Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = diamino-triazine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1174 KiB  
Article
In Vitro Activity of the Triazinyl Diazepine Compound FTSD2 Against Drug-Resistant Mycobacterium tuberculosis Strains
by Carlos Aranaga, Ruben Varela, Aura Falco, Janny Villa, Leydi M. Moreno, Manuel Causse and Luis Martínez-Martínez
Pharmaceuticals 2025, 18(3), 360; https://doi.org/10.3390/ph18030360 - 2 Mar 2025
Viewed by 917
Abstract
Background/Objectives: Compounds derived from pyrimido-diazepine have shown selective inhibition of the susceptible Mycobacterium tuberculosis strain H37Rv. However, there is a need for studies that evaluate the activity of these compounds against multidrug-resistant strains and clinical isolates. This study aims to evaluate the antitubercular [...] Read more.
Background/Objectives: Compounds derived from pyrimido-diazepine have shown selective inhibition of the susceptible Mycobacterium tuberculosis strain H37Rv. However, there is a need for studies that evaluate the activity of these compounds against multidrug-resistant strains and clinical isolates. This study aims to evaluate the antitubercular potential of FTSD2 against drug-resistant strains of M. tuberculosis. Methods: The compound 4-(2,4-diamino-8-(4-methoxyphenyl)-8,9-dihydro-7H-pyrimido[4,5-b][1,4]diazepin-6-yl)-N-(2-(4-(dimethylamino)-6-(4-fluorophenyl)amino-1,3,5-triazin-2-yl)amino)ethyl)benzenesulfonamide (FTSD2) was tested against drug-resistant M. tuberculosis strains at minimal inhibitory and bactericidal concentrations (MIC and MBC). Kill curve assays were performed to assess bactericidal activity, and cytotoxicity was evaluated in human monocyte-derived macrophages and the RAW 264.7 murine macrophage cell line. Intracellular death assays, specifically macrophage infection assays, were also conducted to evaluate the effect of FTSD2 on intracellular M. tuberculosis growth. Results: FTSD2 inhibited the growth of drug-resistant M. tuberculosis at MIC and MBC values between 0.5 and 1 mg/L. Kill curve assays demonstrated concentration-dependent bactericidal activity. No cytotoxicity was observed in macrophages at concentrations below 64 mg/L. Additionally, FTSD2 significantly suppressed intracellular M. tuberculosis growth after 192 h. FTSD2 did not inhibit the growth of nontuberculous mycobacteria, including M. avium, M. abscessus, M. fortuitum, M. chelonae, and M. smegmatis at 50 mg/L. Conclusions: FTSD2 exhibits strong potential as a leading compound for the development of new antitubercular drugs, with selective activity against M. tuberculosis and minimal cytotoxic effects on macrophages. Further studies are needed to explore its mechanisms of action and therapeutic potential. Full article
Show Figures

Figure 1

28 pages, 7839 KiB  
Review
Progress in Continuous Flow Synthesis of Hydrogen-Bonded Organic Framework Material Synthons
by Xingjun Yao, Sanmiao Wen, Ningning Ji, Qiulin Deng, Zhiliang Li, Hongbing Wang and Qianqian Shang
Molecules 2025, 30(1), 41; https://doi.org/10.3390/molecules30010041 - 26 Dec 2024
Cited by 1 | Viewed by 2522
Abstract
Hydrogen-bonded organic framework (HOF) materials are typically formed by the self-assembly of small organic units (synthons) with specific functional groups through hydrogen bonding or other interactions. HOF is commonly used as an electrolyte for batteries. Well-designed HOF materials can enhance the proton exchange [...] Read more.
Hydrogen-bonded organic framework (HOF) materials are typically formed by the self-assembly of small organic units (synthons) with specific functional groups through hydrogen bonding or other interactions. HOF is commonly used as an electrolyte for batteries. Well-designed HOF materials can enhance the proton exchange rate, thereby boosting battery performance. This paper reviews recent advancements in the continuous synthesis of HOF synthons, in the continuous synthesis of HOF’s unit small molecules enabling the multi-step, rapid, and in situ synthesis of synthons, such as carboxylic acid, diaminotriazine (DAT), urea, guanidine, imidazole, pyrazole, pyridine, thiazole, triazole, and tetrazole, with online monitoring. Continuous flow reactors facilitate fast chemical reactions and precise microfluidic control, offering superior reaction speed, product yield, and selectivity compared to batch processes. Integrating the continuous synthesis of synthons with the construction of HOF materials on a single platform is essential for achieving low-cost, safe, and efficient processing, especially for reactions involving toxic, flammable, or explosive substances. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

15 pages, 3771 KiB  
Article
An Acid-Responsive Fluorescent Molecule for Erasable Anti-Counterfeiting
by Jiabao Liu, Xiangyu Gao, Qingyu Niu, Mingyuan Jin, Yijin Wang, Thamraa Alshahrani, He-Lue Sun, Banglin Chen, Zhiqiang Li and Peng Li
Molecules 2024, 29(18), 4335; https://doi.org/10.3390/molecules29184335 - 12 Sep 2024
Cited by 2 | Viewed by 1659
Abstract
A tetraphenylethylene (TPE) derivative, TPEPhDAT, modified by diaminotriazine (DAT), was prepared by successive Suzuki–Miyaura coupling and ring-closing reactions. This compound exhibits aggregation-induced emission enhancement (AIEE) properties in the DMSO/MeOH system, with a fluorescence emission intensity in the aggregated state that is 5-fold higher [...] Read more.
A tetraphenylethylene (TPE) derivative, TPEPhDAT, modified by diaminotriazine (DAT), was prepared by successive Suzuki–Miyaura coupling and ring-closing reactions. This compound exhibits aggregation-induced emission enhancement (AIEE) properties in the DMSO/MeOH system, with a fluorescence emission intensity in the aggregated state that is 5-fold higher than that of its counterpart in a dilute solution. Moreover, the DAT structure of the molecule is a good acceptor of protons; thus, the TPEPhDAT molecule exhibits acid-responsive fluorescence. TPEPhDAT was protonated by trifluoroacetic acid (TFA), leading to fluorescence quenching, which was reversibly restored by treatment with ammonia (on–off switch). Time-dependent density functional theory (TDDFT) computational studies have shown that protonation enhances the electron-withdrawing capacity of the triazine nucleus and reduces the bandgap. The protonated TPEPhDAT conformation became more distorted, and the fluorescence lifetime was attenuated, which may have produced a twisted intramolecular charge transfer (TICT) effect, leading to fluorescence redshift and quenching. MeOH can easily remove the protonated TPEPhDAT, and this acid-induced discoloration and erasable property can be applied in anti-counterfeiting. Full article
Show Figures

Figure 1

17 pages, 6412 KiB  
Article
Enhancing the Photocatalytic Activity of Immobilized TiO2 Using Laser-Micropatterned Surfaces
by Theodoros Giannakis, Sevasti-Kiriaki Zervou, Theodoros M. Triantis, Christophoros Christophoridis, Erasmia Bizani, Sergey V. Starinskiy, Panagiota Koralli, Georgios Mousdis, Anastasia Hiskia and Maria Kandyla
Appl. Sci. 2024, 14(7), 3033; https://doi.org/10.3390/app14073033 - 4 Apr 2024
Cited by 6 | Viewed by 2403
Abstract
In the past, the application of TiO2 slurry reactors has faced difficulties concerning the recovery and reusability of the catalyst. In response to these challenges, immobilized photocatalyst systems have been investigated, wherein the catalyst is fixed onto a solid support, frequently with [...] Read more.
In the past, the application of TiO2 slurry reactors has faced difficulties concerning the recovery and reusability of the catalyst. In response to these challenges, immobilized photocatalyst systems have been investigated, wherein the catalyst is fixed onto a solid support, frequently with reduced photocatalytic performance. In the present study, thin TiO2 films were developed in the anatase phase by the sol-gel process and spin-cast on laser-microstructured silicon substrates, to form photocatalytic surfaces of increased activity. The TiO2 films were thoroughly characterized using SEM-EDX, XRD, UV–Vis spectroscopy, and Raman spectroscopy. The photocatalytic activity of these surfaces was evaluated by the degradation of atrazine in aqueous solution under UV irradiation. Their photocatalytic activity was found to be significantly enhanced (mean kobs 24.1 × 10−3 min−1) when they are deposited on laser-microstructured silicon compared with flat silicon (mean kobs 4.9 × 10−3 min−1), approaching the photocatalytic activity of sol-gel TiO2 fortified with Degussa P25, used as a reference material (mean kobs 32.7 × 10−3 min−1). During the photocatalytic process, several transformation products (TPs) of atrazine, namely 2-chloro-4-(isopropylamino)-6-amino-s-triazine (CIAT), 2-chloro-4-amino-6-(ethylamino)-s-triazine (CAET), and 2-chloro-4.6-diamino-s-triazine (CAAT), were identified with LC–MS/MS. The stability of the photocatalytic surfaces was also investigated and remained unchanged through multiple cycles of usage. The surfaces were further tested with two other pollutants, i.e., 2,4,6-trichlorophenol and bisphenol-a, showing similar photocatalytic activity as with atrazine. Full article
Show Figures

Figure 1

21 pages, 19175 KiB  
Article
Synthesis of a Novel P/N-Triazine-Containing Ring Flame Retardant and Its Application in Epoxy Resin
by Yi Yu, Junlei Chen, Anxin Ding, Changzeng Wang, Yunfei Wang and Ling Yang
Polymers 2024, 16(7), 871; https://doi.org/10.3390/polym16070871 - 22 Mar 2024
Cited by 2 | Viewed by 1725
Abstract
To meet the environmental protection and flame retardancy requirements for epoxy resins (EPs) in certain fields, in this study, a novel triazine-ring-containing DOPO-derived compound (VDPD), derived from vanillin, 2,4-Diamino-6-phenyl-1,3,5-triazine, and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO), was synthesized using a one-pot method. Flame-retardant epoxy resin (FREP) was [...] Read more.
To meet the environmental protection and flame retardancy requirements for epoxy resins (EPs) in certain fields, in this study, a novel triazine-ring-containing DOPO-derived compound (VDPD), derived from vanillin, 2,4-Diamino-6-phenyl-1,3,5-triazine, and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO), was synthesized using a one-pot method. Flame-retardant epoxy resin (FREP) was prepared by adding various ratios of VDPD to EP and curing with 4,4-diaminodiphenylmethane (DDM). The curing behavior, thermal stability, mechanical properties, and flame-retardant properties of the FREP were examined in various tests. According to the results, when the amount of VDPD added to the EP increased, the glass transition temperature of the FREP decreased linearly, and the flame-retardant properties gradually improved. With a 0.4 wt.% P content, the vertical burning rating of EP/DDM/VDPD-0.4 (according to the theoretical content of VDPD) reached the V-0 level, and the LOI value reached 33.1%. In addition, the results of a CCT showed that the peak heat release rate (PHRR) of EP/DDM/VDPD-0.4 decreased by 32% in comparison with that of the EP. Furthermore, compared with those of the EP, the tensile strength of EP/DDM/VDPD-0.4 decreased from 80.2 MPa to 74.3 MPa, only decreasing by 6 MPa, and the tensile modulus increased. Overall, VDPD can maintain the mechanical properties of EP and effectively improve its flame-retardant properties. Full article
(This article belongs to the Special Issue Flame-Retardant Polymer Composites II)
Show Figures

Figure 1

3 pages, 533 KiB  
Proceeding Paper
The Reaction of 1,6-Diamino-4-aryl-2-oxo-1,2-dihydropyridine- 3,5-Dicarbonitriles with Certain Electrophilic Agents
by Alexei A. Dolganov, Alexandra R. Chikava and Victor V. Dotsenko
Chem. Proc. 2023, 14(1), 8; https://doi.org/10.3390/ecsoc-27-16081 - 6 Dec 2023
Viewed by 2923
Abstract
The reaction of 1,6-diamino-2-oxo-1,2-dihydropyridine-3,5-dicarbonitriles, which are easily available through the reaction of cyanoacetohydrazide with arylmethylene malononitriles, with ninhydrin leads to the formation of novel dihydroindeno[1,2-e]pyrido[1,2-b][1,2,4]triazines. Another active carbonyl compound, glyoxal, reacts with 1,6-diamino-2-oxo-1,2-dihydropyridine-3,5-dicarbonitriles under mild conditions to give functionalized 6-oxo-6H-pyrido[1,2-b][1,2,4]triazine-7,9-dicarbonitriles. Full article
Show Figures

Scheme 1

11 pages, 1110 KiB  
Article
Synthesis of New Polyheterocyclic Pyrrolo[3,4-b]pyridin-5-ones via an Ugi-Zhu/Cascade/Click Strategy
by Roberto E. Blanco-Carapia, Enrique A. Aguilar-Rangel, Mónica A. Rincón-Guevara, Alejandro Islas-Jácome and Eduardo González-Zamora
Molecules 2023, 28(10), 4087; https://doi.org/10.3390/molecules28104087 - 14 May 2023
Cited by 3 | Viewed by 2843
Abstract
A diversity-oriented synthesis (DOS) of two new polyheterocyclic compounds was performed via an Ugi-Zhu/cascade (N-acylation/aza Diels-Alder cycloaddition/decarboxylation/dehydration)/click strategy, both step-by-step to optimize all involved experimental stages, and in one pot manner to evaluate the scope and sustainability of this polyheterocyclic-focused [...] Read more.
A diversity-oriented synthesis (DOS) of two new polyheterocyclic compounds was performed via an Ugi-Zhu/cascade (N-acylation/aza Diels-Alder cycloaddition/decarboxylation/dehydration)/click strategy, both step-by-step to optimize all involved experimental stages, and in one pot manner to evaluate the scope and sustainability of this polyheterocyclic-focused synthetic strategy. In both ways, the yields were excellent, considering the high number of bonds formed with release of only one carbon dioxide and two molecules of water. The Ugi-Zhu reaction was carried out using the 4-formylbenzonitrile as orthogonal reagent, where the formyl group was first transformed into the pyrrolo[3,4-b]pyridin-5-one core, and then the remaining nitrile group was further converted into two different nitrogen-containing polyheterocycles, both via click-type cycloadditions. The first one used sodium azide to obtain the corresponding 5-substituted-1H-tetrazolyl-pyrrolo[3,4-b]pyridin-5-one, and the second one with dicyandiamide to synthesize the 2,4-diamino-1,3,5-triazine-pyrrolo[3,4-b]pyridin-5-one. Both synthesized compounds may be used for further in vitro and in silico studies because they contain more than two heterocyclic moieties of high interest in medicinal chemistry, as well as in optics due to their high π-conjugation. Full article
(This article belongs to the Collection Heterocyclic Compounds)
Show Figures

Graphical abstract

14 pages, 4258 KiB  
Article
Thermally Crosslinked Hydrogen-Bonded Organic Framework Membranes for Highly Selective Ion Separation
by Xiyu Song, Chen Wang, Xiangyu Gao, Yao Wang, Rui Xu, Jian Wang and Peng Li
Molecules 2023, 28(5), 2173; https://doi.org/10.3390/molecules28052173 - 26 Feb 2023
Cited by 12 | Viewed by 8936
Abstract
The weak bonding energy and flexibility of hydrogen bonds can hinder the long-term use of hydrogen-bonded organic framework (HOF) materials under harsh conditions. Here we invented a thermal-crosslinking method to form polymer materials based on a diamino triazine (DAT) HOF (FDU-HOF-1), containing high-density [...] Read more.
The weak bonding energy and flexibility of hydrogen bonds can hinder the long-term use of hydrogen-bonded organic framework (HOF) materials under harsh conditions. Here we invented a thermal-crosslinking method to form polymer materials based on a diamino triazine (DAT) HOF (FDU-HOF-1), containing high-density hydrogen bonding of N-H⋯N. With the increase of temperature to 648 K, the formation of –NH– bonds between neighboring HOF tectons by releasing NH3 was observed based on the disappearance of the characteristic peaks of amino groups on FDU-HOF-1 in the Fourier transform infrared (FTIR) and solid-state nuclear magnetic resonance (ss-NMR). The variable temperature PXRD indicated the formation of a new peak at 13.2° in addition to the preservation of the original diffraction peaks of FDU-HOF-1. The water adsorption, acid-base stability (12 M HCl to 20 M NaOH) and solubility experiments concluded that the thermally crosslinked HOFs (TC-HOFs) are highly stable. The membranes fabricated by TC-HOF demonstrate the permeation rate of K+ ions as high as 270 mmol m−2 h−1 as well as high selectivity of K+/Mg2+ (50) and Na+/Mg2+ (40), which was comparable to Nafion membranes. This study provides guidance for the future design of highly stable crystalline polymer materials based on HOFs. Full article
Show Figures

Figure 1

14 pages, 1996 KiB  
Article
Conjugated Microporous Polymers Based on Ferrocene Units as Highly Efficient Electrodes for Energy Storage
by Maha Mohamed Samy, Mohamed Gamal Mohamed and Shiao-Wei Kuo
Polymers 2023, 15(5), 1095; https://doi.org/10.3390/polym15051095 - 22 Feb 2023
Cited by 36 | Viewed by 3476
Abstract
This work describes the facile designing of three conjugated microporous polymers incorporated based on the ferrocene (FC) unit with 1,4-bis(4,6-diamino-s-triazin-2-yl)benzene (PDAT), tris(4-aminophenyl)amine (TPA-NH2), and tetrakis(4-aminophenyl)ethane (TPE-NH2) to form PDAT-FC, TPA-FC, and TPE-FC CMPs from Schiff base reaction of 1,1′-diacetylferrocene [...] Read more.
This work describes the facile designing of three conjugated microporous polymers incorporated based on the ferrocene (FC) unit with 1,4-bis(4,6-diamino-s-triazin-2-yl)benzene (PDAT), tris(4-aminophenyl)amine (TPA-NH2), and tetrakis(4-aminophenyl)ethane (TPE-NH2) to form PDAT-FC, TPA-FC, and TPE-FC CMPs from Schiff base reaction of 1,1′-diacetylferrocene monomer with these three aryl amines, respectively, for efficient supercapacitor electrodes. PDAT-FC and TPA-FC CMPs samples featured higher surface area values of approximately 502 and 701 m2 g−1, in addition to their possession of both micropores and mesopores. In particular, the TPA-FC CMP electrode achieved more extended discharge time compared with the other two FC CMPs, demonstrating good capacitive performance with a specific capacitance of 129 F g−1 and capacitance retention value of 96% next 5000 cycles. This feature of TPA-FC CMP is attributed to the presence of redox-active triphenylamine and ferrocene units in its backbone, in addition to a high surface area and good porosity that facilitates the redox process and provides rapid kinetics. Full article
(This article belongs to the Special Issue Functional and Conductive Polymer Thin Films III)
Show Figures

Graphical abstract

17 pages, 2339 KiB  
Article
Identification of Novel Small Molecule Ligands for JAK2 Pseudokinase Domain
by Anniina T. Virtanen, Teemu Haikarainen, Parthasarathy Sampathkumar, Maaria Palmroth, Sanna Liukkonen, Jianping Liu, Natalia Nekhotiaeva, Stevan R. Hubbard and Olli Silvennoinen
Pharmaceuticals 2023, 16(1), 75; https://doi.org/10.3390/ph16010075 - 4 Jan 2023
Cited by 12 | Viewed by 9072
Abstract
Hyperactive mutation V617F in the JAK2 regulatory pseudokinase domain (JH2) is prevalent in patients with myeloproliferative neoplasms. Here, we identified novel small molecules that target JH2 of JAK2 V617F and characterized binding via biochemical and structural approaches. Screening of 107,600 small molecules resulted [...] Read more.
Hyperactive mutation V617F in the JAK2 regulatory pseudokinase domain (JH2) is prevalent in patients with myeloproliferative neoplasms. Here, we identified novel small molecules that target JH2 of JAK2 V617F and characterized binding via biochemical and structural approaches. Screening of 107,600 small molecules resulted in identification of 55 binders to the ATP-binding pocket of recombinant JAK2 JH2 V617F protein at a low hit rate of 0.05%, which indicates unique structural characteristics of the JAK2 JH2 ATP-binding pocket. Selected hits and structural analogs were further assessed for binding to JH2 and JH1 (kinase) domains of JAK family members (JAK1-3, TYK2) and for effects on MPN model cell viability. Crystal structures were determined with JAK2 JH2 wild-type and V617F. The JH2-selective binders were identified in diaminotriazole, diaminotriazine, and phenylpyrazolo-pyrimidone chemical entities, but they showed low-affinity, and no inhibition of MPN cells was detected, while compounds binding to both JAK2 JH1 and JH2 domains inhibited MPN cell viability. X-ray crystal structures of protein-ligand complexes indicated generally similar binding modes between the ligands and V617F or wild-type JAK2. Ligands of JAK2 JH2 V617F are applicable as probes in JAK-STAT research, and SAR optimization combined with structural insights may yield higher-affinity inhibitors with biological activity. Full article
(This article belongs to the Special Issue The Regulation of JAKs in Health and in Disease)
Show Figures

Figure 1

17 pages, 6576 KiB  
Article
Self-Associated 1,8-Naphthalimide as a Selective Fluorescent Chemosensor for Detection of High pH in Aqueous Solutions and Their Hg2+ Contamination
by Awad I. Said, Desislava Staneva, Silvia Angelova and Ivo Grabchev
Sensors 2023, 23(1), 399; https://doi.org/10.3390/s23010399 - 30 Dec 2022
Cited by 13 | Viewed by 3099
Abstract
A novel diamino triazine based 1,8-naphthalimide (NI-DAT) has been designed and synthesized. Its photophysical properties have been investigated in different solvents and its sensory capability evaluated. The fluorescence emission of NI-DAT is significantly impacted by the solvent polarity due to its inherent intramolecular [...] Read more.
A novel diamino triazine based 1,8-naphthalimide (NI-DAT) has been designed and synthesized. Its photophysical properties have been investigated in different solvents and its sensory capability evaluated. The fluorescence emission of NI-DAT is significantly impacted by the solvent polarity due to its inherent intramolecular charge transfer character. Moreover, the fluorescence emission quenched at higher pH as a result of photo-induced electron transfer (PET) from triazine moiety to 1,8-naphthalimide after cleaving hydrogen bonds in the self-associated dimers. Furthermore, the new chemosensor exhibited a good selectivity and sensitivity towards Hg2+ among all the used various cations and anions in the aqueous solution of ethanol (5:1, v/v, pH = 7.2, Tampon buffer). NI-DAT emission at 540 nm was quenched remarkably only by Hg2+, even in the presence of other cations or anions as interfering analytes. Job’s plot revealed a 2:1 stoichiometric ratio for NI-DAT/Hg2+ complex, respectively. Full article
(This article belongs to the Special Issue Chemiresistive Sensors: Materials and Applications)
Show Figures

Figure 1

14 pages, 3792 KiB  
Article
Initial Decomposition Mechanism of 3-Nitro-1,2,4-triazol-5-one (NTO) under Shock Loading: ReaxFF Parameterization and Molecular Dynamic Study
by Lixiaosong Du, Shaohua Jin, Pengsong Nie, Chongchong She and Junfeng Wang
Molecules 2021, 26(16), 4808; https://doi.org/10.3390/molecules26164808 - 9 Aug 2021
Cited by 20 | Viewed by 3482
Abstract
We report a reactive molecular dynamic (ReaxFF-MD) study using the newly parameterized ReaxFF-lg reactive force field to explore the initial decomposition mechanism of 3-Nitro-1,2,4-triazol-5-one (NTO) under shock loading (shock velocity >6 km/s). The new ReaxFF-lg parameters were trained from massive quantum mechanics data [...] Read more.
We report a reactive molecular dynamic (ReaxFF-MD) study using the newly parameterized ReaxFF-lg reactive force field to explore the initial decomposition mechanism of 3-Nitro-1,2,4-triazol-5-one (NTO) under shock loading (shock velocity >6 km/s). The new ReaxFF-lg parameters were trained from massive quantum mechanics data and experimental values, especially including the bond dissociation curves, valence angle bending curves, dihedral angle torsion curves, and unimolecular decomposition paths of 3-Nitro-1,2,4-triazol-5-one (NTO), 1,3,5-Trinitro-1,3,5-triazine (RDX), and 1,1-Diamino-2,2-dinitroethylene (FOX-7). The simulation results were obtained by analyzing the ReaxFF dynamic trajectories, which predicted the most frequent chain reactions that occurred before NTO decomposition was the unimolecular NTO merged into clusters ((C2H2O3N4)n). Then, the NTO dissociated from (C2H2O3N4)n and started to decompose. In addition, the paths of NO2 elimination and skeleton heterocycle cleavage were considered as the dominant initial decomposition mechanisms of NTO. A small amount of NTO dissociation was triggered by the intermolecular hydrogen transfer, instead of the intramolecular one. For α-NTO, the calculated equation of state was in excellent agreement with the experimental data. Moreover, the discontinuity slope of the shock-particle velocity equation was presented at a shock velocity of 4 km/s. However, the slope of the shock-particle velocity equation for β-NTO showed no discontinuity in the shock wave velocity range of 3–11 km/s. These studies showed that MD by using a suitable ReaxFF-lg parameter set, could provided detailed atomistic information to explain the shock-induced complex reaction mechanisms of energetic materials. With the ReaxFF-MD coupling MSST method and a cheap computational cost, one could also obtain the deformation behaviors and equation of states for energetic materials under conditions of extreme pressure. Full article
(This article belongs to the Special Issue Advances in the Theoretical and Computational Chemistry)
Show Figures

Figure 1

26 pages, 4949 KiB  
Article
Chain-End Effects on Supramolecular Poly(ethylene glycol) Polymers
by Ana Brás, Ana Arizaga, Uxue Agirre, Marie Dorau, Judith Houston, Aurel Radulescu, Margarita Kruteva, Wim Pyckhout-Hintzen and Annette M. Schmidt
Polymers 2021, 13(14), 2235; https://doi.org/10.3390/polym13142235 - 7 Jul 2021
Cited by 7 | Viewed by 4425
Abstract
In this work we present a fundamental analysis based on small-angle scattering, linear rheology and differential scanning calorimetry (DSC) experiments of the role of different hydrogen bonding (H-bonding) types on the structure and dynamics of chain-end modified poly(ethylene glycol) (PEG) in bulk. As [...] Read more.
In this work we present a fundamental analysis based on small-angle scattering, linear rheology and differential scanning calorimetry (DSC) experiments of the role of different hydrogen bonding (H-bonding) types on the structure and dynamics of chain-end modified poly(ethylene glycol) (PEG) in bulk. As such bifunctional PEG with a molar mass below the entanglement mass Me is symmetrically end-functionalized with three different hydrogen bonding (H-bonding) groups: thymine-1-acetic acid (thy), diamino-triazine (dat) and 2-ureido-4[1H]-pyrimidinone (upy). A linear block copolymer structure and a Newtonian-like dynamics is observed for PEG-thy/dat while results for PEG-upy structure and dynamics reveal a sphere and a network-like behavior, respectively. These observations are concomitant with an increase of the Flory–Huggins interaction parameter from PEG-thy/dat to PEG-upy that is used to quantify the difference between the H-bonding types. The upy association into spherical clusters is established by the Percus–Yevick approximation that models the inter-particle structure factor for PEG-upy. Moreover, the viscosity study reveals for PEG-upy a shear thickening behavior interpreted in terms of the free path model and related to the time for PEG-upy to dissociate from the upy clusters, seen as virtual crosslinks of the formed network. Moreover, a second relaxation time of different nature is also obtained from the complex shear modulus measurements of PEG-upy by the inverse of the angular frequency where G’ and G’’ crosses from the network-like to glass-like transition relaxation time, which is related to the segmental friction of PEG-upy polymeric network strands. In fact, not only do PEG-thy/dat and PEG-upy have different viscoelastic properties, but the relaxation times found for PEG-upy are much slower than the ones for PEG-thy/dat. However, the activation energy related to the association dynamics is very similar for both PEG-thy/dat and PEG-upy. Concerning the segmental dynamics, the glass transition temperature obtained from both rheological and calorimetric analysis is similar and increases for PEG-upy while for PEG-thy/dat is almost independent of association behavior. Our results show how supramolecular PEG properties vary by modifying the H-bonding association type and changing the molecular Flory–Huggins interaction parameter, which can be further explored for possible applications. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

13 pages, 3592 KiB  
Article
Simultaneous Adsorption and Reduction of Cr(VI) to Cr(III) in Aqueous Solution Using Nitrogen-Rich Aminal Linked Porous Organic Polymers
by Muhammad A. Sabri, Ziad Sara, Mohammad H. Al-Sayah, Taleb H. Ibrahim, Mustafa I. Khamis and Oussama M. El-Kadri
Sustainability 2021, 13(2), 923; https://doi.org/10.3390/su13020923 - 18 Jan 2021
Cited by 13 | Viewed by 3389
Abstract
Two novel nitrogen-rich aminal linked porous organic polymers, NRAPOP-O and NRAPOP-S, have been prepared using a single step-one pot Schiff-base condensation reaction of 9,10-bis-(4,6-diamino-S-triazin-2-yl)benzene and 2-furaldehyde or 2-thiophenecarboxaldehyde, respectively. The two polymers show excellent thermal and physiochemical stabilities and possess high porosity with [...] Read more.
Two novel nitrogen-rich aminal linked porous organic polymers, NRAPOP-O and NRAPOP-S, have been prepared using a single step-one pot Schiff-base condensation reaction of 9,10-bis-(4,6-diamino-S-triazin-2-yl)benzene and 2-furaldehyde or 2-thiophenecarboxaldehyde, respectively. The two polymers show excellent thermal and physiochemical stabilities and possess high porosity with Brunauer–Emmett–Teller (BET) surface areas of 692 and 803 m2 g−1 for NRAPOP-O and NRAPOP-S, respectively. Because of such porosity, attractive chemical and physical properties, and the availability of redox-active sites and physical environment, the NRAPOPs were able to effectively remove Cr(VI) from solution, reduce it to Cr(III), and simultaneously release it into the solution. The efficiency of the adsorption process was assessed under various influencing factors such as pH, contact time, polymer dosage, and initial concentration of Cr(VI). At the optimum conditions, 100% removal of Cr(VI) was achieved, with simultaneous reduction and release of Cr(III) by NRAPOP-O with 80% efficiency. Moreover, the polymers can be easily regenerated by the addition of reducing agents such as hydrazine without significant loss in the detoxication of Cr(VI). Full article
(This article belongs to the Special Issue Sustainable Chemical Engineering: Adsorption and Water Disinfection)
Show Figures

Figure 1

19 pages, 2605 KiB  
Review
Products of Oxidative Guanine Damage Form Base Pairs with Guanine
by Katsuhito Kino, Taishu Kawada, Masayo Hirao-Suzuki, Masayuki Morikawa and Hiroshi Miyazawa
Int. J. Mol. Sci. 2020, 21(20), 7645; https://doi.org/10.3390/ijms21207645 - 15 Oct 2020
Cited by 21 | Viewed by 4659
Abstract
Among the natural bases, guanine is the most oxidizable base. The damage caused by oxidation of guanine, commonly referred to as oxidative guanine damage, results in the formation of several products, including 2,5-diamino-4H-imidazol-4-one (Iz), 2,2,4-triamino-5(2H)-oxazolone (Oz), guanidinoformimine (Gf), guanidinohydantoin/iminoallantoin [...] Read more.
Among the natural bases, guanine is the most oxidizable base. The damage caused by oxidation of guanine, commonly referred to as oxidative guanine damage, results in the formation of several products, including 2,5-diamino-4H-imidazol-4-one (Iz), 2,2,4-triamino-5(2H)-oxazolone (Oz), guanidinoformimine (Gf), guanidinohydantoin/iminoallantoin (Gh/Ia), spiroiminodihydantoin (Sp), 5-carboxamido-5-formamido-2-iminohydantoin (2Ih), urea (Ua), 5-guanidino-4-nitroimidazole (NI), spirodi(iminohydantoin) (5-Si and 8-Si), triazine, the M+7 product, other products by peroxynitrite, alkylated guanines, and 8,5′-cyclo-2′-deoxyguanosine (cG). Herein, we summarize the present knowledge about base pairs containing the products of oxidative guanine damage and guanine. Of these products, Iz is involved in G-C transversions. Oz, Gh/Ia, and Sp form preferably Oz:G, Gh/Ia:G, and Sp:G base pairs in some cases. An involvement of Gf, 2Ih, Ua, 5-Si, 8-Si, triazine, the M+7 product, and 4-hydroxy-2,5-dioxo-imidazolidine-4-carboxylic acid (HICA) in G-C transversions requires further experiments. In addition, we describe base pairs that target the RNA-dependent RNA polymerase (RdRp) of RNA viruses and describe implications for the 2019 novel coronavirus (SARS-CoV-2): When products of oxidative guanine damage are adapted for the ribonucleoside analogs, mimics of oxidative guanine damages, which can form base pairs, may become antiviral agents for SARS-CoV-2. Full article
Show Figures

Graphical abstract

Back to TopTop