Customized 3D-Printed Scaffolds for Alveolar Ridge Augmentation: A Scoping Review of Workflows, Technology, and Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. PICO Question
- P (Population): Adult patients requiring BR for alveolar ridge augmentation.
- I (Intervention): To explicitly include both additive (printing) and subtractive (milling) manufacturing of scaffolds.
- C (Comparison): Conventional BR techniques using preformed or manually shaped barrier membranes and grafts.
- O (Outcomes): Clinical outcomes (e.g., implant success, incidence of complications, operative time) and radiographic outcomes (e.g., residual bone height, immediate and final bone gain).
2.2. Article Eligibility Criteria
2.3. Information Sources and Search Protocol
2.4. Article Selection
2.5. Data Extraction
3. Results
3.1. Workflow (Here We Explain the Common Workflow of All Different Scaffolds (Figure 2))
- The first step is to analyze the patient bone condition using cone beam computed tomography (CBCT), which provides the surgeon with a converted Digital Imaging and Communications in Medicine (DICOM) file format (Figure 2A).
- The second step is to transfer these DICOM files to a Standard Triangulation Language (STL)-extension file that can be read that are analyzed using 3D software. Different software could be used, like the Dragonfly software (Figure 2B).
- With the patient data available on the 3D software, the surgeon can augment the defective areas and have a better visualization of what the proposed treatment plan would end up with (Figure 3).
- Then, after augmenting the areas with the desired amount of bone (Figure 3C), the membrane can be designed to correspond to those augmented areas. The thickness of the membrane and design (perforated on non-perforated), number and locations of fixation screws, and implant location opening can be designed in the frame (Figure 3D).
- The preprinting parameters of the desired membrane are predetermined before printing (Figure 3C).
- After the design is confirmed, a 3D printer can then be used to print the desired customized mesh (Figure 2D).
3.2. Digital Planning Software
3.3. Materials Utilized
3.4. Material Thickness
3.5. Type of Mesh
3.6. Printing Method
3.7. Sterilization Method
3.8. Fitting/Fixation
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Omar, O.; Elgali, I.; Dahlin, C.; Thomsen, P. Barrier membranes: More than the barrier effect? J. Clin. Periodontol. 2019, 46 (Suppl. 21), 103–123. [Google Scholar] [CrossRef]
- Soldatos, N.K.; Stylianou, P.; Koidou, V.P.; Angelov, N.; Yukna, R.; Romanos, G.E.; Solakoglu, Ö.; Götz, W.; Kiessling, M.C.; Alt, C.; et al. Limitations and options using resorbable versus nonresorbable membranes for successful guided bone regeneration. Quintessence Int. 2017, 48, 131–147. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, Z.; Yun, J.; Liu, R.; Li, J.; Chen, Y.; Cai, H.; Jiang, H.B.; Lee, E.S.; Han, J.; et al. Effect of Different Membranes on Vertical Bone Regeneration: A Systematic Review and Network Meta-Analysis. Biomed. Res. Int. 2022, 2022, 7742687. [Google Scholar] [CrossRef] [PubMed]
- Davoodi, E.; Montazerian, H.; Mirhakimi, A.S.; Zhianmanesh, M.; Ibhadode, O.; Shahabad, S.I.; Esmaeilizadeh, R.; Sarikhani, E.; Toorandaz, S.; Sarabi, S.A.; et al. Additively manufactured metallic biomaterials. Bioact. Mater. 2022, 15, 214–249. [Google Scholar] [CrossRef]
- Wang, H.L.; Boyapati, L. “PASS” principles for predictable bone regeneration. Implant. Dent. 2006, 15, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.H.; Saleh, M.H.A.; Wang, H.L. Simultaneous or staged lateral ridge augmentation: A clinical guideline on the decision-making process. Periodontol 2000 2023, 93, 107–128. [Google Scholar] [CrossRef] [PubMed]
- Lim, G.; Lin, G.H.; Monje, A.; Chan, H.L.; Wang, H.L. Wound Healing Complications Following Guided Bone Regeneration for Ridge Augmentation: A Systematic Review and Meta-Analysis. Int. J. Oral. Maxillofac. Implant. 2018, 33, 41–50. [Google Scholar] [CrossRef]
- Ebnesajjad, S. Introduction to Fluoropolymers: Materials, Technology, and Applications; William Andrew: Norwich, NY, USA, 2013; pp. 1–325. [Google Scholar]
- Altiparmak, N.; Akdeniz, S.S.; Bayram, B.; Gulsever, S.; Uckan, S. Alveolar Ridge Splitting Versus Autogenous Onlay Bone Grafting: Complications and Implant Survival Rates. Implant. Dent. 2017, 26, 284–287. [Google Scholar] [CrossRef]
- Urban, I.A.; Saleh, M.H.A.; Ravida, A.; Forster, A.; Wang, H.L.; Barath, Z. Vertical bone augmentation utilizing a titanium-reinforced PTFE mesh: A multi-variate analysis of influencing factors. Clin. Oral. Implant. Res. 2021, 32, 828–839. [Google Scholar] [CrossRef]
- Urban, I.A.; Serroni, M.; Dias, D.R.; Baráth, Z.; Forster, A.; Araújo, T.G.; Saleh, M.H.A.; Cucchi, A.; Ravidà, A. Impact of Collagen Membrane in Vertical Ridge Augmentation Using Ti-Reinforced PTFE Mesh: A Randomised Controlled Trial. J. Clin. Periodontol. 2025, 52, 575–588. [Google Scholar] [CrossRef]
- Atef, M.; Hakam, M.M.; ElFaramawey, M.I.; Abou-ElFetouh, A.; Ekram, M.; Ataullah, K.; Chee, L.F.; Peng, L.L.; Tho, C.Y.; Wei, W.C.; et al. Nongrafted sinus floor elevation with a space-maintaining titanium mesh: Case-series study on four patients. Clin. Implant Dent. Relat. Res. 2014, 16, 893–903. [Google Scholar] [CrossRef] [PubMed]
- Di Stefano, D.A.; Greco, G.B.; Cinci, L.; Pieri, L.; Di Stefano, D.A.; Andreasi Bassi, M.; Cinci, L.; Pieri, L.; Ammirabile, G.; Di Silvestro, S.; et al. Horizontal-guided bone regeneration using a titanium mesh and an equine bone graft. J. Contemp. Dent. Pract. 2015, 16, 154–162. [Google Scholar] [CrossRef]
- Van Steenberghe, D.; Johansson, C.; Quirynen, M.; Molly, L.; Albrektsson, T.; Naert, I. Bone augmentation by means of a stiff occlusive titanium barrier. Clin. Oral. Implant. Res. 2003, 14, 63–71. [Google Scholar] [CrossRef]
- Assenza, B.; Piattelli, M.; Scarano, A.; Lezzi, G.; Petrone, G.; Piattelli, A. Localized ridge augmentation using titanium micromesh. J. Oral. Implantol. 2001, 27, 287–292. [Google Scholar] [CrossRef]
- Chiapasco, M.; Casentini, P.; Tommasato, G.; Dellavia, C.; Del Fabbro, M. Customized CAD/CAM titanium meshes for the guided bone regeneration of severe alveolar ridge defects: Preliminary results of a retrospective clinical study in humans. Clin. Oral. Implant. Res. 2021, 32, 498–510. [Google Scholar] [CrossRef]
- Buj-Corral, I.; Tejo-Otero, A.; Fenollosa-Artés, F. Development of AM Technologies for Metals in the Sector of Medical Implants. Metals 2020, 10, 686. [Google Scholar] [CrossRef]
- Tshephe, T.S.; Akinwamide, S.O.; Olevsky, E.; Olubambi, P.A. Additive manufacturing of titanium-based alloys- A review of methods, properties, challenges, and prospects. Heliyon 2022, 8, e09041. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, S.; Liu, Y.; Guo, H.; Shi, W. Titanium Alloy Fabricated by Additive Manufacturing for Medical Applications: Obtaining, Characterization and Application—Review. Metals 2023, 13, 462. [Google Scholar] [CrossRef]
- Munir, K.; Biesiekierski, A.; Wen, C.; Li, Y. Selective laser melting in biomedical manufacturing. In Metallic Biomaterials Processing and Medical Device Manufacturing; Woodhead Publishing: Duxford, UK, 2020; pp. 235–269. [Google Scholar]
- Lashgari, H.R.; Ferry, M.; Li, S. Additive manufacturing of bulk metallic glasses: Fundamental principle, current/future developments and applications. J. Mater. Sci. Technol. 2022, 119, 131–149. [Google Scholar] [CrossRef]
- Song, C.; Liu, L.; Deng, Z.; Lei, H.; Yuan, F.; Yang, Y.; Li, Y.; Jiakuo, Y. Research progress on the design and performance of porous titanium alloy bone implants. J. Mater. Res. Technol. 2023, 23, 2626–2641. [Google Scholar] [CrossRef]
- Aufa, A.N.; Hassan, M.Z.; Ismail, Z.; Ramlie, F.; Jamaludin, K.R.; Md Daud, M.Y.; Ren, J. Current trends in additive manufacturing of selective laser melting for biomedical implant applications. J. Mater. Res. Technol. 2024, 31, 213–243. [Google Scholar] [CrossRef]
- Jamshidi, P.; Aristizabal, M.; Kong, W.; Villapun, V.; Cox, S.C.; Grover, L.M.; Attallah, M.M. Selective Laser Melting of Ti-6Al-4V: The Impact of Post-processing on the Tensile, Fatigue and Biological Properties for Medical Implant Applications. Materials 2020, 13, 2813. [Google Scholar] [CrossRef]
- Lei, H.; Yi, T.; Fan, H.; Pei, X.; Wu, L.; Xing, F.; Li, M.; Liu, L.; Zhou, C.; Fan, Y.; et al. Customized additive manufacturing of porous Ti6Al4V scaffold with micro-topological structures to regulate cell behavior in bone tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 120, 111789. [Google Scholar] [CrossRef] [PubMed]
- Di Spirito, F.; Giordano, F.; Di Palo, M.P.; Ferraro, C.; Cecere, L.; Frucci, E.; Caggiano, M.; Lo Giudice, R. Customized 3D-Printed Mesh, Membrane, Bone Substitute, and Dental Implant Applied to Guided Bone Regeneration in Oral Implantology: A Narrative Review. Dent. J. 2024, 12, 303. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.H.; Yang, B.E.; On, S.W.; Kwon, I.J.; Ahn, K.M.; Lee, J.H.; Byun, S.H. Customized three-dimensional printed ceramic bone grafts for osseous defects: A prospective randomized study. Sci. Rep. 2024, 14, 3397. [Google Scholar] [CrossRef] [PubMed]
- Tallarico, M.; Park, C.J.; Lumbau, A.I.; Annucci, M.; Baldoni, E.; Koshovari, A.; Meloni, S.M. Customized 3D-Printed Titanium Mesh Developed to Regenerate a Complex Bone Defect in the Aesthetic Zone: A Case Report Approached with a Fully Digital Workflow. Materials 2020, 13, 3874. [Google Scholar] [CrossRef]
- Ivanovski, S.; Staples, R.; Arora, H.; Vaquette, C.; Alayan, J. Alveolar bone regeneration using a 3D-printed patient-specific resorbable scaffold for dental implant placement: A case report. Clin. Oral. Implant. Res. 2024, 35, 1655–1668. [Google Scholar] [CrossRef]
- Felice, P.; Pistilli, R.; Pellegrino, G.; Bonifazi, L.; Tayeb, S.; Simion, M.; Barausse, C. A randomised controlled trial comparing the effectiveness of guided bone regeneration with polytetrafluoroethylene titanium-reinforced membranes, CAD/CAM semi-occlusive titanium meshes and CAD/CAM occlusive titanium foils in partially atrophic arches. Int. J. Oral Implant. 2024, 17, 285–296. [Google Scholar]
- El Morsy, O.A.; Barakat, A.; Mekhemer, S.; Mounir, M. Assessment of 3-dimensional bone augmentation of severely atrophied maxillary alveolar ridges using patient-specific poly ether-ether ketone (PEEK) sheets. Clin. Implant. Dent. Relat. Res. 2020, 22, 148–155. [Google Scholar] [CrossRef]
- Giragosyan, K.; Chenchev, I.; Ivanova, V. Linear bone gain and healing complication rate comparative outcomes following ridge augmentation with custom 3D printed titanium mesh vs Ti-reinforced dPTFE. A randomized clinical trial. Folia Med. (Plovdiv) 2024, 66, 505–514. [Google Scholar] [CrossRef]
- Mounir, M.; Shalash, M.; Mounir, S.; Nassar, Y.; El Khatib, O. Assessment of three dimensional bone augmentation of severely atrophied maxillary alveolar ridges using prebent titanium mesh vs customized poly-ether-ether-ketone (PEEK) mesh: A randomized clinical trial. Clin. Implant. Dent. Relat. Res. 2019, 21, 960–967. [Google Scholar] [CrossRef]
- Cucchi, A.; Vignudelli, E.; Franceschi, D.; Randellini, E.; Lizio, G.; Fiorino, A.; Corinaldesi, G. Vertical and horizontal ridge augmentation using customized CAD/CAM titanium mesh with versus without resorbable membranes. A randomized clinical trial. Clin. Oral. Implant. Res. 2021, 32, 1411–1424. [Google Scholar] [CrossRef] [PubMed]
- Cucchi, A.; Bettini, S.; Fiorino, A.; Maglio, M.; Marchiori, G.; Corinaldesi, G.; Sartori, M. Histological and histomorphometric analysis of bone tissue using customized titanium meshes with or without resorbable membranes: A randomized clinical trial. Clin. Oral Implant. Res. 2024, 35, 114–130. [Google Scholar] [CrossRef]
- Cucchi, A.; Bettini, S.; Tedeschi, L.; Urban, I.; Franceschi, D.; Fiorino, A.; Corinaldesi, G. Complication, vertical bone gain, volumetric changes after vertical ridge augmentation using customized reinforced PTFE mesh or Ti-mesh. A non-inferiority randomized clinical trial. Clin. Oral Implant. Res. 2024, 35, 1616–1639. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, Y.; Su, Z.; Mo, A. Clinical and radiographic outcomes of customized allogeneic bone block versus autogenous bone block for ridge augmentation: 6 Month results of a randomized controlled clinical trial. J. Clin. Periodontol. 2023, 50, 22–35. [Google Scholar] [CrossRef]
- Ciocca, L.; Lizio, G.; Baldissara, P.; Sambuco, A.; Scotti, R.; Corinaldesi, G. Prosthetically CAD-CAM-Guided Bone Augmentation of Atrophic Jaws Using Customized Titanium Mesh: Preliminary Results of an Open Prospective Study. J. Oral Implantol. 2018, 44, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Cucchi, A.; Bianchi, A.; Calamai, P.; Rinaldi, L.; Mangano, F.; Vignudelli, E.; Corinaldesi, G. Clinical and volumetric outcomes after vertical ridge augmentation using computer-aided-design/computer-aided manufacturing (CAD/CAM) customized titanium meshes: A pilot study. BMC Oral Health 2020, 20, 219. [Google Scholar] [CrossRef]
- Lizio, G.; Pellegrino, G.; Corinaldesi, G.; Ferri, A.; Marchetti, C.; Felice, P. Guided bone regeneration using titanium mesh to augment 3-dimensional alveolar defects prior to implant placement. A pilot study. Clin. Oral. Implant. Res. 2022, 33, 607–621. [Google Scholar] [CrossRef]
- Mohamed, A.W.; Abou-Elfetouh, A.; Sayed, M.; Noureldin, N.; Gibaly, A.; Mounir, M. Guided Bone Regeneration for Horizontal Maxillary Alveolar Ridge Augmentation Using Patient-Specific Solid Titanium Barriers: A Case Series. Int. J. Oral. Maxillofac. Implant. 2023, 38, 295–302. [Google Scholar] [CrossRef]
- De Santis, D.; Umberto, L.; Dario, D.; Paolo, F.; Zarantonello, M.; Alberti, C.; Verlato, G.; Gelpi, F. Custom Bone Regeneration (CBR): An Alternative Method of Bone Augmentation—A Case Series Study. J. Clin. Med. 2022, 11, 4739. [Google Scholar] [CrossRef]
- Ghanaati, S.; Al-Maawi, S.; Conrad, T.; Lorenz, J.; Rössler, R.; Sader, R. Biomaterial-based bone regeneration and soft tissue management of the individualized 3D-titanium mesh: An alternative concept to autologous transplantation and flap mobilization. J. Cranio-Maxillofac. Surg. 2019, 47, 1633–1644. [Google Scholar] [CrossRef] [PubMed]
- Mandelli, F.; Traini, T.; Ghensi, P. Customized-3D zirconia barriers for guided bone regeneration (GBR): Clinical and histological findings from a proof-of-concept case series. J. Dent. 2021, 114, 103780. [Google Scholar] [CrossRef]
- Mekcha, P.; Wongpairojpanich, J.; Thammarakcharoen, F.; Suwanprateeb, J.; Buranawat, B. Customized 3D printed nanohydroxyapatite bone block grafts for implant sites: A case series. J. Prosthodont. Res. 2023, 67, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Chen, D.; Wang, C.; Apicella, D.; Apicella, A.; Huang, Y.; Li, L.; Zheng, L.; Ji, P.; Wang, L.; et al. The effect of bone defect size on the 3D accuracy of alveolar bone augmentation performed with additively manufactured patient-specific titanium mesh. BMC Oral Health 2022, 22, 557. [Google Scholar] [CrossRef] [PubMed]
- Sagheb, K.; Schiegnitz, E.; Moergel, M.; Walter, C.; Al-Nawas, B.; Wagner, W. Clinical outcome of alveolar ridge augmentation with individualized CAD-CAM-produced titanium mesh. Int. J. Implant. Dent. 2017, 3, 36. [Google Scholar] [CrossRef]
- Li, S.; Zhao, J.; Xie, Y.; Tian, T.; Zhang, T.; Cai, X. Hard tissue stability after guided bone regeneration: A comparison between digital titanium mesh and resorbable membrane. Int. J. Oral Sci. 2021, 13, 37. [Google Scholar] [CrossRef]
- Li, L.; Wang, C.; Li, X.; Fu, G.; Chen, D.; Huang, Y. Research on the dimensional accuracy of customized bone augmentation combined with 3D-printing individualized titanium mesh: A retrospective case series study. Clin. Implant. Dent. Relat. Res. 2021, 23, 5–18. [Google Scholar] [CrossRef]
- Sumida, T.; Otawa, N.; Kamata, Y.U.; Kamakura, S.; Mtsushita, T.; Kitagaki, H.; Mori, S.; Sasaki, K.; Fujibayashi, S.; Takemoto, M.; et al. Custom-made titanium devices as membranes for bone augmentation in implant treatment: Clinical application and the comparison with conventional titanium mesh. J. Cranio-Maxillofac. Surg. 2015, 43, 2183–2188. [Google Scholar] [CrossRef]
- Lizio, G.; Mazzone, N.; Corinaldesi, G.; Marchetti, C.; Lizio, G.; Corinaldesi, G.; Marchetti, C.; Liu, Z.; Li, C.; Zhou, J.; et al. Reconstruction of Extended and Morphologically Varied Alveolar Ridge Defects with the Titanium Mesh Technique: Clinical and Dental Implants Outcomes. Int. J. Periodontics Restor. Dent. 2016, 36, 689–697. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, J.; Du, M.; Zhang, S.; Liu, Y.; Yang, H.; Shi, R.; Guo, Y.; Song, F.; Zhao, Y.; et al. Customized Barrier Membrane (Titanium Alloy, Poly Ether-Ether Ketone and Unsintered Hydroxyapatite/Poly-l-Lactide) for Guided Bone Regeneration. Front. Bioeng. Biotechnol. 2022, 10, 916967. [Google Scholar] [CrossRef]
- Tommasato, G.; Piano, S.; Casentini, P.; De Stavola, L.; Chiapasco, M. Digital planning and bone regenerative technologies: A narrative review. Clin. Oral Implant. Res. 2024, 35, 906–921. [Google Scholar] [CrossRef]
- Kadkhodazadeh, M.; Amid, R.; Moscowchi, A. Management of extensive peri-implant defects with titanium meshes. Oral Maxillofac. Surg. 2021, 25, 561–568. [Google Scholar] [CrossRef]
- Xie, Y.; Li, S.; Zhang, T.; Wang, C.; Cai, X. Titanium mesh for bone augmentation in oral implantology: Current application and progress. Int. J. Oral. Sci. 2020, 12, 37. [Google Scholar] [CrossRef]
- Lorenz, J.; Ghanaati, S.; Aleksic, Z.; Milinkovic, I.; Lazic, Z.; Magić, M.; Wessing, B.; Grotenclos, R.S.; Merli, M.; Mariotti, G.; et al. Horizontal Guided Bone Regeneration of the Posterior Mandible to Allow Implant Placement: 1-Year Prospective Study Results. Clin. Oral Implant. Res. 2025, 36, 100–116. [Google Scholar] [CrossRef] [PubMed]
- Malik, R.; Gupta, A.; Bansal, P.; Sharma, R.; Sharma, S. Evaluation of Alveolar Ridge Height Gained by Vertical Ridge Augmentation Using Titanium Mesh and Novabone Putty in Posterior Mandible. J. Maxillofac. Oral Surg. 2020, 19, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Krishani, M.; Shin, W.Y.; Suhaimi, H.; Sambudi, N.S. Development of Scaffolds from Bio-Based Natural Materials for Tissue Regeneration Applications: A Review. Gels 2023, 9, 100. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, F. Recent Trends in Bioprinting. Procedia Manuf. 2019, 32, 95–101. [Google Scholar] [CrossRef]
- Eskandar, K. 3D bioprinting for facial reconstruction: Advances and challenges. Regenesis Repair. Rehabil. 2025, 1, 16–23. [Google Scholar] [CrossRef]
Author and Year | Study Design | Software DICOM to STL | Software Mesh Design/Printer | Material | Thickness | Type of Mesh | Printing Method | Sterilization Method | Fitting/Fixation | Commercial Company |
---|---|---|---|---|---|---|---|---|---|---|
Mohamed et al. 2023 | Case series | (Mimics Medical 19.0, Materialise) Belgium | Exocad software (DentalCAD) Germany | Titanium alloy grade IV blocks | 0.7 mm | Occlusive titanium foil | Five-axis milling machine (CORiTEC 250i, imes-icore) | 2.4% glutaraldehyde solution (Cidex, Johnson & Johnson) for 12 h, followed by steam sterilization | Fixed with screws | NA |
Felice et al. 2024 | RCT | 3D Slicer software (Boston, MA, USA) | Meshmixer (Autodesk, San Francisco, CA, USA) | Titanium, without specifying | 0.4 mm |
| NA | NA | Only vestibular fixation screws | 3Dific, Perugia, Italy |
El Morsy et al. 2020 | RCT | Mimics 19.0; Mimics Medical 19.0 (Materialise, Leuven, Belgium) | Exocad software (DentalCAD, Germany) | Medical-grade PEEK blocks | Non-perforated PEEK | Five-axis milling machine | 2.4% glutaraldehyde (Cidex, Johnson & Johnson co.) For 12 h. | Fixed with screws | NA | |
Giragosyan et al. 2024 | RCT | Biotec Srl, Vicenza Italy | NA | Titanium without specifying | NA | Ti mesh with pores >2 mm | Selective laser sintering | NA | Fixed with titanium screws | Biotec Srl, Vicenza Italy |
Mounir et al. 2019 | RCT | Mimics 19 (Materialise, NV, Belgium) | Exocad software (DentalCAD, Germany) | Control group: prebent titanium mesh. Test group: PEEK. | Control group: NA. Test group: 2 mm. | Control group: perforated Ti mesh. Test group: perforated custom PEEK mesh. | Control group: (envisiontec GmbH, Gladbeck, Germany) to fabricate the virtually grafted 3D stereolithographic model that was then used as a guide for pre-bending of a readymade titanium mesh to create a space for the particulate graft intraoperatively. Study group: five axis milling machine from medical-grade PEEK. | Control group: autoclave. Test group: 2.4% glutaraldehyde (Cidex, Johnson & Johnson co.) For 20 min. | Both groups needed fixation with titanium screws. Collagen membrane (bio-gide, Geistlich Pharma, Switzerland) was used on both groups. | NA |
Ciocca et al. 2018 | Open prospective study | Mimic Innovation Suite software version 17.0 (Materialise, Leuven, Belgium) | CAD software (Freeform Modelling Plus, version 13.0, 3D Systems, Rock Hill, SC, USA) | Ti64 (a pre-alloyed Ti6AIV4 alloy in fine powder) | Calibrated at 0.3 mm, reduced to 0.1 mm by laminating the metal after printing | Holes in the mesh calibrated at 1 mm diameter | EOSINT M270 (Electro Optical Systems, Munich, Germany), a DMLS (direct metal laser sintering) machine | NA | 1–2 osteosynthesis screws | NA |
Cucchi et al. 2020 | Pilot study | Btk-3D®, Biotec Srl, Dueville, Vicenza, Italy | CAD software (PLASTYCAD®, 3D COAT, Kiev, Ukraine) | Titanium grade 5 micro-powders, with layer size of 30 µm | Less than 0.5 mm | Perforated texture with calibrated holes | Selective laser melting (SLM) (50 W fibre laser with a wavelength of 1070 nm) (ProX-DMP100®, 3D system, Rock Hill, SC, USA) | Superficially polished, decontaminated in an automatic ultrasonic machine, packaged in a cleanroom under a controlled atmosphere, and sent for sterilization and clinical application | 2–3 titanium screws | 3D-Mesh®, BTK, Biotec Srl, Dueville, Italy |
Cucchi et al. 2021 | RCT | Btk-3D®, Biotec Srl, Dueville, Vicenza, Italy | CAD software (PLASTYCAD®, 3D COAT, Kiev, Ukraine) | Titanium grade 5 micro-powders, with layer size of 30 µm | Less than 0.5 mm | Perforated texture with calibrated holes | Selective laser melting (SLM) (50 W fibre laser with a wavelength of 1070 nm) (ProX-DMP100®, 3D system, Rock Hill, SC, USA) | Superficially polished, decontaminated in an automatic ultrasonic machine, packaged in a cleanroom under a controlled atmosphere, and sent for sterilization and clinical application | 2–3 titanium screws | 3D-Mesh®, BTK, Biotec Srl, Dueville, Italy |
Cucchi et al. 2024 | A non-inferiority RCT | Btk-3D®, Biotec Srl, Dueville, Vicenza, Italy | CAD software (PLASTYCAD®, 3D COAT, Kiev, Ukraine) | Titanium grade 5 micro-powders, with layer size of 30 µm | Less than 0.5 mm | Perforated texture with calibrated holes | Selective laser melting (SLM) (50 W fibre laser with a wavelength of 1070 nm) (ProX-DMP100®, 3D system, Rock Hill, SC, USA) | Superficially polished, decontaminated in an automatic ultrasonic machine, packaged in a cleanroom under a controlled atmosphere, and sent for sterilization and clinical application | 2–3 titanium screws | 3D-Mesh®, BTK, Biotec Srl, Dueville, Italy |
Cucchi et al. 2024 | A non-inferiority RCT | Btk-3D®, Biotec Srl, Dueville, Vicenza, Italy | CAD/CAM manufacturer (MyReoss, ReOss) Germany | Titanium, type not specified | NA | Perforated without specifying calibration | Laser sintering CAD/CAM technology | Placed directly in the autoclave and sterilized at 135 °C for 20 min in confined water vapor | 3–4 osteosynthesis screws and/or titanium tacks | Yxoss CBR®, ReOss, (Filderstadt, Germany) |
Yang et al. 2022 | Retrospective case study | Mimics (Materialise, Leuven, Belgium) | 3-Matic software (Materialise, Leuven, Belgium) | Titanium alloy powder (Dentarum Ti6Al4V, Germany) | 0.3 mm | Perforated | 3D printing digital light processing technology | NA | 2–6 titanium pins | Shanghai Ruibo Medical Technology Co. Ltd. |
Sumida et al. 2015 | Clinical trial | NA | Geomagic® Freeform® (3D Systems, Rock Hill, SC, USA) | Pure Ti powder | 0.5 mm and then laminated until 30 µm thick | Perforated with 1.0 mm-diameter pores | SLM-RP molding machine (selective laser melting method) | NA | 2 screws | Eosint M 270® (Electro Optical Systems, GmbH, Munich Germany) |
Sagheb et al. 2017 | Retrospective case study | Yxoss CBR® backward by ReOss, Germany | CAD-CAM technology by ReOss Ltd. (Filderstadt, Germany) | Titanium powder | NA | Perforated | Selective laser melting: Ti powder melted layer by layer | Autoclaved at 135 °C for 20 min in confined water vapor | 2 screws | Yxoss CBR®, (Filderstadt, Germany) |
De Santis et al. 2022 | Case series | NA | CAD/CAM software | (Class IV titanium) | NA | Perforated and needed to be covered with CM | Laser sintering CAD/CAM technology | NA. Came directly from the manufacturer. | 5 mm long and 1.35 mm diam- eter mini titanium screws | Yxoss CBR®, ReOss, (Filderstadt, Germany) |
Ghanaati et al. 2019 | Case series | NA | CAM/CAM | (Class IV titanium) | NA | Perforated and needed to be covered with CM | NA | NA. Came directly from the manufacturer. | Fixed with screws and covered by CM | Yxoss CBR, ReOss, (Filderstadt, Germany) |
Mandelli et al. 2021 | Case series | NA | (DentalCAD, Exocad, GmbH, Germany) | 1200 mpa zirconia | 0.4–0.5 mm | Non-perforated | CAD/CAM miling | Autoclave (moist heat) with fractionated pre-vacuum at 134 °C, for 18 min. Drying time: 15 min. | Fixed with screws | Prettau, Zirkonzahn, South Tyrol Italy |
Kim et al. 2024 | Prospective RCT | Materialise Mimics (Materialise, Leuven, Belgium) | 3-Matic (Materialise, Belgium) | Synthetic and alloplastic bone graft: mixture of hydroxyapatite and β-tricalcium phosphate in a 60:40 ratio with particle sizes 0.2–2.0 mm | Depending on the bone defect | Pore size between 0.7 and 1.2 mm; porosity 70–80% | Digital light processing and sintering at 1200 °C | NA | No fixation needed | OSTEON 3D (Dentium, Seoul, Republic of Korea) |
Mekcha et al. 2023 | Case series | Denti-Plan, NECTEC, Thailand | Geomagic Freeform®, 3D Systems, USA | 3D-printed nanohydroxyapatite (3DHA) | Depending on the bone defect | Internal bone trabeculae: spherical macro-pores with a diameter of 1.75 mm and a thickness of 1.5 mm for the interconnected strut. The outer cortex: 2 mm thick. Cross-combined T-shaped (XT) patterns for internal structural reinforcement against collapse or damage during processing. The pore size of a graft ranged between 1.47 and 2.25 mm. | Layer by layer by a Projet160 3D printer, 300 × 450 dpi in resolution and 0.1 mm in layer thickness, using calcium sulfate hemihydrate in combination with a water-based binder | The printed grafts were soaked in a disodium hydrogen phosphate solution for 24 h to convert them into a hydroxyapatite structure, then dried and sterilized using ethylene oxide gas | No fixation screw was needed because 3DHA was completely fitted to the defect without any movement | The Touch™ Haptic Device, 3D System, SC. USA |
Wang et al. 2023 | RCT | Mimics software (20.0, Materialise, Leuven, Belgium) | NA | Freeze-dried allogenic bone | The pre-cut allogeneic bone block was taken from the iliac crest, and its dimensions were 20 × 15 × 12 cm | Customized allogeneic bone blocks (CABBs) | Milled from pre-cut cortico-cancellous freeze-dried allogeneic bone blocks | Cleaning, packaging, and sterilization not specified | Titanium pins: 8 mm long, 1.5 mm diameter | Osteolink Biomaterial Co. Ltd., Wuhan, China |
Li S. et al. 2021 | Retrospective clinical study | TRIOS 3 (3Shape, Copenhagen, Denmark) | Exocad, Darmstadt, Germany | Titanium without specifying | NA | Perforated | NA | Autoclave | Titanium screws | Biomet, FL, USA |
Li L. et al. 2021 | Retrospective case series study | Mimics Research software (Materialise, Leuven, Belgium) | 3-Matic software (Materialise, Leuven, Belgium) | Titanium alloy powder (Dentarum Ti6Al4V, Germany) | 0.3 mm reduced to nearly 0.2 mm | Perforated | 3D printing machine laserCUSING® (powder melting method) | Sterilized by high temperature and high pressure | 2 or more screws | laserCUSING® GmbH, lichtenfels Germany |
Lizio et al. 2022 | Pilot study | Mimics Innovation Suite, v17; Materialise, Belgium | CAD software Freeform Modelling Plus, version 13.0, 3D Systems | Ti64 powder | 0.1–0.5 mm | Perforated | EOSINT M270 printer (Electro Optical Systems) and digital machine laser sintering (DMLS) | NA | 2 or 3 screws | NA |
Chiapasco et al. 2021 | Retrospective clinical study | Yxoss CBR® backward by ReOss, Germany | CAD-CAM technology by ReOss Ltd. (Filderstadt, Germany) | Class IV titanium | NA | Perforated | Laser sintering | NA | Titanium micro-screws | Yxoss CBR® (Filderstadt, Germany) |
Aspect | Advantages | Disadvantages |
---|---|---|
Defect adaptation | Patient-specific fit; prosthetically driven control of grafting materials distribution. | Longer design and production time compared to preformed meshes. |
Mechanical support and space maintenance | Maintenance of the regenerative space; resistance to soft tissue compression. | Risk of exposure and dehiscence. |
Production technology | High resolution and reproducibility; porous and complex designs. | High costs; sterilization and quality control required. |
Biocompatibility | Excellent long-term stability and tissue integration. | Surface roughness may require additional finishing processes. |
Sterilization | Compatible with both hot and cold sterilization methods. | Additional processing step if not provided by the manufacturer. |
Clinical benefit | Reduces intraoperative time; minimal need for manual adaptation or fixation. | Not always readily available; design errors may lead to complications. |
Technique | Advantages | Disadvantages | |
---|---|---|---|
Additive | Powder bed fusion - Selective laser melting (SLM) - Direct metal laser sintering (DMLS) | Can fabricate high-resolution porous structures. High shape flexibility. Short processing time. High accuracy and detail. Minimal fit discrepancy. Reduced material waste. | Post-processing is necessary to remove superficial partially melted particles. Tends to induce high tensile residual stresses. Support structures are needed for overhangs. |
Directed energy deposition (DED) - Electron beam melting (EBM) | Lower residual stresses in as-built parts. Excellent osseointegration and long-term biocompatibility in vivo. | Surface finishing is dependent on the material used. Post-processing finishing is needed to achieve the desired effect. | |
Binder jetting | No support structures required. Can process materials that are challenging to melt (e.g., ceramics, composites). Unused powder can be reused. Wide range of materials. Fast process. | Lower mechanical performance compared to PBF. Limited success in producing metallic parts. Requirement for post-processing. | |
Subtractive | Five-axis CNC milling | Excellent dimensional precision and fit. Complex geometry capability. Wide range of materials available. | Difficult to fabricate complex or internal geometries. High material waste. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elrefaei, S.A.; Parma-Benfenati, L.; Dabaja, R.; Nava, P.; Wang, H.-L.; Saleh, M.H.A. Customized 3D-Printed Scaffolds for Alveolar Ridge Augmentation: A Scoping Review of Workflows, Technology, and Materials. Medicina 2025, 61, 1269. https://doi.org/10.3390/medicina61071269
Elrefaei SA, Parma-Benfenati L, Dabaja R, Nava P, Wang H-L, Saleh MHA. Customized 3D-Printed Scaffolds for Alveolar Ridge Augmentation: A Scoping Review of Workflows, Technology, and Materials. Medicina. 2025; 61(7):1269. https://doi.org/10.3390/medicina61071269
Chicago/Turabian StyleElrefaei, Saeed A., Lucrezia Parma-Benfenati, Rana Dabaja, Paolo Nava, Hom-Lay Wang, and Muhammad H. A. Saleh. 2025. "Customized 3D-Printed Scaffolds for Alveolar Ridge Augmentation: A Scoping Review of Workflows, Technology, and Materials" Medicina 61, no. 7: 1269. https://doi.org/10.3390/medicina61071269
APA StyleElrefaei, S. A., Parma-Benfenati, L., Dabaja, R., Nava, P., Wang, H.-L., & Saleh, M. H. A. (2025). Customized 3D-Printed Scaffolds for Alveolar Ridge Augmentation: A Scoping Review of Workflows, Technology, and Materials. Medicina, 61(7), 1269. https://doi.org/10.3390/medicina61071269