Structure-Aware 3D Tooth Modeling via Prompt-Guided Segmentation and Multi-View Projection
Abstract
1. Introduction
- We propose a prompt-based 3D tooth segmentation method that robustly adapts to both normal and malformed teeth, achieving accurate segmentation with minimal fine-tuning of the pre-trained SAM. We fully leverage the zero-shot capabilities of visual-prompted object detection to optimize the efficiency of prompt interactions.
- We construct a tooth segmentation images dataset (2D-TeethSeg) for SAM fine-tuning. Through a virtual camera, 131,400 images and ground truth masks with a resolution of are generated from the MICCAI 2022 Challenge publicly available dataset 3DTeethSeg22. Moreover, we will release it as a publicly available dataset.
- We present the results of multiple state-of-the-art tooth segmentation methods on the proposed dataset, providing a comprehensive comparison and analysis, particularly focusing on cases with missing teeth, misaligned teeth, and incomplete upper and lower jaws.
2. Related Work
2.1. Traditional and Deep Learning-Based Tooth Segmentation Methods
2.2. Large Model-Based Medical Image Segmentation Methods
3. Method
3.1. 3D-to-2D Prompt-Based Tooth Segmentation
3.2. Fine-Tuning Strategy for Pre-Trained Models
4. Experiment
4.1. Dataset
4.2. Experimental Settings and Evaluation Metrics
4.3. Results and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jana, A.; Maiti, A.; Metaxas, D.N. A Critical Analysis of the Limitation of Deep Learning based 3D Dental Mesh Segmentation Methods in Segmenting Partial Scans. In Proceedings of the 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, Australia, 24–27 July 2023; pp. 1–7. [Google Scholar]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.Y.; et al. Segment Anything. In Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2–3 October 2023; pp. 3992–4003. [Google Scholar]
- Kondo, T.; Ong, S.H.; Foong, K.W.C. Tooth segmentation of dental study models using range images. IEEE Trans. Med. Imaging 2004, 23, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Abaza, A.A.; Ross, A.; West, H.A. Automatic Tooth Segmentation Using Active Contour without Edges. In Proceedings of the 2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference, Baltimore, MD, USA, 19–21 September 2006; pp. 1–6. [Google Scholar]
- Nomir, O.; Abdel-Mottaleb, M. A system for human identification from X-ray dental radiographs. Pattern Recognit. 2005, 38, 1295–1305. [Google Scholar] [CrossRef]
- Said, E.; Nassar, D.; Fahmy, G.; Ammar, H. Teeth segmentation in digitized dental X-ray films using mathematical morphology. IEEE Trans. Inf. Forensics Secur. 2006, 1, 178–189. [Google Scholar] [CrossRef]
- Xu, X.; Liu, C.; Zheng, Y. 3D Tooth Segmentation and Labeling Using Deep Convolutional Neural Networks. IEEE Trans. Vis. Comput. Graph. 2019, 25, 2336–2348. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Dai, N.; Zhang, B.; Yuan, F.; Yu, Q.; Cheng, X. Automatic Classification and Segmentation of Teeth on 3D Dental Model Using Hierarchical Deep Learning Networks. IEEE Access 2019, 7, 84817–84828. [Google Scholar] [CrossRef]
- Cui, Z.; Li, C.; Wang, W. ToothNet: Automatic Tooth Instance Segmentation and Identification From Cone Beam CT Images. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 6361–6370. [Google Scholar]
- Zhang, L.; Zhao, Y.; Meng, D.; Cui, Z.; Gao, C.; Gao, X.; Lian, C.; Shen, D. TSGCNet: Discriminative Geometric Feature Learning with Two-Stream Graph Convolutional Network for 3D Dental Model Segmentation. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 19–25 June 2021; pp. 6695–6704. [Google Scholar]
- Wu, T.H.; Lian, C.; Lee, S.; Pastewait, M.F.; Piers, C.; Liu, J.; Wang, F.; Wang, L.; Chiu, C.Y.; Wang, W.; et al. Two-Stage Mesh Deep Learning for Automated Tooth Segmentation and Landmark Localization on 3D Intraoral Scans. IEEE Trans. Med Imaging 2021, 41, 3158–3166. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Li, K.; Tan, K.; Feng, Y.; Zhou, J.T.; Hao, J.; Liu, Z. TFormer: 3D tooth segmentation in mesh scans with geometry guided transformer. arXiv 2022, arXiv:2210.16627. [Google Scholar]
- Liu, Z.; He, X.; Wang, H.; Xiong, H.; Zhang, Y.; Wang, G.; Hao, J.; Feng, Y.; Zhu, F.; Hu, H. Hierarchical Self-Supervised Learning for 3D Tooth Segmentation in Intra-Oral Mesh Scans. IEEE Trans. Med. Imaging 2022, 42, 467–480. [Google Scholar] [CrossRef] [PubMed]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16×16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- He, K.; Chen, X.; Xie, S.; Li, Y.; Doll’ar, P.; Girshick, R.B. Masked Autoencoders Are Scalable Vision Learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognitionm, Nashville, TN, USA, 20–25 June 2021; pp. 15979–15988. [Google Scholar]
- Tancik, M.; Srinivasan, P.; Mildenhall, B.; Fridovich-Keil, S.; Raghavan, N.; Singhal, U.; Ramamoorthi, R.; Barron, J.; Ng, R. Fourier features let networks learn high frequency functions in low dimensional domains. Adv. Neural Inf. Process. Syst. 2020, 33, 7537–7547. [Google Scholar]
- Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; et al. Learning transferable visual models from natural language supervision. In Proceedings of the International Conference on Machine Learning, Vienna, Austria, 18–24 July 2021; pp. 8748–8763. [Google Scholar]
- Zhang, R.; Jiang, Z.; Guo, Z.; Yan, S.; Pan, J.; Ma, X.; Dong, H.; Gao, P.; Li, H. Personalize segment anything model with one shot. arXiv 2023, arXiv:2305.03048. [Google Scholar]
- Zhao, X.; Ding, W.; An, Y.; Du, Y.; Yu, T.; Li, M.; Tang, M.; Wang, J. Fast segment anything. arXiv 2023, arXiv:2306.12156. [Google Scholar]
- Zhang, C.; Han, D.; Qiao, Y.; Kim, J.U.; Bae, S.H.; Lee, S.; Hong, C.S. Faster segment anything: Towards lightweight sam for mobile applications. arXiv 2023, arXiv:2306.14289. [Google Scholar]
- Ma, J.; He, Y.; Li, F.; Han, L.J.; You, C.; Wang, B. Segment anything in medical images. Nat. Commun. 2024, 15, 654. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, Z.; Hong, M.; Ji, W.; Fu, H.; Xu, Y.; Xu, M.; Jin, Y. Medical sam adapter: Adapting segment anything model for medical image segmentation. Med. Image Anal. 2025, 102, 103547. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Liu, D. Customized segment anything model for medical image segmentation. arXiv 2023, arXiv:2304.13785. [Google Scholar]
- Liu, Y.; Li, W.; Wang, C.; Chen, H.; Yuan, Y. When 3D partial points meets sam: Tooth point cloud segmentation with sparse labels. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Marrakesh, Morocco, 6–10 October 2024; pp. 778–788. [Google Scholar]
- Ben-Hamadou, A.; Smaoui, O.; Rekik, A.; Pujades, S.; Boyer, E.; Lim, H.; Kim, M.; Lee, M.; Chung, M.; Shin, Y.G.; et al. 3DTeethSeg’22: 3D teeth scan segmentation and labeling challenge. arXiv 2023, arXiv:2305.18277. [Google Scholar]
Image | Resolution | View | 3D Model | Size (GB) |
---|---|---|---|---|
87,600 | 73 | 1200 | 184 | |
43,800 | 73 | 600 | 92 |
Model | Dice Loss | BCE Loss |
---|---|---|
SAM | 0.0675 | 0.00307 |
MedSAM | 0.0247 | 0.00067 |
Name | Type | Params | Trainable |
---|---|---|---|
image encoder | ViT-based | 89.7 M | NO |
mask decoder | Transformer-based | 4.1 M | YES |
prompt encoder | BBox-based | 6.2 K | NO |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Cai, Y.; Fan, R.; Liu, F. Structure-Aware 3D Tooth Modeling via Prompt-Guided Segmentation and Multi-View Projection. Processes 2025, 13, 1968. https://doi.org/10.3390/pr13071968
Wang C, Cai Y, Fan R, Liu F. Structure-Aware 3D Tooth Modeling via Prompt-Guided Segmentation and Multi-View Projection. Processes. 2025; 13(7):1968. https://doi.org/10.3390/pr13071968
Chicago/Turabian StyleWang, Chentao, Yuchen Cai, Ran Fan, and Fuchang Liu. 2025. "Structure-Aware 3D Tooth Modeling via Prompt-Guided Segmentation and Multi-View Projection" Processes 13, no. 7: 1968. https://doi.org/10.3390/pr13071968
APA StyleWang, C., Cai, Y., Fan, R., & Liu, F. (2025). Structure-Aware 3D Tooth Modeling via Prompt-Guided Segmentation and Multi-View Projection. Processes, 13(7), 1968. https://doi.org/10.3390/pr13071968