Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (390)

Search Parameters:
Keywords = deoxygenation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2191 KiB  
Article
Electrochemical Detection of Microplastics in Aqueous Media
by Mashrur Sakib Choyon, Sindre Søpstad, Martin Peacock, Hamed Salmani and Erik Johannessen
Sensors 2025, 25(14), 4278; https://doi.org/10.3390/s25144278 - 9 Jul 2025
Viewed by 292
Abstract
Microplastics in aqueous media can be detected through transient oxygen reduction from impacts with an electrified carbon-coated microwire. Each impact is recorded as a spike count in the time domain or as prominent peaks in the frequency domain. The spike count increased from [...] Read more.
Microplastics in aqueous media can be detected through transient oxygen reduction from impacts with an electrified carbon-coated microwire. Each impact is recorded as a spike count in the time domain or as prominent peaks in the frequency domain. The spike count increased from approx. 60 s−1 (pure solution) to 90 s−1 (with microplastics) and 230 s−1 (microplastics in deoxygenated solutions), whereas the frequency domain revealed the presence of spikes in the 7, 21, and 24 Hz regions. The spike count showed a co-variance with the concentration of microparticles, with a linear detection range from 0.02% (w/v) to 0.04% (w/v). The electrochemical sensor, characterized by its simple and cost-effective design, may provide a rapid and user-friendly method for the detection of microplastics. Full article
(This article belongs to the Special Issue Electrochemical Sensor Applications for Environment Monitoring)
Show Figures

Figure 1

26 pages, 5505 KiB  
Article
Activated Carbon-Supported Pt Catalysts Intended for the Hydroprocessing of Lipid Feedstocks: Effects of Support Surface Composition and Impregnation Protocol
by Ruana D. Brandão, Antônio M. de Freitas Júnior, José J. Linares, Paulo A. Z. Suarez, Romulo C. Dutra, Jeremie Garnier, Myller S. Tonhá, Daniel Ballesteros-Plata, Enrique Rodríguez-Castellón and Marcos J. Prauchner
Molecules 2025, 30(13), 2862; https://doi.org/10.3390/molecules30132862 - 4 Jul 2025
Viewed by 251
Abstract
This work concerns the preparation of Pt/AC catalysts (Pt supported on activated carbon) and their application to the synthesis of hydrocarbon biofuels through the HEFA (hydroprocessing of esters and fatty acids) route. The key motivation for the work was that catalysts based on [...] Read more.
This work concerns the preparation of Pt/AC catalysts (Pt supported on activated carbon) and their application to the synthesis of hydrocarbon biofuels through the HEFA (hydroprocessing of esters and fatty acids) route. The key motivation for the work was that catalysts based on sulfided Mo supported on γ-Al2O3, traditionally employed in the hydroprocessing of petroleum derivatives, (i) are unstable in the HDO (hydrodeoxygenation) of biomass-derived feedstocks and (ii) can contaminate the resulting biofuels with sulfur. In this context, a systematic study on the effects of preparation conditions on the properties of the resulting Pt/AC catalysts and their performance in HEFA was carried out for the first time. Efficient catalysts were obtained, which led to the complete deoxygenation of lauric acid and coconut oil, yielding products composed primarily of n-alkanes. The highest HDO activity was verified for the catalyst prepared using as a support an AC previously subjected to thermal treatment up to 800 °C in a H2 atmosphere (which removed most of the surface acidic oxygenated groups), depositing Pt over the surface of this support via wet impregnation using a H2PtCl6 solution acidified with HCl. The obtained results showed the great potential of the Pt/AC catalysts for the production of hydrocarbon biofuels through the HEFA route. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis—2nd Edition)
Show Figures

Graphical abstract

20 pages, 1189 KiB  
Article
Five-Day Supplementation with an Isotonic Beetroot Juice Drink Improves Sprint Interval Exercise and Muscle Oxygenation in Physically Active Individuals: A Randomized Crossover Trial
by Tak Hiong Wong, Delicia Shu Qin Ooi and Stephen F. Burns
Beverages 2025, 11(4), 97; https://doi.org/10.3390/beverages11040097 - 1 Jul 2025
Viewed by 432
Abstract
This study investigated whether the addition of nitrate (from beetroot) to an isotonic drink provided over 5 days would affect sprint interval exercise (SIE) performance and muscle oxygenation. Twenty (seven female) physically active participants (mean ± SD; age 28 ± 6 years, BMI [...] Read more.
This study investigated whether the addition of nitrate (from beetroot) to an isotonic drink provided over 5 days would affect sprint interval exercise (SIE) performance and muscle oxygenation. Twenty (seven female) physically active participants (mean ± SD; age 28 ± 6 years, BMI 22.6 ± 2.0 kg/m2) completed a double-blind, randomized, crossover study where they consumed 570 mL of either isotonic drink (ISO-C) or isotonic beetroot juice drink (ISO-BR) for 5 days before performing SIE (six 10 s maximal effort, interspersed with 50 s active recovery) on a cycle ergometer. Both drinks contained equal osmolality (290 mOsm/kg) but differed in the nutrients from beetroot extract, particularly the nitrate content (ISO-C: 0 mmol, ISO-BR: 12.9 mmol). ISO-BR significantly reduced the average time to peak power (ISO-C: 2.0 ± 0.18 s vs. ISO-BR: 1.6 ± 0.37 s; main effect of drink, p = 0.003, partial η2 = 0.04) and increased muscle deoxygenation (ΔHHb) (main effect of drink, p = 0.002, partial η2 = 0.021) compared to ISO-C. Five-day supplementation with ISO-BR improved the time to peak power but not the peak or mean power output for SIE compared with ISO-C. Full article
(This article belongs to the Section Quality, Nutrition, and Chemistry of Beverages)
Show Figures

Graphical abstract

24 pages, 1703 KiB  
Article
Impact of Nitrogen Sparging on Chemical and Sensory Characteristics of Verdejo and Sauvignon blanc Wines
by del Barrio-Galán Rubén, del Alamo-Sanza Maria, Martínez-Gil Ana María, González-Lázaro Miriam and Nevares Ignacio
Foods 2025, 14(13), 2272; https://doi.org/10.3390/foods14132272 - 26 Jun 2025
Viewed by 304
Abstract
Sparging is a common technique in wineries that consists of injecting a gas, normally before bottling, in order to displace the dissolved oxygen in the wine and prevent oxidation. The objective of this study was to examine the effect of sparging on wines [...] Read more.
Sparging is a common technique in wineries that consists of injecting a gas, normally before bottling, in order to displace the dissolved oxygen in the wine and prevent oxidation. The objective of this study was to examine the effect of sparging on wines with three different levels of dissolved oxygen and the evolution of the chemical parameters in a bottle. This study was carried out on two white wines, Verdejo and Sauvignon blanc. The results indicated that sparging did not immediately affect the chemical parameters in the white wines, but it did affect their evolution in bottles, with a greater effect found in the Sauvignon blanc wines than in the Verdejo wines. Sparging, which was carried out to remove oxygen from the wines, had a protective effect on their color during the time in the bottles, preventing a more rapid decrease in free SO2. The effect of sparging on the volatile compounds of the wines was more evident in the Sauvignon blanc wines, which showed a reduction in their content, possibly due to carry-over when the N2 was applied. With regard to the effect of sparging on the sensory profile of the wines, no immediate effect was found. However, the wines with a DO content of 6 and 8.4 mg/L to which sparging was applied evolved better in the bottles than the deoxygenation wines, showing more fruity notes and fewer oxidized and phenolic aromas (mainly in the Verdejo wines). Full article
Show Figures

Graphical abstract

20 pages, 3729 KiB  
Article
Au-Co Alloy Nanoparticles Supported on ZrO2 as an Efficient Photocatalyst for the Deoxygenation of Styrene Oxide
by Hashini T. Abeyrathna, Chamodi L. Fernando Thibiripalage, Huai Yong Zhu and Eric R. Waclawik
Nanomaterials 2025, 15(13), 957; https://doi.org/10.3390/nano15130957 - 20 Jun 2025
Viewed by 385
Abstract
Epoxide deoxygenation by photocatalysis was explored using Au-Co alloy nanoparticles supported on ZrO2 under visible light irradiation. The active metals were deposited on commercial monoclinic ZrO2 by chemical impregnation to achieve controlled mass ratios of gold and cobalt in the alloy [...] Read more.
Epoxide deoxygenation by photocatalysis was explored using Au-Co alloy nanoparticles supported on ZrO2 under visible light irradiation. The active metals were deposited on commercial monoclinic ZrO2 by chemical impregnation to achieve controlled mass ratios of gold and cobalt in the alloy nanoparticles. The characterisation of the alloy nanoparticles confirmed the technique produced an average particle size of 4.50 ± 0.29 nm. Catalysts containing pure 3% Au and different Au-Co metal ratios attached to the ZrO2 induced the deoxygenation of styrene oxide in an isopropanol solvent medium. Only 20 mg of pure Au/ZrO2 catalyst gave a 99% yield of styrene at an 80 °C temperature within 16 h under visible light irradiation (400–800 nm). Au-Co/ZrO2 catalysts generally induced conversion to styrene under the same conditions below 60 °C. Above 60 °C, a new reaction pathway was observed to favour a different product over Au-Co/ZrO2, which was identified as styrene glycol. This study developed a new approach to the synthesis of styrene glycol, a molecule that has many useful applications in the chemical and polymer industries. Surface-enhanced Raman spectroscopic (SERS) studies and electron paramagnetic resonance spectroscopic (EPR) studies identified changes in the reaction mechanism and pathway upon increasing the cobalt molar ratio in the Au-Co alloy catalysts. Full article
Show Figures

Graphical abstract

10 pages, 714 KiB  
Article
Regional Cerebral Blood Flow Increase After Transcatheter Aortic Valve Replacement Is Related to Cardiac Output but Is Not Associated with Delirium: An Observational Cohort Study Using Transcranial Indocyanine Green Dye Dilution Technique
by Maximilian Oremek, Paul Nowotny, Sebastian Zimmer, Atsushi Sugiura, Leonie Weinhold, Juerg Froehlich, Martin Soehle, André Diedrich and Marcus Thudium
J. Clin. Med. 2025, 14(12), 4317; https://doi.org/10.3390/jcm14124317 - 17 Jun 2025
Viewed by 278
Abstract
Background: Despite the success of transcatheter aortic valve repair (TAVR) over the past years, its impact on global and cerebral hemodynamics remains largely unexplored. Changes in cerebral blood flow may be associated with delirium, which may occur in 26 to 29% of cases. [...] Read more.
Background: Despite the success of transcatheter aortic valve repair (TAVR) over the past years, its impact on global and cerebral hemodynamics remains largely unexplored. Changes in cerebral blood flow may be associated with delirium, which may occur in 26 to 29% of cases. We aimed to examine the relationships between global hemodynamic parameters and cerebral parameters in patients who underwent TAVR and their impact on postinterventional delirium. Methods: Patients scheduled for TAVR were enrolled after obtaining written informed consent. Patients received light sedation according to standard procedures. Cerebral blood flow (CBF) was measured with a noninvasive near-infrared spectroscopy-based method using intravenous indocyanine green injection. CBF measurements were taken at the beginning of the TAVR procedure and after the valve was in place. Patients were screened for delirium using CAM-ICU and NuDESC tests before and after intervention. Results: A total of 52 of 60 patients remained for analysis. Thirteen patients (25%) developed delirium. Mean arterial pressure (MAP) remained unchanged, while cardiac output increased after TAVR by 44%. CBF also increased after TAVR. No significant difference was observed in CBF changes between the groups with and without delirium. A linear mixed model analysis revealed a linear relationship between CO and CBF but not between MAP and CBF. In an exploratory analysis, decreased cerebral oxygenation and increased deoxygenated hemoglobin, as measured by NIRS after TAVR, were associated with delirium. Conclusions: The results confirm that CO is an independent factor in CBF, while CBF changes per se are not linked to delirium. However, we found a mismatch between CBF and regional cerebral parameters, which may reflect cerebral metabolism and its relation to the development of delirium. This remains to be confirmed by further studies. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

17 pages, 4291 KiB  
Article
The Research on Carbon Deoxygenation of Molten Steel and Its Application in the Converter Steelmaking Process
by Fang Gao and Yanping Bao
Metals 2025, 15(6), 648; https://doi.org/10.3390/met15060648 - 10 Jun 2025
Viewed by 809
Abstract
At the steelmaking temperature, carbon has a strong deoxidation ability. Under the vacuum condition, its deoxidation ability can be further improved, and it can become a stronger deoxidation element than aluminum. The product of carbon deoxygenation is CO, which floats up and detaches [...] Read more.
At the steelmaking temperature, carbon has a strong deoxidation ability. Under the vacuum condition, its deoxidation ability can be further improved, and it can become a stronger deoxidation element than aluminum. The product of carbon deoxygenation is CO, which floats up and detaches from the molten steel in the form of bubbles and does not produce oxide inclusions. Under normal pressure, replacing aluminum with carbon to complete partial deoxidation tasks can not only reduce the generation of inclusions and alleviate the pressure of removing inclusions, but also reduce the consumption of aluminum and save deoxidation costs. In this study, the carbon deoxidation process after the converter was investigated. Firstly, the timing of carbon addition was determined through thermodynamic calculations, and it was found that, in oxygen-enriched molten steel, the priority of the reaction of the deoxidation element was [Al] > [Si] > [C] > [Mn]. Through the carbon and oxygen balance calculation, it is known that the carbon deoxidation effect is greatly affected by the carbon content of the molten steel; for low-carbon steel, carbon can be used for pre-deoxygenation, whereas for medium-carbon and high-carbon steel, carbon can complete most of the deoxidation tasks. Finally, with 45 steel as the research object, the carbon deoxidation process was designed and tested in industry. The results showed that, compared with the aluminum deoxidation process, the number of inclusions in the billet casting of the carbon deoxidation process was reduced by 68.8%, and the carbon deoxidation process had fewer large-sized inclusions in the billet casting. In addition, the carbon deoxidation process uses carbon powder instead of the aluminum block for deoxidation during steel tapping from the converter. The deoxidant cost is reduced by CNY 15.47/ton of steel. From a comprehensive point of view, the application of carbon deoxidation after the converter can reduce aluminum consumption and improve the cleanliness of steel, which is an important way for enterprises to reduce costs and increase efficiency. Full article
(This article belongs to the Special Issue Advances in Continuous Casting and Refining of Steel)
Show Figures

Figure 1

23 pages, 9130 KiB  
Article
Individual Differences in the Neurocognitive Effect of Movement During Executive Functioning in Children with ADHD: Impact of Subtype, Severity, and Gender
by Beverly-Ann Hoy, Maya Feehely, Michelle Bi, Matthew Lam, Androu Abdalmalak and Barbara Fenesi
Brain Sci. 2025, 15(6), 623; https://doi.org/10.3390/brainsci15060623 - 9 Jun 2025
Viewed by 776
Abstract
Background/Objectives: Attention-Deficit Hyperactivity Disorder (ADHD) is an immensely heterogeneous developmental disorder, uniquely impacting each individual. Physical movement is a promising adjunct behavioral treatment that can promote executive functioning in children with ADHD. The current study used neuroimaging and behavioral techniques to investigate the [...] Read more.
Background/Objectives: Attention-Deficit Hyperactivity Disorder (ADHD) is an immensely heterogeneous developmental disorder, uniquely impacting each individual. Physical movement is a promising adjunct behavioral treatment that can promote executive functioning in children with ADHD. The current study used neuroimaging and behavioral techniques to investigate the impact of movement during executive functioning on dorsolateral prefrontal cortical (DLPFC) activity and inhibitory control in children with ADHD, with particular focus on key individual difference factors in ADHD, such as subtype, severity, and gender. Methods: Twenty-eight children with ADHD completed a Stroop task while remaining stationary (stationary condition) and while desk cycling (movement condition). Simultaneous functional near-infrared spectroscopy (fNIRS) recorded oxygenated and deoxygenated changes in hemoglobin within the left DLPFC. Participants were categorized into ADHD subtype (hyperactive/impulsive, inattention, combined), ADHD severity (low, moderate, high), and gender (male, female). Results: Those with the hyperactive and combined ADHD subtypes, those with high ADHD severity, and males with ADHD showed greater DLPFC activation when engaging in movement during executive functioning compared to remaining stationary. In contrast, those with the inattentive ADHD subtype, those with low-to-moderate ADHD severity, and females with ADHD showed greater DLPFC activation when remaining stationary during executive functioning compared to engaging in movement. Inhibitory control improved in the stationary condition for females who were predominantly inattentive. Conclusions: This work underscores the importance of considering individual difference factors in ADHD when designing physical activity interventions, as treatment efficacy may vary. Full article
(This article belongs to the Section Behavioral Neuroscience)
Show Figures

Figure 1

14 pages, 4604 KiB  
Article
Characterizing Neurocardiovascular Responses to an Active Stand Test in Older Women: A Pilot Study Using Functional Data Analysis
by Feng Xue and Roman Romero-Ortuno
Sensors 2025, 25(12), 3616; https://doi.org/10.3390/s25123616 - 9 Jun 2025
Viewed by 480
Abstract
This observational pilot study investigated neurocardiovascular responses to an active stand test using continuous physiological monitoring and functional data analysis (FDA) in older women. A sample of 25 community-dwelling female adults aged 59–78 years (mean age: 70.3 years) participated. Participants were dichotomized into [...] Read more.
This observational pilot study investigated neurocardiovascular responses to an active stand test using continuous physiological monitoring and functional data analysis (FDA) in older women. A sample of 25 community-dwelling female adults aged 59–78 years (mean age: 70.3 years) participated. Participants were dichotomized into comparison groups based on five factors: age (<70 vs. ≥70 years); the presence of initial orthostatic hypotension (IOH, yes/no); body mass index (BMI < 25 vs. ≥25 kg/m2); antihypertensive medication use (yes/no); and physical frailty status assessed by the Survey of Health, Ageing and Retirement in Europe—Frailty Instrument (SHARE-FI score < −0.5 vs. ≥−0.5). Each participant completed an active stand test during which six physiological signals were continuously recorded: systolic (sBP) and diastolic (dBP) blood pressure and heart rate (HR) via digital artery photoplethysmography and left frontal oxygenated hemoglobin (O2Hb), deoxygenated hemoglobin (HHb), and tissue saturation index (TSI) via near-infrared spectroscopy (NIRS). The signal analysis focused on a standardized 200 s window spanning 50 s before to 150 s after the stand, with all signals resampled and synchronized at 5 Hz. FDA was used to statistically compare the full time series between groups for each signal. Group-level differences revealed that younger participants (<70 years) exhibited significantly higher HR in multiple periods following the stand (~10 s, ~30 s, ~90 s, and ~140 s post-stand) compared to their older counterparts. Participants with IOH demonstrated significantly lower sBP at ~10 s, ~80 s, and ~130 s post-stand and lower dBP at ~10 s post-stand. Among participants classified as overweight/obese (BMI ≥ 25 kg/m2), significantly lower levels of HHb were observed at ~10 s, ~30–50 s, and ~60 s post-stand, while O2Hb levels were reduced at ~50 s, ~60 s, ~70–110 s, ~130 s, and ~140 s post-stand. No statistically significant group-level differences were observed based on antihypertensive medication use or frailty status. These findings demonstrate the utility of FDA in detecting subtle, time-dependent physiological variations during orthostatic challenge and underscore the value of continuous neurocardiovascular monitoring in assessing orthostatic tolerance in aging populations. Full article
(This article belongs to the Special Issue (Bio)sensors for Physiological Monitoring)
Show Figures

Figure 1

18 pages, 4069 KiB  
Article
Linking Neurocardiovascular Responses in the Active Stand Test to Adverse Outcomes: Insights from the Irish Longitudinal Study on Ageing (TILDA)
by Feng Xue and Roman Romero-Ortuno
Sensors 2025, 25(11), 3548; https://doi.org/10.3390/s25113548 - 4 Jun 2025
Viewed by 502
Abstract
Background: This study aimed to investigate the neurocardiovascular responses during an Active Stand (AS) test, utilizing both pre-processed and raw signals, to predict adverse health outcomes including orthostatic intolerance (OI) during the AS, and future falls and mortality. Methods: A total of 2794 [...] Read more.
Background: This study aimed to investigate the neurocardiovascular responses during an Active Stand (AS) test, utilizing both pre-processed and raw signals, to predict adverse health outcomes including orthostatic intolerance (OI) during the AS, and future falls and mortality. Methods: A total of 2794 participants from The Irish Longitudinal Study on Ageing (TILDA) were included. Continuous cardiovascular (heart rate (HR), systolic (sBP), and diastolic (dBP) blood pressure) and near infra-red spectroscopy-based neurovascular (tissue saturation index (TSI), oxygenated hemoglobin (O2Hb), and deoxygenated hemoglobin (HHb)) signals were analyzed using Statistical Parametric Mapping (SPM) to identify significant group differences across health outcomes. Results: The results demonstrated that raw (unprocessed) signals, particularly O2Hb and sBP/dBP, were more effective in capturing significant physiological differences associated with mortality and OI compared to pre-processed signals. Specifically, for OI, raw sBP and dBP captured significant changes across the entire test, whereas pre-processed signals showed intermittent significance. TSI captured OI only in its pre-processed form, at approximately 10 s post-stand. For mortality, raw O2Hb was effective throughout the AS test. No significant differences were observed in either pre-processed or raw signals related to falls, suggesting that fall risk may require a multifactorial assessment beyond neurocardiovascular responses. Conclusions: These findings highlight the potential utility of raw signal analysis in improving risk stratification for OI and mortality, with further studies needed to validate these findings and refine predictive models for clinical applications. This study underscores the importance of retaining raw data for certain physiological assessments and provides a foundation for future work in developing machine-learning models for early health outcome detection. Full article
(This article belongs to the Special Issue (Bio)sensors for Physiological Monitoring)
Show Figures

Figure 1

19 pages, 2096 KiB  
Article
Deoxygenation Trends and Their Multivariate Association with Self-Reported Fatigue in Post-COVID Syndrome
by Anja-Maria Ladek, Marianna Lucio, Andreas Weiß, Thomas Knauer, Helena Sarmiento, Miriam Ilgner, Marie Jakobi, Laura Barteczko, Marion Ganslmayer, Jürgen Rech, Antonio Bergua, Christian Y. Mardin and Bettina Hohberger
Biomedicines 2025, 13(6), 1371; https://doi.org/10.3390/biomedicines13061371 - 3 Jun 2025
Viewed by 2616
Abstract
Background/Objectives: A relevant subgroup of post-COVID-19 syndrome (PCS) patients suffers from post-exertional malaise (PEM) and cardiovascular or neurological symptoms, impairing daily functioning up to becoming even house- or bedbound. Recent data suggest that PCS summarizes different subgroups, one of them being characterized by [...] Read more.
Background/Objectives: A relevant subgroup of post-COVID-19 syndrome (PCS) patients suffers from post-exertional malaise (PEM) and cardiovascular or neurological symptoms, impairing daily functioning up to becoming even house- or bedbound. Recent data suggest that PCS summarizes different subgroups, one of them being characterized by an impaired microcirculation. Thus, the aim of the present study was to investigate local deoxygenation, measured with non-invasive near-infrared regional spectroscopy (NIRS), and its association with self-reported fatigue in patients with PCS compared to controls in light exercise. Methods: 150 participants (100 PCS patients and 50 controls) were recruited. PEM was assessed using FACIT, Chalder, and Bell scoring and Canadian Criteria. NIRS was used to measure local oxygenation while kneading a stress ball and during recovery. Results: PCS patients showed fatigue scores of 30 (Bell score), 20.6 (FACIT fatigue score), and 9.914 (Chalder fatigue score). Decreased deoxygenation peaks at the start of exercise were observed in patients with PCS, compared to controls (p = 0.0002). Multivariate analysis identified a subgroup, showing an association between strong fatigue and restricted oxygenation dynamics. Conclusions: NIRS could be a potential tool to assess deoxygenation deficits even in moderate to severely impaired PCS patients using light exercise protocols. Full article
Show Figures

Figure 1

21 pages, 2130 KiB  
Article
A Straightforward Approach Towards Phosphadecalones by Microwave-Assisted Diels–Alder Reaction
by Elżbieta Łastawiecka, Anna E. Kozioł and K. Michał Pietrusiewicz
Molecules 2025, 30(11), 2338; https://doi.org/10.3390/molecules30112338 - 27 May 2025
Viewed by 400
Abstract
A stereoselective and scalable strategy for the synthesis of phosphorus-containing bicyclic and tricyclic compounds from 1-phenylphosphin-2-en-4-one 1-oxide is presented. This activated dienophile, available in both racemic and enantiopure forms, undergoes smooth [4+2] cycloadditions with acyclic and cyclic dienes, affording products with excellent yields [...] Read more.
A stereoselective and scalable strategy for the synthesis of phosphorus-containing bicyclic and tricyclic compounds from 1-phenylphosphin-2-en-4-one 1-oxide is presented. This activated dienophile, available in both racemic and enantiopure forms, undergoes smooth [4+2] cycloadditions with acyclic and cyclic dienes, affording products with excellent yields and controlled stereochemistry. Notably, the cis/trans-fusion of the cycloadducts (phosphadecalones and phosphahexahydrochrysene) can be selectively controlled by fine-tuning the conditions of microwave-assisted cycloaddition reaction. The influence of temperature, time, and steric effects on cis/trans and endo/exo selectivity was examined in detail. The molecular structure, including the absolute configuration, of eight products has been determined by X-ray crystallography. These analyses further established the endo-selective nature of the cycloaddition, favoring the P=O face of the dienophile. Post-cycloaddition transformations of selected P-stereogenic phosphadecalone, such as isomerization, reduction and deoxygenation, demonstrate the synthetic versatility of the resulting products. Full article
Show Figures

Graphical abstract

19 pages, 1586 KiB  
Article
Michael Acceptor Compounds as Hemoglobin Oxygen Affinity Modulators for Reversing Sickling of Red Blood Cells
by Khadijah A. Mohammad, Asala H. Naghi, Mohini S. Ghatge, Benita Balogun, Mariana Macias, Salma Roland, Albert Opare, Osheiza Abdulmalik, Martin K. Safo, Abdelsattar M. Omar and Moustafa E. El-Araby
Pharmaceuticals 2025, 18(6), 783; https://doi.org/10.3390/ph18060783 - 24 May 2025
Viewed by 545
Abstract
Background/Objectives: Sickle cell disease (SCD) is caused by a β-globin gene mutation (βGlu6Val) that produces sickle hemoglobin (HbS). When deoxygenated, HbS polymerizes, leading to red blood cell (RBC) sickling; therefore, hemoglobin is a central therapeutic target for SCD. Current strategies include increasing [...] Read more.
Background/Objectives: Sickle cell disease (SCD) is caused by a β-globin gene mutation (βGlu6Val) that produces sickle hemoglobin (HbS). When deoxygenated, HbS polymerizes, leading to red blood cell (RBC) sickling; therefore, hemoglobin is a central therapeutic target for SCD. Current strategies include increasing the levels of oxygenated HbS (which cannot polymerize) and/or directly destabilizing the deoxygenated HbS polymer. This study aimed to design and synthesize next-generation Michael acceptor antisickling hemoglobin modifiers (MMA-206, MMA-207, MMA-208, and MMA-209) and evaluate their antisickling efficacy. Methods: Four Michael acceptor compounds (MMA-206 to MMA-209) were synthesized and characterized. Their pharmacologic activities and modes of action were assessed in vitro using disulfide exchange reaction with normal hemoglobin, sickling inhibition assays with sickle red blood cells, and hemoglobin oxygen equilibrium curve analysis with normal and sickle red blood cells. Results: MMA-206 exhibited the strongest antisickling activity, outperforming previously studied Michael acceptor antisickling agents. All four MMA analogues bound to hemoglobin at βCys93, destabilizing the low-oxygen-affinity T-state and thereby preventing deoxygenation-induced HbS polymerization and RBC sickling. In addition, they appeared to directly destabilize the HbS polymer, indicating a second mechanism of action. Furthermore, time-dependent oxygen equilibrium measurements confirmed that their pharmacologic effect was sustained over time in vitro. Conclusions: The new Michael acceptor compounds, particularly MMA-206, demonstrated potent antisickling effects via dual mechanisms and showed sustained activity. These findings highlight Michael acceptor compounds’ promise as hemoglobin oxygen-affinity modulators for the treatment of SCD. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

29 pages, 4066 KiB  
Review
Catalytic Deoxygenation of Lipids for Bio-Jet Fuel: Advances in Catalyst Design and Reaction Pathways
by Linyuan Zhou, Huiru Yang and Changwei Hu
Catalysts 2025, 15(6), 518; https://doi.org/10.3390/catal15060518 - 24 May 2025
Viewed by 1054
Abstract
To address global climate change and the energy crisis, there is an urgent need to meet human demands through utilizing renewable energy sources. The deoxygenation of lipids to produce liquid biofuels has emerged as a promising alternative, particularly for carbon emission reduction in [...] Read more.
To address global climate change and the energy crisis, there is an urgent need to meet human demands through utilizing renewable energy sources. The deoxygenation of lipids to produce liquid biofuels has emerged as a promising alternative, particularly for carbon emission reduction in the aviation industry. This review critically examines recent progress in catalyst development and reaction control strategies for lipid deoxygenation. Emphasis is focused on the design of different kinds of catalysts to meet the requirements, including noble metal catalysts, non-noble metal catalysts, and non-noble metal compound catalysts, with strategies such as morphology control, utilization of metal support interactions, and constructing synergistic effects between metal acid centers and metal oxygen vacancies. The reaction networks, mechanisms, and selectivity control strategies for lipid deoxygenation, cracking, isomerization, and aromatization are comprehensively discussed. Finally, we propose that it requires focusing on the precise regulation of multiple active sites to optimizing deoxygenation performance and reusability. It is essential to integrate in situ characterization to deepen the study of structure–active relationships and explore the reaction mechanisms within complex reaction systems. Full article
Show Figures

Graphical abstract

22 pages, 6961 KiB  
Article
Support Effects on Fe- or Cu-Promoted Ni Catalysts Used in the Catalytic Deoxygenation of Tristearin to Fuel-like Hydrocarbons
by Great C. Umenweke, Robert Pace, Thomas Récalt, Olivier Heintz, Gilles Caboche and Eduardo Santillan-Jimenez
Catalysts 2025, 15(5), 501; https://doi.org/10.3390/catal15050501 - 21 May 2025
Viewed by 460
Abstract
Previous studies have shown that fats, oils, and greases (FOG) can be deoxygenated to fuel-like hydrocarbons over inexpensive alumina-supported Ni catalysts promoted with Cu or Fe to afford excellent yields of renewable diesel (RD). In this study, supports other than alumina—namely, SiO2 [...] Read more.
Previous studies have shown that fats, oils, and greases (FOG) can be deoxygenated to fuel-like hydrocarbons over inexpensive alumina-supported Ni catalysts promoted with Cu or Fe to afford excellent yields of renewable diesel (RD). In this study, supports other than alumina—namely, SiO2-Al2O3, Ce0.8Pr0.2O2, and ZrO2—were investigated to develop catalysts showing improved RD yields and resistance to coke-induced deactivation relative to Al2O3-supported catalysts. Results showed that catalysts supported on Ce0.8Pr0.2O2 and ZrO2 outperformed SiO2-Al2O3-supported formulations, with 20%Ni-5%Fe/ZrO2 affording a quantitative yield of diesel-like hydrocarbons. Notably, the abundance of weak acid sites varied considerably across the different supports, and a moderate concentration of these sites corresponded with the best results. Additionally, temperature-programmed reduction measurements revealed that Ni reduction is greatly dependent on both the identity of the promoter and catalyst support, which can also be invoked to explain catalyst performance since metallic Ni is identified as the likely active site for the deoxygenation reaction. It was also observed that Ce0.8Pr0.2O2 provides high oxygen storage capacity and oxygen mobility/accessibility, which also improves catalyst activity. Full article
Show Figures

Graphical abstract

Back to TopTop