Mitigating Intermittency in Offshore Wind Power Using Adaptive Nonlinear MPPT Control Techniques
Abstract
1. Introduction
2. System Modeling
2.1. Power and Torque Calculations
2.2. The Role of Tip-Speed Ratio in Determining Power Output
2.3. PMSG System
2.3.1. dq-Axis Representation
2.3.2. State-Space Representation
2.4. Normal-Form Conversion
2.4.1. Transformation Process
2.4.2. Zero Dynamics and Stability
3. Proposed Control Scheme for MPPT
3.1. Sliding Mode Control Design
3.1.1. Definition of Sliding Surface
3.1.2. Control Law Design
- maintains the system motion on the sliding surface once it has been reached;
- drives the system trajectories toward the sliding surface from arbitrary initial conditions.
3.1.3. Stability Analysis
3.1.4. Mitigating Chattering with Higher-Order Sliding Modes
Algorithm 1 Improved Integral based Real Twisting Algorithm (IBRTA) for MPPT |
|
3.2. Design of MPPT Control Strategy Based on IBRTA
3.2.1. Design of the IBRTA Control Law
3.2.2. Lyapunov Stability and Convergence Analysis
3.2.3. Control Gains
3.2.4. Inverter Model and Power Conversion
4. Simulation Results and Discussion
4.1. Stochastic Wind Speed Profile
4.2. Deterministic Offshore Wind Speed Profile
4.3. Discussion and Recommendations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Air density [kg/m3] | |
Blade radius [m] | |
Wind speed [m/s] | |
Tip-speed ratio (TSR) | |
Power coefficient | |
Torque coefficient | |
Angular velocity of high-speed shaft [rad/s] | |
Mechanical power output [W] | |
Mechanical torque [Nm] | |
, | d- and q-axis currents [A] |
Stator resistance [Ω] | |
, | d- and q-axis inductances [H] |
Magnetic flux linkage constant [Wb] | |
High-speed shaft moment of inertia [kg·m2] | |
Control input | |
Sliding surface | |
Tracking error | |
DC link voltage [V] | |
Input voltage from generator [V] | |
DC link current [A] | |
, | Filter resistance and inductance [Ω], [H] |
State-space model constants | |
Control algorithm gains |
References
- Abdullah, M.A.; Yatim, A.; Tan, C.W.; Saidur, R. A review of maximum power point tracking algorithms for wind energy systems. Renew. Sustain. Energy Rev. 2012, 16, 3220–3227. [Google Scholar] [CrossRef]
- Kazmi, S.M.R.; Goto, H.; Guo, H.J.; Ichinokura, O. Review and critical analysis of the research papers published till date on maximum power point tracking in wind energy conversion system. In Proceedings of the 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA, 12–16 September 2010; pp. 4075–4082. [Google Scholar]
- Mishra, S.; Shukla, S.; Verma, N. Comprehensive review on maximum power point tracking techniques: Wind energy. In Proceedings of the 2015 Communication, Control and Intelligent Systems (CCIS), Mathura, India, 7–8 November 2015; pp. 464–469. [Google Scholar]
- Guimarães, J.S.; de Almeida, B.R.; Tofoli, F.L.; de Souza Oliveira, D. Three-phase grid-connected WECS with mechanical power control. IEEE Trans. Sustain. Energy 2018, 9, 1508–1517. [Google Scholar] [CrossRef]
- Wang, Q.; Chang, L. An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems. IEEE Trans. Power Electron. 2004, 19, 1242–1249. [Google Scholar] [CrossRef]
- Khan, M.A.; Ullah, S.; Khan, L.; Khan, Q.; Khan, Z.A.; Zaman, H.; Ahmad, S. Observer based higher order sliding mode control scheme for PMSG-WECS. In Proceedings of the 2019 15th International Conference on Emerging Technologies (ICET), Peshawar, Pakistan, 2–3 December 2019; pp. 1–6. [Google Scholar]
- Dalala, Z.M.; Zahid, Z.U.; Lai, J.-S. New overall control strategy for small-scale WECS in MPPT and stall regions with mode transfer control. IEEE Trans. Energy Convers. 2013, 28, 1082–1092. [Google Scholar] [CrossRef]
- Wei, C.; Zhang, Z.; Qiao, W.; Qu, L. An adaptive network-based reinforcement learning method for MPPT control of PMSG wind energy conversion systems. IEEE Trans. Power Electron. 2016, 31, 7837–7848. [Google Scholar] [CrossRef]
- Barakati, S.M.; Kazerani, M.; Aplevich, J.D. Maximum power tracking control for a wind turbine system including a matrix converter. IEEE Trans. Energy Convers. 2009, 24, 705–713. [Google Scholar] [CrossRef]
- Simoes, M.; Bose, B.K.; Spiegel, R.J. Design and performance evaluation of a fuzzy-logic-based variable-speed wind generation system. IEEE Trans. Ind. Appl. 1997, 33, 956–965. [Google Scholar] [CrossRef]
- Pucci, M.; Cirrincione, M. Neural MPPT control of wind generators with induction machines without speed sensors. IEEE Trans. Ind. Electron. 2010, 58, 37–47. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, Q.; Khan, L.; Khan, I.; Alahmadi, A.A.; Ullah, N. Robust differentiator-based NeuroFuzzy sliding mode control strategies for PMSG-WECS. Energies 2022, 15, 7039. [Google Scholar] [CrossRef]
- Soufi, Y.; Kahla, S.; Bechouat, M. Feedback linearization control based particle swarm optimization for maximum power point tracking of wind turbine equipped by PMSG connected to the grid. Int. J. Hydrogen Energy 2016, 41, 20950–20955. [Google Scholar] [CrossRef]
- Lu, X.-Y.; Spurgeon, S.K. Output feedback stabilization of MIMO non-linear systems via dynamic sliding mode. Int. J. Robust Nonlinear Control 1999, 9, 275–305. [Google Scholar] [CrossRef]
- Ayub, M.W.; Ma, X. Nonlinear super-twisting based speed control of PMSG-ECS using higher order sliding mode control. In Proceedings of the 2021 26th International Conference on Automation and Computing (ICAC), Portsmouth, UK, 2–4 September 2021; pp. 1–6. [Google Scholar]
- Le, X.C.; Duong, M.Q.; Le, K.H. Review of the modern maximum power tracking algorithms for permanent magnet synchronous generator of wind power conversion systems. Energies 2022, 16, 402. [Google Scholar] [CrossRef]
- Ayub, M.W.; Ma, X. Integration of hybrid offshore wind and wave energy using PMSG and linear generators. In Proceedings of the 2023 28th International Conference on Automation and Computing (ICAC), Birmingham, UK, 30 August–1 September 2023; pp. 1–6. [Google Scholar]
- Khan, I.U.; Khan, L.; Khan, Q.; Ullah, S.; Khan, U.; Ahmad, S. Neuro-adaptive backstepping integral sliding mode control design for nonlinear wind energy conversion system. Turk. J. Electr. Eng. Comput. Sci. 2021, 29, 531–547. [Google Scholar] [CrossRef]
- Mat-Noh, M.; Arshad, M.R.; Mohd-Mokhtar, R.; Khan, Q. Back-stepping integral sliding mode control (BISMC) application in a nonlinear autonomous underwater glider. In Proceedings of the 2017 IEEE 7th International Conference on Underwater System Technology: Theory and Applications (USYS), Kuala Lumpur, Malaysia, 18–20 December 2017; pp. 1–6. [Google Scholar]
- Khan, Q.; Bhatti, A.I.; Iqbal, S.; Iqbal, M. Dynamic integral sliding mode for MIMO uncertain nonlinear systems. Int. J. Control Autom. Syst. 2011, 9, 151–160. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
26.147 | 26.147 | ||
0.94866 | 3.000 | ||
8.2264 | 1.3146 | ||
9.945 | 0.1332 | ||
0.00506 | 23.806 |
Control Method | Parameter | Value |
---|---|---|
SMC | Gain 1, | 103 |
Gain 2, | 2000 | |
Gain 3, | 0.01 | |
Gain 4, | 50 | |
IBRTA | Gain 1, | 0.1 |
Gain 2, | 100 | |
Gain 3, | 0.001 | |
Gain 4, | 2 | |
Gain 5, | 700 |
Component | Parameter | Value |
---|---|---|
Wind Turbine | Air Density, | 1.2500 kg/m3 |
Radius of Blades, | 2.5000 m | |
Optimal Tip-Speed Ratio, | 7.000 | |
Transmission Gear Ratio, | 7.000 | |
Maximum Power Coefficient, | 0.476 | |
Mean Wind Velocity, | 7.000 m/s | |
PMSG | Stator Resistance, | 3.300 |
Inductance of Load, | 0.00800 H | |
Flux Linkage Constant, | 438.200 mWb | |
Number of Pole Pairs, | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayub, M.W.; Khan, I.U.; Aggidis, G.; Ma, X. Mitigating Intermittency in Offshore Wind Power Using Adaptive Nonlinear MPPT Control Techniques. Energies 2025, 18, 4041. https://doi.org/10.3390/en18154041
Ayub MW, Khan IU, Aggidis G, Ma X. Mitigating Intermittency in Offshore Wind Power Using Adaptive Nonlinear MPPT Control Techniques. Energies. 2025; 18(15):4041. https://doi.org/10.3390/en18154041
Chicago/Turabian StyleAyub, Muhammad Waqas, Inam Ullah Khan, George Aggidis, and Xiandong Ma. 2025. "Mitigating Intermittency in Offshore Wind Power Using Adaptive Nonlinear MPPT Control Techniques" Energies 18, no. 15: 4041. https://doi.org/10.3390/en18154041
APA StyleAyub, M. W., Khan, I. U., Aggidis, G., & Ma, X. (2025). Mitigating Intermittency in Offshore Wind Power Using Adaptive Nonlinear MPPT Control Techniques. Energies, 18(15), 4041. https://doi.org/10.3390/en18154041