nitrogen Occurrence Modes, and C-N Isotopic Compositions of Diamonds as Indicators for Exploring the Genesis Mechanism of Diamond: A Review. Minerals. 2025; 15(7):728. https://doi.org/10.3390/min15070728
Chicago/Turabian StyleWang, Xiao-Xia, Yang-Yang Wang, Xiaodong Yao, Tianyin Chang, Xiang Li, Xiaomin Wang, and Zihao Zhao. 2025. "Inclusions, Nitrogen Occurrence Modes, and C-N Isotopic Compositions of Diamonds as Indicators for Exploring the Genesis Mechanism of Diamond: A Review" Minerals 15, no. 7: 728. https://doi.org/10.3390/min15070728
APA StyleWang, X.-X., Wang, Y.-Y., Yao, X., Chang, T., Li, X., Wang, X., & Zhao, Z. (2025). Inclusions, Nitrogen Occurrence Modes, and C-N Isotopic Compositions of Diamonds as Indicators for Exploring the Genesis Mechanism of Diamond: A Review. Minerals, 15(7), 728. https://doi.org/10.3390/min15070728