Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (292)

Search Parameters:
Keywords = dental reconstruction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1192 KiB  
Review
The Use of Non-Degradable Polymer (Polyetheretherketone) in Personalized Orthopedics—Review Article
by Gabriela Wielgus, Wojciech Kajzer and Anita Kajzer
Polymers 2025, 17(15), 2158; https://doi.org/10.3390/polym17152158 - 7 Aug 2025
Abstract
Polyetheretherketone (PEEK) is a semi-crystalline thermoplastic polymer which, due to its very high mechanical properties and high chemical resistance, has found application in the automotive, aerospace, chemical, food and medical (biomedical engineering) industries. Owing to the use of additive technologies, particularly the Fused [...] Read more.
Polyetheretherketone (PEEK) is a semi-crystalline thermoplastic polymer which, due to its very high mechanical properties and high chemical resistance, has found application in the automotive, aerospace, chemical, food and medical (biomedical engineering) industries. Owing to the use of additive technologies, particularly the Fused Filament Fabrication (FFF) method, this material is the most widely used plastic to produce skull reconstruction implants, parts of dental implants and orthopedic implants, including spinal, knee and hip implants. PEEK enables the creation of personalized implants, which not only have greater elasticity compared to implants made of metal alloys but also resemble the physical properties of the cortical layer of human bone in terms of their mechanical properties. Therefore, the aim of this article is to characterize polyether ether ketone as an alternative material used in the manufacturing of implants in orthopedics and dentistry. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 2544 KiB  
Article
Toward Quieter Dental Devices: Transient CFD Simulation of Airflow and Noise in Air Turbine Handpieces
by Tomomi Yamada, Kazunori Nozaki, Makoto Tsubokura, Mikako Hayashi and Chung-Gang Li
Appl. Sci. 2025, 15(15), 8187; https://doi.org/10.3390/app15158187 - 23 Jul 2025
Viewed by 190
Abstract
High-pitched noise generated by dental air turbine handpieces (ATHs) causes discomfort and anxiety, discouraging dental visits. Understanding the time-dependent noise generation mechanism associated with compressed airflow in ATHs is crucial for effective noise reduction. However, the direct investigation of airflow dynamics within ATHs [...] Read more.
High-pitched noise generated by dental air turbine handpieces (ATHs) causes discomfort and anxiety, discouraging dental visits. Understanding the time-dependent noise generation mechanism associated with compressed airflow in ATHs is crucial for effective noise reduction. However, the direct investigation of airflow dynamics within ATHs is challenging. The transient-state modeling of computational fluid dynamics (CFD) simulations remains unexplored owing to the complexities of high rotational speeds and air compressibility. This study develops a novel CFD framework for transient (time-dependent) modeling under high-speed rotational conditions. Simulations were performed using a three-dimensional model reconstructed from a commercial ATH. Simulations were conducted at 320,000 rpm using a novel framework that combines the immersed boundary and building cube methods. A fine 0.025 mm mesh spacing near the ATH, combined with supercomputing resources, enabled the simulation of hundreds of millions of cells. The simulation results were validated using experimental noise measurements. The CFD simulation revealed transient airflow and aeroacoustic behavior inside and around the ATH that closely matched the prominent frequency peaks from the experimental data. This study is the first to simulate the transient airflow of ATHs. The proposed CFD model can accurately predict aeroacoustics, contributing to the future development of quieter and more efficient dental devices. Full article
Show Figures

Figure 1

13 pages, 2438 KiB  
Article
The Integration of Micro-CT Imaging and Finite Element Simulations for Modelling Tooth-Inlay Systems for Mechanical Stress Analysis: A Preliminary Study
by Nikoleta Nikolova, Miryana Raykovska, Nikolay Petkov, Martin Tsvetkov, Ivan Georgiev, Eugeni Koytchev, Roumen Iankov, Mariana Dimova-Gabrovska and Angela Gusiyska
J. Funct. Biomater. 2025, 16(7), 267; https://doi.org/10.3390/jfb16070267 - 21 Jul 2025
Viewed by 570
Abstract
This study presents a methodology for developing and validating digital models of tooth-inlay systems, aiming to trace the complete workflow from clinical procedures to simulation by involving dental professionals—dentists for manual cavity preparation and dental technicians for restoration modelling—while integrating micro-computed tomography (micro-CT) [...] Read more.
This study presents a methodology for developing and validating digital models of tooth-inlay systems, aiming to trace the complete workflow from clinical procedures to simulation by involving dental professionals—dentists for manual cavity preparation and dental technicians for restoration modelling—while integrating micro-computed tomography (micro-CT) imaging with finite element analysis (FEA). The proposed workflow includes (1) the acquisition of high-resolution 3D micro-CT scans of a non-restored tooth, (2) image segmentation and reconstruction to create anatomically accurate digital twins and mesh generation, (3) the selection of proper resin and the 3D printing of four typodonts, (4) the manual preparation of cavities on the typodonts, (5) the acquisition of high-resolution 3D micro-CT scans of the typodonts, (6) mesh generation, digital inlay and onlay modelling and material property assignment, and (7) nonlinear FEA simulations under representative masticatory loading. The approach enables the visualisation of stress and deformation patterns, with preliminary results indicating stress concentrations at the tooth-restoration interface integrating different cavity alternatives and restorations on the same tooth. Quantitative outputs include von Mises stress, strain energy density, and displacement distribution. This study demonstrates the feasibility of using image-based, tooth-specific digital twins for biomechanical modelling in dentistry. The developed framework lays the groundwork for future investigations into the optimisation of restoration design and material selection in clinical applications. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

15 pages, 1695 KiB  
Article
Reconstructive Therapy in Patients with Peri-Implantitis in a University Dental Hospital: A Preliminary Retrospective Case Series Focusing on Complications
by Ahmad Alahmari, Xavier Costa-Berenguer, Rui Figueiredo, Eduard Valmaseda-Castellón, Alba Sánchez-Torres and Marta García-García
Appl. Sci. 2025, 15(14), 8040; https://doi.org/10.3390/app15148040 - 18 Jul 2025
Viewed by 453
Abstract
Peri-implantitis is an inflammatory disease-causing bone loss around dental implants, often requiring reconstructive surgical therapies to reduce probing depth and regenerate bone. However, such surgeries are frequently complicated by postoperative issues. This retrospective case series aimed to identify the main postoperative complications following [...] Read more.
Peri-implantitis is an inflammatory disease-causing bone loss around dental implants, often requiring reconstructive surgical therapies to reduce probing depth and regenerate bone. However, such surgeries are frequently complicated by postoperative issues. This retrospective case series aimed to identify the main postoperative complications following the reconstructive treatment of peri-implant bone defects in peri-implantitis patients. Data from 14 patients with 21 affected implants were analyzed, including demographics, oral hygiene, surgical techniques, and complications such as wound dehiscence, membrane exposure, and infections. Wound dehiscence was measured using Image J® software version 1.54. Descriptive and bivariate analyses were performed. The results showed that 11 implants (52.4%; 95% confidence interval (95%CI): 29% to 76%) in nine patients (57.1%; 95%CI = 27% to 87%) developed soft tissue dehiscence after one week, with membrane exposure observed in 4 implants. Dehiscence was significantly associated with mandibular implant location (p = 0.003), poor interproximal hygiene (p = 0.008), and membrane exposure (p = 0.034). No postoperative infections were recorded. In conclusion, more than half of peri-implantitis patients undergoing reconstructive surgery experience wound dehiscence, particularly in cases involving mandible, poor hygiene, and membrane exposure. This complication might compromise bone regeneration and reduce the treatment success rate. These results should be interpreted cautiously due to study design limitations (retrospective design, lack of a control group, and small sample size). Full article
(This article belongs to the Special Issue Recent Advances in Digital Dentistry and Oral Implantology)
Show Figures

Figure 1

19 pages, 1293 KiB  
Review
Customized 3D-Printed Scaffolds for Alveolar Ridge Augmentation: A Scoping Review of Workflows, Technology, and Materials
by Saeed A. Elrefaei, Lucrezia Parma-Benfenati, Rana Dabaja, Paolo Nava, Hom-Lay Wang and Muhammad H. A. Saleh
Medicina 2025, 61(7), 1269; https://doi.org/10.3390/medicina61071269 - 14 Jul 2025
Viewed by 346
Abstract
Background and Objectives: Bone regeneration (BR) is a cornerstone technique in reconstructive dental surgery, traditionally using either barrier membranes, titanium meshes, or perforated non-resorbable membranes to facilitate bone regeneration. Recent advancements in 3D technology, including CAD/CAM and additive manufacturing, have enabled the development [...] Read more.
Background and Objectives: Bone regeneration (BR) is a cornerstone technique in reconstructive dental surgery, traditionally using either barrier membranes, titanium meshes, or perforated non-resorbable membranes to facilitate bone regeneration. Recent advancements in 3D technology, including CAD/CAM and additive manufacturing, have enabled the development of customized scaffolds tailored to patient needs, potentially overcoming the limitations of conventional methods. Materials and Methods: A scoping review was conducted according to the PRISMA guidelines. Electronic searches were performed in MEDLINE (PubMed), the Cochrane Library, Scopus, and Web of Science up to January 2025 to identify studies on digital technologies applied to bone augmentation. Eligible studies encompassed randomized controlled trials, cohort studies, case series, and case reports, all published in English. Data regarding digital workflows, software, materials, printing techniques, and sterilization methods were extracted from 23 studies published between 2015 and 2024. Results: The review highlights a diverse range of digital workflows, beginning with CBCT-based DICOM to STL conversion using software such as Mimics and Btk-3D®. Customized titanium meshes and other meshes like Poly Ether-Ether Ketone (PEEK) meshes were produced via techniques including direct metal laser sintering (DMLS), selective laser melting (SLM), and five-axis milling. Although titanium remained the predominant material, studies reported variations in mesh design, thickness, and sterilization protocols. The findings underscore that digital customization enhances surgical precision and efficiency in BR, with several studies demonstrating improved bone gain and reduced operative time compared to conventional approaches. Conclusions: This scoping review confirms that 3D techniques represent a promising advancement in BR. Customized digital workflows provide superior accuracy and support for BR procedures, yet variability in protocols and limited high-quality trials underscore the need for further clinical research to standardize techniques and validate long-term outcomes. Full article
(This article belongs to the Section Dentistry and Oral Health)
Show Figures

Figure 1

21 pages, 5728 KiB  
Review
Clinical Application of rhBMP-2 and Three-Dimensinal Preformed Titanium Mesh with Allograft and Xenograft for Peri-Implant Horizontal and Vertical Bone Augmentation–A Narrative Review with Technical Report
by Yeong Wook Kim, Saverio Cosola, Young Sam Kim, Young Min Park, Ugo Covani, Aimone Fabbri and Giovanni Battista Menchini-Fabris
J. Clin. Med. 2025, 14(13), 4788; https://doi.org/10.3390/jcm14134788 - 7 Jul 2025
Viewed by 471
Abstract
The reconstruction of a severely resorbed alveolar bone is a significant challenge in dental implantology and maxillofacial surgery. Traditional bone grafting materials, including autogenous, allogeneic, xenogeneic, and alloplastic materials, have limitations such as donor site morbidity, limited availability, and prolonged maturation periods. To [...] Read more.
The reconstruction of a severely resorbed alveolar bone is a significant challenge in dental implantology and maxillofacial surgery. Traditional bone grafting materials, including autogenous, allogeneic, xenogeneic, and alloplastic materials, have limitations such as donor site morbidity, limited availability, and prolonged maturation periods. To address these challenges, recombinant human bone morphogenetic protein-2 (rhBMP-2) has emerged as a potent osteoinductive factor that facilitates bone regeneration without the need for additional donor site surgery. This study introduces a box technique which combines rhBMP-2 (CowellBMP®, Cowellmedi, Busan, Republic of Korea) with a 3D-preformed titanium mesh (3D-PFTM), utilizing a mixture of allografts and xenografts for horizontal and vertical alveolar ridge augmentation. The technique leverages the structural stability provided by the OssBuilder® (Osstem, Seoul, Republic of Korea), a preformed titanium mesh, that allows for simultaneous implant placement and vertical ridge augmentation. This technique not only reduces the treatment time compared to traditional methods but also minimizes post-operative discomfort by eliminating the need for autogenous bone harvesting. Clinical outcomes from this technique demonstrate successful bone regeneration within a shorter period than previously reported techniques, with excellent bone quality and implant stability being observed just four months after vertical augmentation. In conclusion, the so called BOXAM (BMP-2, Oss-builder, Xenograft, Allograft, Maintenance) technique presents a promising therapeutic strategy for alveolar bone reconstruction, particularly in cases of severe bone resorption. Further studies are needed to evaluate the long-term outcomes and potential limitations of this approach, especially in scenarios where the inferior alveolar nerve proximity poses challenges for fixture placement. Full article
Show Figures

Figure 1

11 pages, 1751 KiB  
Article
Opportunistic Diagnostics of Dental Implants in Routine Clinical Photon-Counting CT Acquisitions
by Maurice Ruetters, Holger Gehrig, Christian Mertens, Sinan Sen, Ti-Sun Kim, Heinz-Peter Schlemmer, Christian H. Ziener, Stefan Schoenberg, Matthias Froelich, Marc Kachelrieß and Stefan Sawall
J. Imaging 2025, 11(7), 215; https://doi.org/10.3390/jimaging11070215 - 30 Jun 2025
Viewed by 347
Abstract
Two-dimensional imaging is still commonly used in dentistry, but does not provide the three-dimensional information often required for the accurate assessment of dental structures. Photon-counting computed tomography (PCCT), a new three-dimensional modality mainly used in general medicine, has shown promising potential for dental [...] Read more.
Two-dimensional imaging is still commonly used in dentistry, but does not provide the three-dimensional information often required for the accurate assessment of dental structures. Photon-counting computed tomography (PCCT), a new three-dimensional modality mainly used in general medicine, has shown promising potential for dental applications. With growing digitalization and cross-disciplinary integration, using PCCT data from other medical fields is becoming increasingly relevant. Conventional CT scans, such as those of the cervical spine, have so far lacked the resolution to reliably evaluate dental structures or implants. This study evaluates the diagnostic utility of PCCT for visualizing peri-implant structures in routine clinical photon-counting CT acquisitions and assesses the influence of metal artifact reduction (MAR) algorithms on image quality. Ten dental implants were retrospectively included in this IRB-approved study. Standard PCCT scans were reconstructed at multiple keV levels with and without MAR. Quantitative image analysis was performed with respect to contrast and image noise. Qualitative evaluation of peri-implant tissues, implant shoulder, and apex was performed independently by two experienced dental professionals using a five-point Likert scale. Inter-reader agreement was measured using intraclass correlation coefficients (ICCs). PCCT enabled high-resolution imaging of all peri-implant regions with excellent inter-reader agreement (ICC > 0.75 for all structures). Non-MAR reconstructions consistently outperformed MAR reconstructions across all evaluated regions. MAR led to reduced clarity, particularly in immediate peri-implant areas, without significant benefit from energy level adjustments. All imaging protocols were deemed diagnostically acceptable. This is the first in vivo study demonstrating the feasibility of opportunistic dental diagnostics using PCCT in a clinical setting. While MAR reduces peripheral artifacts, it adversely affects image clarity near implants. PCCT offers excellent image quality for peri-implant assessments and enables incidental detection of dental pathologies without additional radiation exposure. PCCT opens new possibilities for opportunistic, three-dimensional dental diagnostics during non-dental CT scans, potentially enabling earlier detection of clinically significant pathologies. Full article
(This article belongs to the Section Medical Imaging)
Show Figures

Figure 1

12 pages, 3419 KiB  
Article
Graphene Oxide-Enriched Polymer: Impact on Dental Pulp Cell Viability and Differentiation
by Magdalena Vega-Quiroz, Agustin Reyes-Maciel, Christian Andrea Lopez-Ayuso, Carlos A. Jurado, Hector Guzman-Juarez, Carlos Andres Alvarez-Gayosso, Benjamin Aranda-Herrera, Abdulrahman Alshabib and Rene Garcia-Contreras
Polymers 2025, 17(13), 1768; https://doi.org/10.3390/polym17131768 - 26 Jun 2025
Viewed by 493
Abstract
Background: Reconstructing maxillofacial defects is important in dentistry, so efforts are being made to develop materials that promote cell migration and repair. Graphene oxide (GO) is used to enhance the biocompatibility of polymethylmethacrylate (PMMA) due to its nanostructure. Objective: to assess cytotoxicity, cell [...] Read more.
Background: Reconstructing maxillofacial defects is important in dentistry, so efforts are being made to develop materials that promote cell migration and repair. Graphene oxide (GO) is used to enhance the biocompatibility of polymethylmethacrylate (PMMA) due to its nanostructure. Objective: to assess cytotoxicity, cell proliferation, and differentiation of human dental pulp stem cells (hDPSC) in response to a conventional PMMA (PMMA) and polymer enriched with GO (PMMA+GO). Methods: Experiments were carried out with primary hDPSC subcultures. The PMMA and PMMA+GO were tested in direct and indirect contact. Cytotoxicity (1 day) and proliferation (3, 7, and 14 days) were evaluated with an MTT bioassay. The osteogenic, adipogenic, and chondrogenic aspects were determinate with alizarin red, oil red, and safranine. Mean values, standard deviation, and percentages were calculated; data were analyzed with Shapiro–Wilks normality and Student’s t-test. Results: The cell viability of PMMA and PMMA+GO in direct contact correspond to 90.8 ± 6.2, 149.6 ± 14.5 (1 day); 99.9 ± 7.0, 95.7 ± 6.1 (3 days); 120.2 ± 14.6, 172.9 ± 16.2 (7 days); and 102.9 ± 17.3, 95.4 ± 22.8 (14 days). For indirect contact, 77.2 ± 8.4, 99 ± 21.4 (1 day); 64.8 ± 21.6, 67.0 ± 9.6 (3 days); 91.4 ± 16.5, 142 ± 18.7 (7 days); and 63 ± 15.8, 79.1 ± 3.1 (14 days). PMMA+GO samples showed enhanced adipogenic, chondrogenic, and osteogenic aspects. Conclusions: The integration of GO into PMMA biopolymers stimulates cell proliferation and differentiation, holding great promise for future applications in the field of biomedicine. Full article
(This article belongs to the Special Issue Challenges and Opportunities of Polymer Materials in Dentistry)
Show Figures

Figure 1

19 pages, 12744 KiB  
Article
Structure-Aware 3D Tooth Modeling via Prompt-Guided Segmentation and Multi-View Projection
by Chentao Wang, Yuchen Cai, Ran Fan and Fuchang Liu
Processes 2025, 13(7), 1968; https://doi.org/10.3390/pr13071968 - 21 Jun 2025
Viewed by 438
Abstract
Precise and modular reconstruction of 3D tooth structures is crucial for creating interpretable, adaptable models for digital dental applications. To address the limitations of conventional segmentation approaches under conditions such as missing teeth, misalignment, or incomplete anatomical structures, we propose a process-oriented reconstruction [...] Read more.
Precise and modular reconstruction of 3D tooth structures is crucial for creating interpretable, adaptable models for digital dental applications. To address the limitations of conventional segmentation approaches under conditions such as missing teeth, misalignment, or incomplete anatomical structures, we propose a process-oriented reconstruction pipeline composed of discrete yet integrated modules. The pipeline begins by decomposing 3D dental meshes into a series of 2D projections, allowing multi-view capture of morphological features. A fine-tuned Segment Anything Model (SAM), enhanced with task-specific bounding box prompts, performs segmentation on each view. T-Rex2, a general object detection module, enables automated prompt generation for high-throughput processing. Segmented 2D components are subsequently reassembled and mapped back onto the original 3D mesh to produce complete and anatomically faithful tooth models. This modular approach enables clear separation of tasks—view projection, segmentation, and reconstruction—enhancing flexibility and robustness. Evaluations on the MICCAI 3DTeethSeg’22 dataset show comparable or superior performance to existing methods, particularly in challenging clinical scenarios. Our method establishes a scalable, interpretable framework for 3D dental modeling, supporting downstream applications in simulation, treatment planning, and morphological analysis. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

19 pages, 989 KiB  
Systematic Review
Enhancing Image Quality in Dental-Maxillofacial CBCT: The Impact of Iterative Reconstruction and AI on Noise Reduction—A Systematic Review
by Róża Wajer, Pawel Dabrowski-Tumanski, Adrian Wajer, Natalia Kazimierczak, Zbigniew Serafin and Wojciech Kazimierczak
J. Clin. Med. 2025, 14(12), 4214; https://doi.org/10.3390/jcm14124214 - 13 Jun 2025
Viewed by 731
Abstract
Background: This systematic review evaluates articles investigating the use of iterative reconstruction (IR) algorithms and artificial intelligence (AI)-based noise reduction techniques to improve the quality of oral CBCT images. Materials and Methods: A detailed search was performed across PubMed, Scopus, Web of Science, [...] Read more.
Background: This systematic review evaluates articles investigating the use of iterative reconstruction (IR) algorithms and artificial intelligence (AI)-based noise reduction techniques to improve the quality of oral CBCT images. Materials and Methods: A detailed search was performed across PubMed, Scopus, Web of Science, ScienceDirect, and Embase databases. The inclusion criteria were prospective or retrospective studies with IR and AI for CBCT images, studies in which the image quality was statistically assessed, studies on humans, and studies published in peer-reviewed journals in English. Quality assessment was performed independently by two authors, and the conflicts were resolved by the third expert. For bias assessment, the Quality Assessment of Diagnostic Accuracy Studies (QUADAS)-2 tool was used for bias assessment. Material: A total of eleven studies were included, analyzing a range of IR and AI methods designed to reduce noise and artifacts in CBCT images. Results: A statistically significant improvement in CBCT image quality parameters was achieved by the algorithms used in each of the articles we reviewed. The most commonly used image quality measures were peak signal-to-noise ratio (PSNR) and contrast-to-noise ratio (CNR). The most significant increase in PSNR was demonstrated by Ylisiurua et al. and Vestergaard et al., who reported an increase in this parameter of more than 30% for both deep learning (DL) techniques used. Another subcategory used to improve the quality of CBCT images is the reconstruction of synthetic computed tomography (sCT) images using AI. The use of sCT allowed an increase in PSNR ranging from 17% to 30%. For the more traditional methods, FBP and iterative reconstructions, there was an improvement in the PSNR parameter but not as high, ranging from 3% to 13%. Among the research papers evaluating the CNR parameter, an improvement of 17% to 29% was achieved. Conclusions: The use of AI and IR can significantly improve the quality of oral CBCT images by reducing image noise. Full article
Show Figures

Figure 1

20 pages, 1920 KiB  
Review
Adrenomedullin in Tumorigenesis and Cancer Progression
by Hanyi Li, Weijia Yang, Shiqi Wang, Zhihe Zhao, Wangyang Wang, Mingxuan Shi and Yi Li
Int. J. Mol. Sci. 2025, 26(12), 5552; https://doi.org/10.3390/ijms26125552 - 10 Jun 2025
Viewed by 614
Abstract
The pathogenesis of cancer is intricately associated with a multitude of factors, and its precise mechanisms continue to be a central focus of rigorous scientific inquiry. Adrenomedullin (ADM), initially characterized as a potent vasodilator, has subsequently been recognized for its diverse biological functions, [...] Read more.
The pathogenesis of cancer is intricately associated with a multitude of factors, and its precise mechanisms continue to be a central focus of rigorous scientific inquiry. Adrenomedullin (ADM), initially characterized as a potent vasodilator, has subsequently been recognized for its diverse biological functions, including roles in angiogenesis, osteogenesis, and immune modulation. Recent studies have shown that ADM, secreted by tumor cells, also plays an important role in regulating immune escape and angiogenesis in the tumor microenvironment, promoting tumor cell proliferation, resisting apoptosis, adapting to anoxic environments, and participating in the process of chemotherapy resistance. Consequently, ADM is implicated in the pathophysiology of various cancers. This review summarizes the essential functions and potential mechanisms of ADM in the occurrence and progression in cancer, and presents the associated therapeutic challenges. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

15 pages, 10258 KiB  
Case Report
Comprehensive Management of Odontogenic Myxofibroma in the Mandible: A Four-Year Follow-Up Case Report with a Review of Differential Diagnosis and Treatment Approaches
by Joanna Wójcik, Liliia Yefanova, Kacper Nijakowski, Katarzyna Bednarek-Rajewska, Krzysztof Osmola and Maciej Okła
Oral 2025, 5(2), 39; https://doi.org/10.3390/oral5020039 - 3 Jun 2025
Viewed by 588
Abstract
Odontogenic myxofibroma (OMF) is a rare, benign, and slow-growing tumour arising from odontogenic ectomesenchyme. Despite its low prevalence, accounting for approximately 0.5% to 17.7% of all odontogenic tumours worldwide and 3.1% in specific regional studies, it poses significant challenges due to its potential [...] Read more.
Odontogenic myxofibroma (OMF) is a rare, benign, and slow-growing tumour arising from odontogenic ectomesenchyme. Despite its low prevalence, accounting for approximately 0.5% to 17.7% of all odontogenic tumours worldwide and 3.1% in specific regional studies, it poses significant challenges due to its potential for local recurrence if inadequately excised. This case report presents the clinical course, surgical management, and follow-up of a 35-year-old female patient diagnosed with OMF in the mandibular body region. The patient presented with an osteolytic lesion between the first and second mandibular molars, as confirmed through CT imaging, with dimensions of 31 × 22 × 24 mm. Histopathological examination following excisional biopsy under general anaesthesia confirmed the diagnosis of OMF. The surgical procedure involved mandibular segment resection and reconstruction using an iliac crest bone graft stabilised with plates. Subsequent implantation procedures in 2021 restored dental function, and a four-year follow-up demonstrated excellent outcomes, with no signs of recurrence, periimplantitis, or bone graft compromise. This case highlights the importance of comprehensive imaging, histopathological confirmation, and long-term monitoring in managing odontogenic myxofibroma. Early detection and appropriate surgical intervention significantly improve patient outcomes and quality of life. Full article
Show Figures

Figure 1

15 pages, 1994 KiB  
Article
A Histologic Study on the Use of Tooth as a Graft Material in Oral Surgery: Analysis of 187 Samples
by Elio Minetti, Silvio Taschieri and Stefano Corbella
Materials 2025, 18(11), 2518; https://doi.org/10.3390/ma18112518 - 27 May 2025
Viewed by 389
Abstract
Background: To reconstruct and maintain hard tissues over time, it is necessary to follow effective protocols and use appropriate materials. The selection of the graft material and its properties can also affect the final outcomes. For this purpose, numerous graft materials have [...] Read more.
Background: To reconstruct and maintain hard tissues over time, it is necessary to follow effective protocols and use appropriate materials. The selection of the graft material and its properties can also affect the final outcomes. For this purpose, numerous graft materials have been suggested. Among the valuable alternatives to these biomaterials, interest in using teeth as graft material has grown in recent years. Aim: The aim of the study was to investigate the histomorphometric outcomes of using tooth-derived materials when used as a bone substitute. Methods: We evaluated the histological results of autologous demineralized tooth graft material prepared using a Tooth Transformer device. A total of 187 histological samples from 186 subjects (52% male and 48% female, with an average age of 56.30 ± 12.97 years) were analyzed. The analysis focused on the total bone volume (BV%), residual tooth material (residual graft, TT%), and vital bone (VB%). The differences between the presence and absence of the resorbable membrane were also analyzed. Results: The amount of VB was 36.28 ± 19.09%, the residual graft TT was 9.6 ± 10.76%, and 46.96 ± 13.85% was the total bone volume (BV). The presence of membrane increased the amount of BV% and reduced the time to produce bone. Conclusions: The procedure using demineralized autologous tooth-derived biomaterial may be a predictable method for producing new vital bone capable of supporting dental implant rehabilitation and the use of membrane allow better results. Full article
(This article belongs to the Special Issue Dental Materials in Modern Implant Dentistry)
Show Figures

Graphical abstract

17 pages, 784 KiB  
Systematic Review
Mesenchymal Stem Cells in Oral and Maxillofacial Surgery: A Systematic Review of Clinical Applications and Regenerative Outcomes
by Gianna Dipalma, Grazia Marinelli, Irene Palumbo, Mariafrancesca Guglielmo, Lilla Riccaldo, Roberta Morolla, Francesco Inchingolo, Andrea Palermo, Alessio Danilo Inchingolo and Angelo Michele Inchingolo
J. Clin. Med. 2025, 14(11), 3623; https://doi.org/10.3390/jcm14113623 - 22 May 2025
Viewed by 819
Abstract
Aim: This systematic review aims to evaluate the use of mesenchymal stem cells, particularly those derived from bone marrow, adipose tissue, and dental pulp in maxillofacial and oral surgery, focusing on their regenerative potential, clinical applications, and integration with biomaterials. Introduction: [...] Read more.
Aim: This systematic review aims to evaluate the use of mesenchymal stem cells, particularly those derived from bone marrow, adipose tissue, and dental pulp in maxillofacial and oral surgery, focusing on their regenerative potential, clinical applications, and integration with biomaterials. Introduction: Mesenchymal stem cells are multipotent stem cells known for their immunomodulatory and regenerative abilities. Their low immunogenicity and differentiation capacity make them ideal for treating craniofacial defects and enhancing soft tissue repair. Materials and Methods: The review followed PRISMA guidelines and was registered in PROSPERO. The literature was searched across PubMed, Scopus, and Web of Science from 2009 to 2024. Twelve studies met the inclusion criteria and were analyzed for clinical efficacy and methodological quality. Results: Clinical trials demonstrated the safety and regenerative benefits of mesenchymal stem cell in bone and soft tissue reconstruction. Adipose-derived stem cell and dental pulp stem cell showed favorable outcomes in angiogenesis and healing, while bone marrow’s cell proved effective in bone regeneration, particularly when combined with scaffolds. Discussion and Conclusions: Although results are promising, limitations remain in consistency and long-term outcomes. Optimizing scaffold integration, preservation methods, and delivery techniques is crucial. Mesenchymal stem cell-based therapies represent a powerful, minimally invasive alternative to traditional grafting in oral and maxillofacial surgery. Full article
Show Figures

Figure 1

17 pages, 8827 KiB  
Article
Novel Resolvin D1-Loaded Biologics as an Advanced Approach for Inflammation Control and Tissue Regeneration: Preparation and Characterization
by Zhe Xing, Jingwen Liang, Yang Sun, Jing Dai, Jiazheng Cai, Masahito Fujio, Yiwen Xu, Xiaoli An and Ying Xue
Pharmaceutics 2025, 17(5), 643; https://doi.org/10.3390/pharmaceutics17050643 - 13 May 2025
Viewed by 432
Abstract
Background/Objectives: Constant inflammation can be a detrimental response in bone regeneration. To regulate of the inflammatory response and synchronically promote rapid tissue regeneration is a vital clinical challenge. The urinary bladder matrix (UBM) and small intestinal submucosa (SIS) composite are commonly used extracellular [...] Read more.
Background/Objectives: Constant inflammation can be a detrimental response in bone regeneration. To regulate of the inflammatory response and synchronically promote rapid tissue regeneration is a vital clinical challenge. The urinary bladder matrix (UBM) and small intestinal submucosa (SIS) composite are commonly used extracellular matrix (ECM) materials. We designed a novel drug-loaded membrane by integrating the biological matrix (BM) composed of UBM and SIS composites with Resolvin D1 (RvD1), an endogenous pro-resolving lipid mediator, using the lyophilization process. This membrane is referred to as BRL, an acronym for BM-RvD1-Lyophilization. Methods: In this study, the physicochemical properties of the membranes were characterized. Fluorescence staining and the CCK8 assay kit were utilized to assess biocompatibility. To evaluate the inflammatory resolution properties and osteogenic ability of osteoblasts, real-time quantitative PCR and ELISA were conducted. Results: BRL exhibited a more pronounced three-dimensional pore structure, demonstrating excellent physicochemical properties and enabling the slow release of RvD1. This approach improved the viability of MG63 osteoblast-like cells, reduced LPS-induced inflammation, and upregulated osteogenesis-related genes significantly. Conclusions: By integrating inflammation control capabilities into tissue regeneration materials, BRL effectively regulates the tissue regeneration microenvironment, thereby enhancing regeneration efficiency and positioning itself as an exceptional candidate for future tissue regeneration membranes. Full article
(This article belongs to the Section Biologics and Biosimilars)
Show Figures

Figure 1

Back to TopTop