Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,154)

Search Parameters:
Keywords = design of electric generators

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3794 KiB  
Article
Enhanced Energy Storage Properties of Ba0.96Ca0.04TiO3 Ceramics Through Doping Bi(Li1/3Zr2/3)O3
by Zhiwei Li, Dandan Zhu, Xuqiang Ding, Lingling Cui and Junlong Wang
Coatings 2025, 15(8), 906; https://doi.org/10.3390/coatings15080906 (registering DOI) - 2 Aug 2025
Abstract
The (1−x)Ba0.96Ca0.04TiO3−xBi(Li1/3Zr2/3)O3 (x = 0.03–0.15) ceramics were fabricated via the traditional solid reaction method. Characterization results revealed that each component exhibited a pure perovskite structure, and the average grain size significantly diminishes [...] Read more.
The (1−x)Ba0.96Ca0.04TiO3−xBi(Li1/3Zr2/3)O3 (x = 0.03–0.15) ceramics were fabricated via the traditional solid reaction method. Characterization results revealed that each component exhibited a pure perovskite structure, and the average grain size significantly diminishes with increasing x. The (1−x)Ba0.96Ca0.04TiO3−xBi(Li1/3Zr2/3)O3 ceramics exhibited prominent relaxor ferroelectric behavior, whose characteristic narrow hysteresis loops effectively enhanced the energy storage performance of the material. Most importantly, the composition with x = 0.10 demonstrated exceptional energy storage properties at 150 kV/cm, achieving a high recoverable energy storage density (Wrec = 1.91 J/cm3) and excellent energy efficiency (η = 90.87%). Under the equivalent electric field, this composition also displayed a superior pulsed discharge performance, including a high current density (871 A/cm2), a high power density (67.3 MW/cm3), an ultrafast discharge time (t0.9 = 109 ns), and a discharged energy density of 1.47 J/cm3. These results demonstrate that the (1−x)Ba0.96Ca0.04TiO3−xBi(Li1/3Zr2/3)O3 ceramic system establishes a promising design paradigm for the creation and refinement of next-generation dielectrics for pulse power applications. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

32 pages, 1970 KiB  
Review
A Review of New Technologies in the Design and Application of Wind Turbine Generators
by Pawel Prajzendanc and Christian Kreischer
Energies 2025, 18(15), 4082; https://doi.org/10.3390/en18154082 (registering DOI) - 1 Aug 2025
Viewed by 51
Abstract
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power [...] Read more.
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power systems. This paper presents a comprehensive review of generator technologies used in wind turbine applications, ranging from conventional synchronous and asynchronous machines to advanced concepts such as low-speed direct-drive (DD) generators, axial-flux topologies, and superconducting generators utilizing low-temperature superconductors (LTS) and high-temperature superconductors (HTS). The advantages and limitations of each design are discussed in the context of efficiency, weight, reliability, scalability, and suitability for offshore deployment. Special attention is given to HTS-based generator systems, which offer superior power density and reduced losses, along with challenges related to cryogenic cooling and materials engineering. Furthermore, the paper analyzes selected modern generator designs to provide references for enhancing the performance of grid-synchronized hybrid microgrids integrating solar PV, wind, battery energy storage, and HTS-enhanced generators. This review serves as a valuable resource for researchers and engineers developing next-generation wind energy technologies with improved efficiency and integration potential. Full article
(This article belongs to the Special Issue Advancements in Marine Renewable Energy and Hybridization Prospects)
Show Figures

Figure 1

23 pages, 2231 KiB  
Review
Advanced Nuclear Reactors—Challenges Related to the Reprocessing of Spent Nuclear Fuel
by Katarzyna Kiegiel, Tomasz Smoliński and Irena Herdzik-Koniecko
Energies 2025, 18(15), 4080; https://doi.org/10.3390/en18154080 (registering DOI) - 1 Aug 2025
Viewed by 153
Abstract
Nuclear energy can help stop climate change by generating large amounts of emission-free electricity. Nuclear reactor designs are continually being developed to be more fuel efficient, safer, easier to construct, and to produce less nuclear waste. The term advanced nuclear reactors refers either [...] Read more.
Nuclear energy can help stop climate change by generating large amounts of emission-free electricity. Nuclear reactor designs are continually being developed to be more fuel efficient, safer, easier to construct, and to produce less nuclear waste. The term advanced nuclear reactors refers either to Generation III+ and Generation IV or small modular reactors. Every reactor is associated with the nuclear fuel cycle that must be economically viable and competitive. An important matter is optimization of fissile materials used in reactor and/or reprocessing of spent fuel and reuse. Currently operating reactors use the open cycle or partially closed cycle. Generation IV reactors are intended to play a significant role in reaching a fully closed cycle. At the same time, we can observe the growing interest in development of small modular reactors worldwide. SMRs can adopt either fuel cycle; they can be flexible depending on their design and fuel type. Spent nuclear fuel management should be an integral part of the development of new reactors. The proper management methods of the radioactive waste and spent fuel should be considered at an early stage of construction. The aim of this paper is to highlight the challenges related to reprocessing of new forms of nuclear fuel. Full article
Show Figures

Figure 1

27 pages, 5832 KiB  
Article
Electrospinning Technology to Influence Hep-G2 Cell Growth on PVDF Fiber Mats as Medical Scaffolds: A New Perspective of Advanced Biomaterial
by Héctor Herrera Hernández, Carlos O. González Morán, Gemima Lara Hernández, Ilse Z. Ramírez-León, Citlalli J. Trujillo Romero, Juan A. Alcántara Cárdenas and Jose de Jesus Agustin Flores Cuautle
J. Compos. Sci. 2025, 9(8), 401; https://doi.org/10.3390/jcs9080401 (registering DOI) - 1 Aug 2025
Viewed by 75
Abstract
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes [...] Read more.
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes (fiber mats) made of polyvinylidene difluoride (PVDF) for possible use in cellular engineering. A standard culture medium was employed to support the proliferation of Hep-G2 cells under controlled conditions (37 °C, 4.8% CO2, and 100% relative humidity). Subsequently, after the incubation period, electrochemical impedance spectroscopy (EIS) assays were conducted in a physiological environment to characterize the electrical cellular response, providing insights into the biocompatibility of the material. Scanning electron microscopy (SEM) was employed to evaluate cell adhesion, morphology, and growth on the PVDF polymer membranes. The results suggest that PVDF polymer membranes can be successfully produced through electrospinning technology, resulting in the formation of a dipole structure, including the possible presence of a polar β-phase, contributing to piezoelectric activity. EIS measurements, based on Rct and Cdl values, are indicators of ion charge transfer and strong electrical interactions at the membrane interface. These findings suggest a favorable environment for cell proliferation, thereby enhancing cellular interactions at the fiber interface within the electrolyte. SEM observations displayed a consistent distribution of fibers with a distinctive spherical agglomeration on the entire PVDF surface. Finally, integrating piezoelectric properties into cell culture systems provides new opportunities for investigating the influence of electrical interactions on cellular behavior through electrochemical techniques. Based on the experimental results, this electrospun polymer demonstrates great potential as a promising candidate for next-generation biomaterials, with a probable application in tissue regeneration. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

36 pages, 6545 KiB  
Review
MXene-Based Composites for Energy Harvesting and Energy Storage Devices
by Jorge Alexandre Alencar Fotius and Helinando Pequeno de Oliveira
Solids 2025, 6(3), 41; https://doi.org/10.3390/solids6030041 (registering DOI) - 1 Aug 2025
Viewed by 65
Abstract
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in [...] Read more.
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in MXene-based composites, focusing on their integration into electrode architectures for the development of supercapacitors, batteries, and multifunctional devices, including triboelectric nanogenerators. It serves as a comprehensive overview of the multifunctional capabilities of MXene-based composites and their role in advancing efficient, flexible, and sustainable energy and sensing technologies, outlining how MXene-based systems are poised to redefine multifunctional energy platforms. Electrochemical performance optimization strategies are discussed by considering surface functionalization, interlayer engineering, scalable synthesis techniques, and integration with advanced electrolytes, with particular attention paid to the development of hybrid supercapacitors, triboelectric nanogenerators (TENGs), and wearable sensors. These applications are favored due to improved charge storage capability, mechanical properties, and the multifunctionality of MXenes. Despite these aspects, challenges related to long-term stability, sustainable large-scale production, and environmental degradation must still be addressed. Emerging approaches such as three-dimensional self-assembly and artificial intelligence-assisted design are identified as key challenges for overcoming these issues. Full article
Show Figures

Figure 1

40 pages, 1638 KiB  
Review
Cardiac Tissue Bioprinting: Integrating Structure and Functions Through Biomimetic Design, Bioinks, and Stimulation
by Silvia Marino, Reem Alheijailan, Rita Alonaizan, Stefano Gabetti, Diana Massai and Maurizio Pesce
Gels 2025, 11(8), 593; https://doi.org/10.3390/gels11080593 (registering DOI) - 31 Jul 2025
Viewed by 251
Abstract
Pathologies of the heart (e.g., ischemic disease, valve fibrosis and calcification, progressive myocardial fibrosis, heart failure, and arrhythmogenic disorders) stem from the irreversible deterioration of cardiac tissues, leading to severe clinical consequences. The limited regenerative capacity of the adult myocardium and the architectural [...] Read more.
Pathologies of the heart (e.g., ischemic disease, valve fibrosis and calcification, progressive myocardial fibrosis, heart failure, and arrhythmogenic disorders) stem from the irreversible deterioration of cardiac tissues, leading to severe clinical consequences. The limited regenerative capacity of the adult myocardium and the architectural complexity of the heart present major challenges for tissue engineering. However, recent advances in biomaterials and biofabrication techniques have opened new avenues for recreating functional cardiac tissues. Particularly relevant in this context is the integration of biomimetic design principles, such as structural anisotropy, mechanical and electrical responsiveness, and tissue-specific composition, into 3D bioprinting platforms. This review aims to provide a comprehensive overview of current approaches in cardiac bioprinting, with a focus on how structural and functional biomimicry can be achieved using advanced hydrogels, bioprinting techniques, and post-fabrication stimulation. By critically evaluating materials, methods, and applications such as patches, vasculature, valves, and chamber models, we define the state of the art and highlight opportunities for developing next-generation bioengineered cardiac constructs. Full article
(This article belongs to the Special Issue Hydrogel for Sustained Delivery of Therapeutic Agents (3rd Edition))
Show Figures

Figure 1

21 pages, 4147 KiB  
Article
OLTEM: Lumped Thermal and Deep Neural Model for PMSM Temperature
by Yuzhong Sheng, Xin Liu, Qi Chen, Zhenghao Zhu, Chuangxin Huang and Qiuliang Wang
AI 2025, 6(8), 173; https://doi.org/10.3390/ai6080173 - 31 Jul 2025
Viewed by 161
Abstract
Background and Objective: Temperature management is key for reliable operation of permanent magnet synchronous motors (PMSMs). The lumped-parameter thermal network (LPTN) is fast and interpretable but struggles with nonlinear behavior under high power density. We propose OLTEM, a physics-informed deep model that combines [...] Read more.
Background and Objective: Temperature management is key for reliable operation of permanent magnet synchronous motors (PMSMs). The lumped-parameter thermal network (LPTN) is fast and interpretable but struggles with nonlinear behavior under high power density. We propose OLTEM, a physics-informed deep model that combines LPTN with a thermal neural network (TNN) to improve prediction accuracy while keeping physical meaning. Methods: OLTEM embeds LPTN into a recurrent state-space formulation and learns three parameter sets: thermal conductance, inverse thermal capacitance, and power loss. Two additions are introduced: (i) a state-conditioned squeeze-and-excitation (SC-SE) attention that adapts feature weights using the current temperature state, and (ii) an enhanced power-loss sub-network that uses a deep MLP with SC-SE and non-negativity constraints. The model is trained and evaluated on the public Electric Motor Temperature dataset (Paderborn University/Kaggle). Performance is measured by mean squared error (MSE) and maximum absolute error across permanent-magnet, stator-yoke, stator-tooth, and stator-winding temperatures. Results: OLTEM tracks fast thermal transients and yields lower MSE than both the baseline TNN and a CNN–RNN model for all four components. On a held-out generalization set, MSE remains below 4.0 °C2 and the maximum absolute error is about 4.3–8.2 °C. Ablation shows that removing either SC-SE or the enhanced power-loss module degrades accuracy, confirming their complementary roles. Conclusions: By combining physics with learned attention and loss modeling, OLTEM improves PMSM temperature prediction while preserving interpretability. This approach can support motor thermal design and control; future work will study transfer to other machines and further reduce short-term errors during abrupt operating changes. Full article
Show Figures

Figure 1

22 pages, 8473 KiB  
Article
Designing a Power Supply System for an Amphibious Robot Based on Wave Energy Generation
by Lishan Ma, Fang Huang, Lingxiao Li, Qiang Fu, Chunjie Wang and Xinpeng Wang
J. Mar. Sci. Eng. 2025, 13(8), 1466; https://doi.org/10.3390/jmse13081466 - 30 Jul 2025
Viewed by 199
Abstract
As the range of applications for amphibious robots expands, higher demands are being placed on their working time and working range. This paper proposed a power supply system for an amphibious robot based on wave energy generation, which can convert wave energy into [...] Read more.
As the range of applications for amphibious robots expands, higher demands are being placed on their working time and working range. This paper proposed a power supply system for an amphibious robot based on wave energy generation, which can convert wave energy into electric energy to enhance endurance. First, the no-load induced electromotive force, magnetic line distribution vector diagrams, and magnetic density cloud diagrams of the cylindrical and flat generators were compared by finite element simulation, which determined that the cylindrical structure has better power generation performance. Then, the electromagnetic parameters of the cylindrical generator were analyzed using Ansys Maxwell, and the final dimensions were determined. Finally, the wave motion was simulated using a swing motor, and the effects of different cutting speeds for the actuator before and after rectification, as well as series-parallel capacitance on the power generation performance of the designed generator, were experimentally analyzed. This provides a potential solution to enhance the working time and working range of amphibious robots. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

32 pages, 9710 KiB  
Article
Early Detection of ITSC Faults in PMSMs Using Transformer Model and Transient Time-Frequency Features
by Ádám Zsuga and Adrienn Dineva
Energies 2025, 18(15), 4048; https://doi.org/10.3390/en18154048 - 30 Jul 2025
Viewed by 248
Abstract
Inter-turn short-circuit (ITSC) faults in permanent magnet synchronous machines (PMSMs) present a significant reliability challenge in electric vehicle (EV) drivetrains, particularly under non-stationary operating conditions characterized by inverter-driven transients, variable loads, and magnetic saturation. Existing diagnostic approaches, including motor current signature analysis (MCSA) [...] Read more.
Inter-turn short-circuit (ITSC) faults in permanent magnet synchronous machines (PMSMs) present a significant reliability challenge in electric vehicle (EV) drivetrains, particularly under non-stationary operating conditions characterized by inverter-driven transients, variable loads, and magnetic saturation. Existing diagnostic approaches, including motor current signature analysis (MCSA) and wavelet-based methods, are primarily designed for steady-state conditions and rely on manual feature selection, limiting their applicability in real-time embedded systems. Furthermore, the lack of publicly available, high-fidelity datasets capturing the transient dynamics and nonlinear flux-linkage behaviors of PMSMs under fault conditions poses an additional barrier to developing data-driven diagnostic solutions. To address these challenges, this study introduces a simulation framework that generates a comprehensive dataset using finite element method (FEM) models, incorporating magnetic saturation effects and inverter-driven transients across diverse EV operating scenarios. Time-frequency features extracted via Discrete Wavelet Transform (DWT) from stator current signals are used to train a Transformer model for automated ITSC fault detection. The Transformer model, leveraging self-attention mechanisms, captures both local transient patterns and long-range dependencies within the time-frequency feature space. This architecture operates without sequential processing, in contrast to recurrent models such as LSTM or RNN models, enabling efficient inference with a relatively low parameter count, which is advantageous for embedded applications. The proposed model achieves 97% validation accuracy on simulated data, demonstrating its potential for real-time PMSM fault detection. Additionally, the provided dataset and methodology contribute to the facilitation of reproducible research in ITSC diagnostics under realistic EV operating conditions. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Power and Energy Systems)
Show Figures

Figure 1

17 pages, 3620 KiB  
Article
Proposal of a Thermal Network Model for Fast Solution of Temperature Rise Characteristics of Aircraft Wire Harnesses
by Tao Cao, Wei Li, Tianxu Zhao and Shumei Cui
Energies 2025, 18(15), 4046; https://doi.org/10.3390/en18154046 - 30 Jul 2025
Viewed by 181
Abstract
The design of aircraft electrical wiring interconnection systems (EWISs) is central to ensuring the safe and reliable operation of aircraft. The calculation of the temperature rise characteristics of aircraft wire harnesses is one of the key technologies in EWIS design, directly affecting the [...] Read more.
The design of aircraft electrical wiring interconnection systems (EWISs) is central to ensuring the safe and reliable operation of aircraft. The calculation of the temperature rise characteristics of aircraft wire harnesses is one of the key technologies in EWIS design, directly affecting the safety margin of the system. However, existing calculation methods generally face a bottleneck in the balance between speed and accuracy, failing to meet the requirements of actual engineering applications. In this paper, we conduct an in-depth study on this issue. Firstly, a finite element harness model is established to accurately obtain the convective heat transfer coefficients of wires and harnesses. Based on the analysis of the influencing factors of the thermal network model for a single wire, an improved thermal resistance hierarchical wire thermal network model is proposed. A structure consisting of series thermal resistance within layers and iterative parallel algorithms between layers is proposed to equivalently integrate and iteratively calculate the mutual thermal influence relationship between each layer of the harness, thereby constructing a hierarchical harness thermal network model. This model successfully achieves a significant improvement in calculation speed while effectively ensuring useable temperature rise results, providing an effective method for EWIS design. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

18 pages, 2111 KiB  
Article
Modelling Renewable Energy and Resource Interactions Using CLEWs to Support Thailand’s 2050 Carbon Neutrality Goal
by Nat Nakkorn, Surasak Janchai, Suparatchai Vorarat and Prayuth Rittidatch
Sustainability 2025, 17(15), 6909; https://doi.org/10.3390/su17156909 - 30 Jul 2025
Viewed by 277
Abstract
This study utilises the Open Source Energy Modelling System (OSeMOSYS) in conjunction with the Climate, Land, Energy, and Water systems (CLEWs) framework to investigate Thailand’s energy transition, which is designed to achieve carbon neutrality by 2050. Two scenarios have been devised to evaluate [...] Read more.
This study utilises the Open Source Energy Modelling System (OSeMOSYS) in conjunction with the Climate, Land, Energy, and Water systems (CLEWs) framework to investigate Thailand’s energy transition, which is designed to achieve carbon neutrality by 2050. Two scenarios have been devised to evaluate the long-term trade-offs among energy, water, and land systems. Data were sourced from esteemed international organisations (e.g., the IEA, FAO, and OECD) and national agencies and organised into a tailored OSeMOSYS Starter Data Kit for Thailand, comprising a baseline and a carbon neutral trajectory. The baseline scenario, primarily reliant on fossil fuels, is projected to generate annual CO2 emissions exceeding 400 million tons and water consumption surpassing 85 billion cubic meters by 2025. By the mid-century, the carbon neutral scenario will have approximately 40% lower water use and a 90% reduction in power sector emissions. Under the carbon neutral path, renewable energy takes the front stage; the share of renewable electricity goes from under 20% in the baseline scenario to almost 80% by 2050. This transition and large reforestation initiatives call for consistent investment in solar energy (solar energy expenditures exceeding 20 billion USD annually by 2025). Still, it provides notable co-benefits, including greater resource sustainability and better alignment with international climate targets. The results provide strategic insights aligned with Thailand’s National Energy Plan (NEP) and offer modelling evidence toward achieving international climate goals under COP29. Full article
Show Figures

Graphical abstract

17 pages, 2136 KiB  
Article
Mitigating Intermittency in Offshore Wind Power Using Adaptive Nonlinear MPPT Control Techniques
by Muhammad Waqas Ayub, Inam Ullah Khan, George Aggidis and Xiandong Ma
Energies 2025, 18(15), 4041; https://doi.org/10.3390/en18154041 - 29 Jul 2025
Viewed by 220
Abstract
This paper addresses the challenge of maximizing power extraction in offshore wind energy systems through the development of an enhanced maximum power point tracking (MPPT) control strategy. Offshore wind energy is inherently intermittent, leading to discrepancies between power generation and electricity demand. To [...] Read more.
This paper addresses the challenge of maximizing power extraction in offshore wind energy systems through the development of an enhanced maximum power point tracking (MPPT) control strategy. Offshore wind energy is inherently intermittent, leading to discrepancies between power generation and electricity demand. To address this issue, we propose three advanced control algorithms to perform a comparative analysis: sliding mode control (SMC), the Integral Backstepping-Based Real-Twisting Algorithm (IBRTA), and Feed-Back Linearization (FBL). These algorithms are designed to handle the nonlinear dynamics and aerodynamic uncertainties associated with offshore wind turbines. Given the practical limitations in acquiring accurate nonlinear terms and aerodynamic forces, our approach focuses on ensuring the adaptability and robustness of the control algorithms under varying operational conditions. The proposed strategies are rigorously evaluated through MATLAB/Simulink 2024 A simulations across multiple wind speed scenarios. Our comparative analysis demonstrates the superior performance of the proposed methods in optimizing power extraction under diverse conditions, contributing to the advancement of MPPT techniques for offshore wind energy systems. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

21 pages, 3051 KiB  
Article
Novel Gaussian-Decrement-Based Particle Swarm Optimization with Time-Varying Parameters for Economic Dispatch in Renewable-Integrated Microgrids
by Yuan Wang, Wangjia Lu, Wenjun Du and Changyin Dong
Mathematics 2025, 13(15), 2440; https://doi.org/10.3390/math13152440 - 29 Jul 2025
Viewed by 151
Abstract
Background: To address the uncertainties of renewable energy power generation, the disorderly charging characteristics of electric vehicles, and the high electricity cost of the power grid in expressway service areas, a method of economic dispatch optimization based on the improved particle swarm optimization [...] Read more.
Background: To address the uncertainties of renewable energy power generation, the disorderly charging characteristics of electric vehicles, and the high electricity cost of the power grid in expressway service areas, a method of economic dispatch optimization based on the improved particle swarm optimization algorithm is proposed in this study. Methods: Mathematical models of photovoltaic power generation, energy storage systems, and electric vehicles were established, thereby constructing the microgrid system model of the power load in the expressway service area. Taking the economic cost of electricity consumption in the service area as the objective function and simultaneously meeting constraints such as power balance, power grid interactions, and energy storage systems, a microgrid economy dispatch model is constructed. An improved particle swarm optimization algorithm with time-varying parameters of the inertia weight and learning factor was designed to solve the optimal dispatching strategy. The inertia weight was improved by adopting the Gaussian decreasing method, and the asymmetric dynamic learning factor was adjusted simultaneously. Findings: Field case studies demonstrate that, compared to other algorithms, the improved Particle Swarm Optimization algorithm effectively reduces the operational costs of microgrid systems while exhibiting accelerated convergence speed and enhanced robustness. Value: This study provides a theoretical mathematical reference for the economic dispatch optimization of microgrids in renewable-integrated transportation systems. Full article
Show Figures

Figure 1

13 pages, 2826 KiB  
Article
Design and Application of p-AlGaN Short Period Superlattice
by Yang Liu, Changhao Chen, Xiaowei Zhou, Peixian Li, Bo Yang, Yongfeng Zhang and Junchun Bai
Micromachines 2025, 16(8), 877; https://doi.org/10.3390/mi16080877 - 29 Jul 2025
Viewed by 206
Abstract
AlGaN-based high-electron-mobility transistors are critical for next-generation power electronics and radio-frequency applications, yet achieving stable enhancement-mode operation with a high threshold voltage remains a key challenge. In this work, we designed p-AlGaN superlattices with different structures and performed energy band structure simulations using [...] Read more.
AlGaN-based high-electron-mobility transistors are critical for next-generation power electronics and radio-frequency applications, yet achieving stable enhancement-mode operation with a high threshold voltage remains a key challenge. In this work, we designed p-AlGaN superlattices with different structures and performed energy band structure simulations using the device simulation software Silvaco. The results demonstrate that thin barrier structures lead to reduced acceptor incorporation, thereby decreasing the number of ionized acceptors, while facilitating vertical hole transport. Superlattice samples with varying periodic thicknesses were grown via metal-organic chemical vapor deposition, and their crystalline quality and electrical properties were characterized. The findings reveal that although gradient-thickness barriers contribute to enhancing hole concentration, the presence of thick barrier layers restricts hole tunneling and induces stronger scattering, ultimately increasing resistivity. In addition, we simulated the structure of the enhancement-mode HEMT with p-AlGaN as the under-gate material. Analysis of its energy band structure and channel carrier concentration indicates that adopting p-AlGaN superlattices as the under-gate material facilitates achieving a higher threshold voltage in enhancement-mode HEMT devices, which is crucial for improving device reliability and reducing power loss in practical applications such as electric vehicles. Full article
(This article belongs to the Special Issue III–V Compound Semiconductors and Devices, 2nd Edition)
Show Figures

Figure 1

17 pages, 3191 KiB  
Article
Optimizing Graphene Ring Modulators: A Comparative Study of Straight, Bent, and Racetrack Geometries
by Pawan Kumar Dubey, Ashraful Islam Raju, Rasuole Lukose, Christian Wenger and Mindaugas Lukosius
Nanomaterials 2025, 15(15), 1158; https://doi.org/10.3390/nano15151158 - 27 Jul 2025
Viewed by 291
Abstract
Graphene-based micro-ring modulators are promising candidates for next-generation optical interconnects, offering compact footprints, broadband operation, and CMOS compatibility. However, most demonstrations to date have relied on conventional straight bus coupling geometries, which limit design flexibility and require extremely small coupling gaps to reach [...] Read more.
Graphene-based micro-ring modulators are promising candidates for next-generation optical interconnects, offering compact footprints, broadband operation, and CMOS compatibility. However, most demonstrations to date have relied on conventional straight bus coupling geometries, which limit design flexibility and require extremely small coupling gaps to reach critical coupling. This work presents a comprehensive comparative analysis of straight, bent, and racetrack bus geometries in graphene-on-silicon nitride (Si3N4) micro-ring modulators operating near 1.31 µm. Based on finite-difference time-domain simulation results, a proposed racetrack-based modulator structure demonstrates that extending the coupling region enables critical coupling at larger gaps—up to 300 nm—while preserving high modulation efficiency. With only 6–12% graphene coverage, this geometry achieves extinction ratios of up to 28 dB and supports electrical bandwidths approaching 90 GHz. Findings from this work highlight a new co-design framework for coupling geometry and graphene coverage, offering a pathway to high-speed and high-modulation-depth graphene photonic modulators suitable for scalable integration in next-generation photonic interconnects devices. Full article
(This article belongs to the Special Issue 2D Materials for High-Performance Optoelectronics)
Show Figures

Figure 1

Back to TopTop