Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (958)

Search Parameters:
Keywords = degree of crosslinking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5839 KiB  
Article
Hydrogen Bond-Regulated Rapid Prototyping and Performance Optimization of Polyvinyl Alcohol–Tannic Acid Hydrogels
by Xiangyu Zou and Jun Huang
Gels 2025, 11(8), 602; https://doi.org/10.3390/gels11080602 (registering DOI) - 1 Aug 2025
Abstract
Traditional hydrogel preparation methods typically require multiple steps and certain external stimuli. In this study, rapid and stable gelation of polyvinyl alcohol (PVA)-tannic acid (TA)-based hydrogels was achieved through the regulation of hydrogen bonds. The cross-linking between PVA and TA is triggered by [...] Read more.
Traditional hydrogel preparation methods typically require multiple steps and certain external stimuli. In this study, rapid and stable gelation of polyvinyl alcohol (PVA)-tannic acid (TA)-based hydrogels was achieved through the regulation of hydrogen bonds. The cross-linking between PVA and TA is triggered by the evaporation of ethanol. Rheological testing and analysis of the liquid-solid transformation process of the hydrogel were performed. The gelation onset time (GOT) could be tuned from 10 s to over 100 s by adjusting the ethanol content and temperature. The addition of polyhydroxyl components (e.g., glycerol) significantly enhances the hydrogel’s water retention capacity (by 858%) and tensile strain rate (by 723%), while concurrently increasing the gelation time. Further studies have shown that the addition of alkaline substances (such as sodium hydroxide) promotes the entanglement of PVA molecular chains, increasing the tensile strength by 23% and the fracture strain by 41.8%. The experimental results indicate that the optimized PVA-TA hydrogels exhibit a high tensile strength (>2 MPa) and excellent tensile properties (~600%). Moreover, the addition of an excess of weakly alkaline substances (such as sodium acetate) reduces the degree of hydrolysis of PVA, enabling the system to form a hydrogel with extrudable characteristics before the ethanol has completely evaporated. This property allows for patterned printing and thus demonstrates the potential of the hydrogel in 3D printing. Overall, this study provides new insights for the application of PVA-TA based hydrogels in the fields of rapid prototyping and strength optimization. Full article
(This article belongs to the Special Issue Synthesis and Applications of Hydrogels (3rd Edition))
Show Figures

Graphical abstract

15 pages, 3303 KiB  
Article
Effect of Ozone on Nonwoven Polylactide/Natural Rubber Fibers
by Yulia V. Tertyshnaya, Svetlana G. Karpova and Maria V. Podzorova
Polymers 2025, 17(15), 2102; https://doi.org/10.3390/polym17152102 - 31 Jul 2025
Viewed by 95
Abstract
Ozone is a powerful destructive agent in the oxidative process of polymer composites. The destructive ability of ozone depends primarily on its concentration, duration of exposure, the type of polymer, and its matrix structure. In this work, nonwoven PLA/NR fibers with natural rubber [...] Read more.
Ozone is a powerful destructive agent in the oxidative process of polymer composites. The destructive ability of ozone depends primarily on its concentration, duration of exposure, the type of polymer, and its matrix structure. In this work, nonwoven PLA/NR fibers with natural rubber contents of 5, 10, and 15 wt.% were obtained, which were then subjected to ozone oxidation for 800 min. The effect of ozone treatment was estimated using various methods of physicochemical analysis. The visual effect was manifested in the form of a change in the color of PLA/NR fibers. The method of differential scanning calorimetry revealed a change in the thermophysical characteristics. The glass transition and cold crystallization temperatures of polylactide shifted toward lower temperatures, and the degree of crystallinity increased. It was found that in PLA/NR fiber samples, the degradation process predominates over the crosslinking process, as an increase in the melt flow rate by 1.5–1.6 times and a decrease in the correlation time determined by the electron paramagnetic resonance method were observed. The IR Fourier method recorded a change in the chemical structure during ozone oxidation. The intensity of the ether bond bands changed, and new bands appeared at 1640 and 1537 cm−1, which corresponded to the formation of –C=C– bonds. Full article
(This article belongs to the Special Issue Natural Degradation of Polymers)
Show Figures

Graphical abstract

24 pages, 5342 KiB  
Article
Esterase and Peroxidase Are Involved in the Transformation of Chitosan Films by the Fungus Fusarium oxysporum Schltdl. IBPPM 543
by Natalia N. Pozdnyakova, Tatiana S. Babicheva, Daria S. Chernova, Irina Yu. Sungurtseva, Andrey M. Zakharevich, Sergei L. Shmakov and Anna B. Shipovskaya
J. Fungi 2025, 11(8), 565; https://doi.org/10.3390/jof11080565 - 29 Jul 2025
Viewed by 234
Abstract
The majority of studies of fungal utilization of chitosan are associated with the production of a specific enzyme, chitosanase, which catalyzes the hydrolytic cleavage of the macrochain. In our opinion, the development of approaches to obtaining materials with new functional properties based on [...] Read more.
The majority of studies of fungal utilization of chitosan are associated with the production of a specific enzyme, chitosanase, which catalyzes the hydrolytic cleavage of the macrochain. In our opinion, the development of approaches to obtaining materials with new functional properties based on non-destructive chitosan transformation by living organisms and their enzyme systems is promising. This study was conducted using a wide range of classical and modern methods of microbiology, biochemistry, and physical chemistry. The ability of the ascomycete Fusarium oxysporum Schltdl. to modify films of chitosan with average-viscosity molecular weights of 200, 450, and 530 kDa was discovered. F. oxysporum was shown to use chitosan as the sole source of carbon/energy and actively overgrew films without deformations and signs of integrity loss. Scanning electron microscopy (SEM) recorded an increase in the porosity of film substrates. An analysis of the FTIR spectra revealed the occurrence of oxidation processes and crosslinking of macrochains without breaking β-(1,4)-glycosidic bonds. After F. oxysporum growth, the resistance of the films to mechanical dispersion and the degree of ordering of the polymer structure increased, while their solubility in the acetate buffer with pH 4.4 and sorption capacity for Fe2+ and Cu2+ decreased. Elemental analysis revealed a decrease in the nitrogen content in chitosan, which may indicate its inclusion into the fungal metabolism. The film transformation was accompanied by the production of extracellular hydrolase (different from chitosanase) and peroxidase, as well as biosurfactants. The results obtained indicate a specific mechanism of aminopolysaccharide transformation by F. oxysporum. Although the biochemical mechanisms of action remain to be analyzed in detail, the results obtained create new ways of using fungi and show the potential for the use of Fusarium and/or its extracellular enzymes for the formation of chitosan-containing materials with the required range of functional properties and qualities for biotechnological applications. Full article
(This article belongs to the Special Issue Innovative Applications and Biomanufacturing of Fungi)
Show Figures

Figure 1

21 pages, 5918 KiB  
Article
Impact of Crosslinking Agent on Sorption Properties of Molecularly Imprinted Polymers in Relation to Silver
by Laura Agibayeva, Yevgeniy Melnikov, Dilnaz Kubiyeva and Ruslan Kondaurov
Polymers 2025, 17(15), 2055; https://doi.org/10.3390/polym17152055 - 28 Jul 2025
Viewed by 242
Abstract
Molecularly imprinted polymers (MIPs) for silver sorption were synthesized using diethylene glycol dimethacrylate (DEGDMA) and divinylbenzene (DVB) as crosslinking agents. Synthesis was carried out using a ratio template: monomer: monomer: cross-linker = 1:2:2:8. The yield of obtained imprinting structures was 63.2% and 67.8% [...] Read more.
Molecularly imprinted polymers (MIPs) for silver sorption were synthesized using diethylene glycol dimethacrylate (DEGDMA) and divinylbenzene (DVB) as crosslinking agents. Synthesis was carried out using a ratio template: monomer: monomer: cross-linker = 1:2:2:8. The yield of obtained imprinting structures was 63.2% and 67.8% for MIP(DEGDMA) and MIP(DVB), respectively. The MIPs were analyzed by FTIR analysis, which showed the presence of characteristic peaks indicating the presence of monomers and crosslinkers in the MIP structure. According to the results of SEM analysis, the average cavity size for MIP(DEGDMA) is 0.81 ± 0.20 μm and for MIP(DVB) is 0.68 ± 0.23 μm in diameter. MIP(DEGDMA)’s sorption degree is 66.08%, and its sorption capacity is 3.31 g/g; MIP(DVB)’s sorption degree is 78.35%, and its sorption capacity is 3.92 g/g. The desorption degree is 69.85% for MIP(DEGDMA) and 69.52% for MIP(DVB). For analysis of sorption kinetics, the Radushkevich and Elovich kinetic models were applied. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

19 pages, 3200 KiB  
Article
Polyphosphoramidate Glycohydrogels with Biorecognition Properties and Potential Antibacterial Activity
by Zornica Todorova, Oyundari Tumurbaatar, Violeta Mitova, Neli Koseva, Iva Ugrinova, Penka Petrova and Kolio Troev
Molecules 2025, 30(15), 3140; https://doi.org/10.3390/molecules30153140 - 26 Jul 2025
Viewed by 224
Abstract
In the present study, for the first time, a biodegradable and non-toxic polyphosphoramidate glycohydrogel (PPAGHGel) was prepared by crosslinking a polyphosphoramidate glycoconjugate (PPAG) with hexamethylene diisocyanate (HMDI) under mild conditions. Poly(oxyethylene H-phosphonate) (POEHP) was used as a precursor and was converted into PPAG [...] Read more.
In the present study, for the first time, a biodegradable and non-toxic polyphosphoramidate glycohydrogel (PPAGHGel) was prepared by crosslinking a polyphosphoramidate glycoconjugate (PPAG) with hexamethylene diisocyanate (HMDI) under mild conditions. Poly(oxyethylene H-phosphonate) (POEHP) was used as a precursor and was converted into PPAG via the Staudinger reaction with glucose-containing azide (2-p-azidobenzamide-2-deoxy-1,3,4,6-tetra-O-trimethylsilyl-α-D-glucopyranose). Then, crosslinking of PPAG was performed to yield PPAGHGel, which was thoroughly characterized. The gel showed a gel fraction of 83%, a swelling degree of 1426 ± 98%, and G″ = 1560 ± 65 Pa. The gel was fully degraded by alkaline phosphatase (400 U/L, pH 9) in 19 days, while hydrolytically, up to 52% degradation was observed under similar conditions. Multivalent studies of the obtained hydrogel with lectin–Concanavalin A were performed. PPAGHGel binds 92% of Concanavalin A within 24 h and the complex remains stable until the amount of glucose reaches 0.3 mM. PPAGHGel acts as a stabilizer for silver nanoparticles (12 nm). SEM shows pores measuring 10 µm (surface) and 0.1 mm (interior) with capillary channels, confirming the gel’s suitability for biosensors, drug delivery, or wound dressings. The cytotoxic (IC50) and cell-adhesive properties of the obtained hydrogel were investigated on human cell lines (HeLa). Antibacterial activity tests were also performed with gel containing silver nanoparticles against skin-associated pathogenic bacteria. The results show that PPAGHGel possesses excellent biocompatibility, non-adhesive properties and antibacterial activity. Full article
Show Figures

Figure 1

16 pages, 1291 KiB  
Review
Pellucid Marginal Degeneration: A Comprehensive Review of Pathophysiology, Diagnosis, and Management Strategies
by Michael Tsatsos, Konstantina Koulotsiou, Ioannis Giachos, Ioannis Tsinopoulos and Nikolaos Ziakas
J. Clin. Med. 2025, 14(15), 5178; https://doi.org/10.3390/jcm14155178 - 22 Jul 2025
Viewed by 354
Abstract
Purpose: Pellucid Marginal Degeneration (PMD) is a rare ectatic corneal disorder characterized by inferior peripheral thinning and significant irregular astigmatism. Despite its clinical similarities to keratoconus, PMD presents unique diagnostic and therapeutic challenges. This review aims to provide a comprehensive update on the [...] Read more.
Purpose: Pellucid Marginal Degeneration (PMD) is a rare ectatic corneal disorder characterized by inferior peripheral thinning and significant irregular astigmatism. Despite its clinical similarities to keratoconus, PMD presents unique diagnostic and therapeutic challenges. This review aims to provide a comprehensive update on the pathophysiology, clinical features, diagnostic approaches, and management strategies for PMD, emphasizing the latest advancements in treatment options. Methods: A systematic literature search was performed in MEDLINE (via PubMed), Google Scholar, and Scopus up to February 2025 using the terms: “pellucid marginal degeneration,” “PMD,” “ectatic corneal disorders,” “keratoplasty in PMD,” “corneal cross-linking in PMD,” “ICRS in PMD,” “toric IOL PMD” and their Boolean combinations (AND/OR). The search was restricted to English-language studies involving human subjects, including case reports, case series, retrospective studies, clinical trials, and systematic reviews. A total of 76 studies met the inclusion criteria addressing treatment outcomes in PMD. Results: PMD is characterized by a crescent-shaped band of inferior corneal thinning, leading to high irregular astigmatism and reduced visual acuity. Diagnosis relies on advanced imaging techniques such as Scheimpflug-based corneal tomography, which reveals the characteristic “crab-claw” pattern. Conservative management includes rigid gas-permeable (RGP) lenses and scleral lenses, which provide effective visual rehabilitation in mild to moderate cases. Surgical options, such as CXL, ICRS, and toric IOLs, are reserved for advanced cases, with varying degrees of success. Newer techniques such as CAIRS, employing donor tissue instead of synthetic rings, show promising outcomes in corneal remodeling with potentially improved biocompatibility. Penetrating keratoplasty (PK) and deep anterior lamellar keratoplasty (DALK) remain definitive treatments for severe PMD, though they are associated with significant risks, including graft rejection and postoperative astigmatism. Conclusions: PMD is a complex and progressive corneal disorder that requires a tailored approach to management. Early diagnosis and intervention are critical to optimizing visual outcomes. While conservative measures are effective in mild cases, surgical interventions offer promising results for advanced disease. Further research is needed to refine treatment protocols and improve long-term outcomes for patients with PMD. Full article
(This article belongs to the Special Issue New Insights into Corneal Disease and Transplantation)
Show Figures

Figure 1

22 pages, 9633 KiB  
Article
Mouse PrimPol Outperforms Its Human Counterpart as a Robust DNA Primase
by Gustavo Carvalho, Susana Guerra, María I. Martínez-Jiménez and Luis Blanco
Int. J. Mol. Sci. 2025, 26(14), 6947; https://doi.org/10.3390/ijms26146947 - 19 Jul 2025
Viewed by 287
Abstract
The human PrimPol counteracts DNA replication stress by repriming DNA synthesis when fork progression is hindered by UV light or hydroxyurea treatment, or by encountering complex DNA structures, such as G-quadruplexes, R-loops, or interstrand crosslinks. The Mus musculus PrimPol (MmPrimPol) shares [...] Read more.
The human PrimPol counteracts DNA replication stress by repriming DNA synthesis when fork progression is hindered by UV light or hydroxyurea treatment, or by encountering complex DNA structures, such as G-quadruplexes, R-loops, or interstrand crosslinks. The Mus musculus PrimPol (MmPrimPol) shares a high degree of amino acid similarity with its human ortholog; however, as shown here, MmPrimPol exhibits a more powerful primase activity compared to the human enzyme. Such a robust primase activity relies on an enhanced ability to bind the 5′ site nucleotide, and consequently to form initial dimers and further mature primers. Additionally, a shorter linker between the AEP core and the Zn finger domain (ZnFD) in the murine homolog likely promotes a constitutive closing of these domains into a primase-ready configuration. Consequently, a reinforced close configuration of the ZnFD would explain why MmPrimPol has a more robust primase, but a very limited DNA polymerization on an existing primer. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 4726 KiB  
Article
Interpretable Prediction and Analysis of PVA Hydrogel Mechanical Behavior Using Machine Learning
by Liying Xu, Siqi Liu, Anqi Lin, Zichuan Su and Daxin Liang
Gels 2025, 11(7), 550; https://doi.org/10.3390/gels11070550 - 16 Jul 2025
Viewed by 325
Abstract
Polyvinyl alcohol (PVA) hydrogels have emerged as versatile materials due to their exceptional biocompatibility and tunable mechanical properties, showing great promise for flexible sensors, smart wound dressings, and tissue engineering applications. However, rational design remains challenging due to complex structure–property relationships involving multiple [...] Read more.
Polyvinyl alcohol (PVA) hydrogels have emerged as versatile materials due to their exceptional biocompatibility and tunable mechanical properties, showing great promise for flexible sensors, smart wound dressings, and tissue engineering applications. However, rational design remains challenging due to complex structure–property relationships involving multiple formulation parameters. This study presents an interpretable machine learning framework for predicting PVA hydrogel tensile strain properties with emphasis on mechanistic understanding, based on a comprehensive dataset of 350 data points collected from a systematic literature review. XGBoost demonstrated superior performance after Optuna-based optimization, achieving R2 values of 0.964 for training and 0.801 for testing. SHAP analysis provided unprecedented mechanistic insights, revealing that PVA molecular weight dominates mechanical performance (SHAP importance: 84.94) through chain entanglement and crystallization mechanisms, followed by degree of hydrolysis (72.46) and cross-linking parameters. The interpretability analysis identified optimal parameter ranges and critical feature interactions, elucidating complex non-linear relationships and reinforcement mechanisms. By addressing the “black box” limitation of machine learning, this approach enables rational design strategies and mechanistic understanding for next-generation multifunctional hydrogels. Full article
(This article belongs to the Special Issue Research Progress and Application Prospects of Gel Electrolytes)
Show Figures

Figure 1

26 pages, 3391 KiB  
Article
Poly(hydromethylsiloxane) Networks Functionalized by N-allylaniline
by Anita Wysopal, Maria Owińska, Ewa Stodolak-Zych, Mariusz Gackowski and Magdalena Hasik
Int. J. Mol. Sci. 2025, 26(14), 6700; https://doi.org/10.3390/ijms26146700 - 12 Jul 2025
Viewed by 190
Abstract
Polymers containing biocidal moieties (e.g., amino or ammonium groups) are considered promising materials that can help combat the growing resistance of pathogens to commonly used antimicrobials. Searching for new polymeric biocides, in this work, non-porous and porous poly(hydromethylsiloxane) (PHMS) networks were prepared and [...] Read more.
Polymers containing biocidal moieties (e.g., amino or ammonium groups) are considered promising materials that can help combat the growing resistance of pathogens to commonly used antimicrobials. Searching for new polymeric biocides, in this work, non-porous and porous poly(hydromethylsiloxane) (PHMS) networks were prepared and post-functionalized by N-allylaniline (Naa). Non-porous networks were obtained by cross-linking PHMS in the bulk and porous—in W/O high-internal-phase emulsion (HIPE). Linear divinyldisiloxane (M2Vi) or cyclic tetravinyltetrasiloxane (D4Vi) were used as cross-linkers. Studies confirmed the expected non-porous and open macroporous microstructure of the initial networks. They also showed that functionalization by Naa was more efficient for the non-porous networks that swelled to lower extents in toluene and contained higher amounts of Si-H groups than the porous ones. In the reactions with benzyl chloride or 1-bromoctane, some amino groups present in these materials were transformed to ammonium groups. It was found that activity against Gram-positive S. aureus and Gram-negative E. coli bacteria depended on the functionalization degree, cross-linking level and the microstructure of the modified materials. Full article
Show Figures

Figure 1

23 pages, 9287 KiB  
Article
Emulsifying Stability, Digestive Sustained Release, and Cellular Uptake of Alcohol-Soluble Artemisia argyi Flavonoids Were Improved by Glycosylation of Casein Micelles with Oat Glucan
by Ye Zhang, Dongliang Wang, Mengling Peng, Min Yang, Ya Yu, Mengting Yuan, Yanan Liu, Bingyu Zhu, Xiuheng Xue and Juhua Wang
Foods 2025, 14(14), 2435; https://doi.org/10.3390/foods14142435 - 10 Jul 2025
Viewed by 341
Abstract
Flavonoids, widely present in Artemisia argyi (AA), offer potential health benefits but are limited in food applications because of their bitter taste, inadequate absorption, and stability. Casein micelles encapsulation can enhance the flavonoid absorption, stability, and bioactivity. In this study, Artemisia argyi flavonoids [...] Read more.
Flavonoids, widely present in Artemisia argyi (AA), offer potential health benefits but are limited in food applications because of their bitter taste, inadequate absorption, and stability. Casein micelles encapsulation can enhance the flavonoid absorption, stability, and bioactivity. In this study, Artemisia argyi flavonoids (AAFs) were extracted using ultrasound-assisted extraction (UAE) to optimize the process. The glycosylation reaction between casein (CN) micelles and oat β-glucan (OBG) was employed to improve AAF’s emulsifying stability, sustained release during digestion, and cellular uptake. The maximum glycosylation degree of 32.33% was achieved at a CN-to-OBG ratio of 1:2, 120 min browning time, and 95 °C temperature. This glycosylated delivery system enhanced the emulsifying properties of the AAFs, digestive sustained release, and cellular uptake, showing potential as a cross-linking material for fat-soluble substances and medicines. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

16 pages, 4017 KiB  
Article
Tailoring Dialdehyde Bacterial Cellulose Synthesis for Versatile Applications
by Krittanan Kadsanit, Malinee Sriariyanun, Muenduen Phisalaphong and Suchata Kirdponpattara
Polymers 2025, 17(13), 1836; https://doi.org/10.3390/polym17131836 - 30 Jun 2025
Viewed by 259
Abstract
Dialdehyde bacterial cellulose (DBC) has been implemented in versatile applications. DBC was prepared from bacterial cellulose (BC) through periodate oxidation with varying parameters, including the mole ratio of BC and NaOI4, temperature, and reaction time. The relationship between the degree of [...] Read more.
Dialdehyde bacterial cellulose (DBC) has been implemented in versatile applications. DBC was prepared from bacterial cellulose (BC) through periodate oxidation with varying parameters, including the mole ratio of BC and NaOI4, temperature, and reaction time. The relationship between the degree of oxidation (DO)/aldehyde content and these parameters was proposed as a quadratic equation to predict the oxidation conditions needed to achieve a specific DO using Response Surface Methodology (RSM). The chemical structure and morphology of DBC were influenced by DO. DBC with different DO levels was used as a crosslinker and a reinforcing agent for gelatin sponge fabrication. Results indicated that a high DO of DBC could enhance the tensile strength and structural stability of the gelatin matrix. Selecting the proper DO level could control the morphological structure of the gelatin sponge, which is crucial for biomedical applications. Full article
(This article belongs to the Special Issue Polysaccharide-Based Materials: Developments and Properties)
Show Figures

Figure 1

27 pages, 3223 KiB  
Article
Chloroprene and Butadiene Rubber (CR/BR) Blends Cross-Linked with Metal Oxides: INFLUENCE of Vulcanization Temperature on Their Rheological, Mechanical, and Thermal Properties
by Aleksandra Smejda-Krzewicka and Konrad Mrozowski
Molecules 2025, 30(13), 2780; https://doi.org/10.3390/molecules30132780 - 27 Jun 2025
Viewed by 285
Abstract
This paper aimed to evaluate the effect of cross-linking temperature on the rheological, mechanical, and thermal properties of CR/BR compositions cross-linked with zinc oxide, iron(III) oxide, or copper(II) oxide. Properties of CR/BR compounds were studied at four temperatures: 140, 160, 180, and 200 [...] Read more.
This paper aimed to evaluate the effect of cross-linking temperature on the rheological, mechanical, and thermal properties of CR/BR compositions cross-linked with zinc oxide, iron(III) oxide, or copper(II) oxide. Properties of CR/BR compounds were studied at four temperatures: 140, 160, 180, and 200 °C. The lowest activation energy of vulcanization was shown by blends cross-linked with ZnO, and the highest activation energy of vulcanization was shown by samples with Fe2O3. Blends cured with ZnO or Fe2O3 showed higher cross-linking activity than CuO. Higher temperatures enhanced the degree of cross-linking in the CR/BR composite cured with ZnO or CuO but slightly reduced it for the CR/BR/Fe2O3 vulcanizates. The highest tensile strength was observed for the CR/BR/Fe2O3 product. However, compositions cured with ZnO exhibited the best aging resistance. The CR/BR compounds cured with ZnO at high temperatures had the highest tear strength (16.8 N/mm), while samples containing CuO as a curing agent showed declining tear strength with temperature. DSC confirmed a single glass transition (~36 °C), indicating good elastomers dispersion. Infrared and SEM analyses confirmed effective cross-linking and blend compatibility. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

23 pages, 2535 KiB  
Article
Molecular Dynamics Simulation of Hydrogen Permeation Behavior in Epoxy Resin Systems
by Chang Gao, Hongzhi Chen, Hao Xu, Zhanjun Wu and Xufeng Dong
Polymers 2025, 17(13), 1755; https://doi.org/10.3390/polym17131755 - 25 Jun 2025
Viewed by 458
Abstract
Liquid hydrogen (LH2) storage using carbon-fiber-reinforced composite pressure vessels is facing increasing demands in aerospace engineering. However, hydrogen permeation in epoxy resin matrixes seriously jeopardizes the function and safety of the cryogenic vessels, and the micro-behavior of hydrogen permeation in epoxy [...] Read more.
Liquid hydrogen (LH2) storage using carbon-fiber-reinforced composite pressure vessels is facing increasing demands in aerospace engineering. However, hydrogen permeation in epoxy resin matrixes seriously jeopardizes the function and safety of the cryogenic vessels, and the micro-behavior of hydrogen permeation in epoxy resins remains mysterious. This study performed molecular dynamics (MD) simulations to investigate the hydrogen molecule permeation behaviors in two types of epoxy resin systems, with similar epoxy reins of bisphenol A diglycidyl ether (DGEBA) and different curing agents, i.e., 4,4′-diaminodiphenylmethane (DDM) and polypropylene glycol bis(2-aminopropyl ether) (PEA). The influencing factors, including the cross-linking degrees and temperatures, on hydrogen permeation were analyzed. It was revealed that increased cross-linking degrees enhance the tortuosity of hydrogen diffusion pathways, thereby inhibiting permeation. The adsorption characteristics demonstrated high sensitivity to temperature variations, leading to intensified hydrogen permeation at low temperatures. By triggering defects in the epoxy resin systems by uniaxial tensile simulation, high consistency between the simulation results and the results from helium permeability experiments can be achieved due to the micro-defects in the simulation model that are more realistic in practical materials. The findings provide theoretical insights into micro-scale permeation behavior and facilitate the development of high-performance epoxy resins in liquid hydrogen storage. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

18 pages, 2992 KiB  
Article
The Influence of Concentration and Type of Salts on the Behaviour of Linear Actuators Based on PVA Hydrogel Activated by AC Power
by Aleksey Maksimkin, Mikhail Zadorozhnyy, Kseniia V. Filippova, Lidiia D. Iudina, Dmitry V. Telyshev and Tarek Dayyoub
Gels 2025, 11(7), 484; https://doi.org/10.3390/gels11070484 - 23 Jun 2025
Viewed by 758
Abstract
The creation of quick-reacting electrically conductive polymers for use as actuators driven by low electrical currents is now seen as an important issue. Enhancing the electrical conductivity of hydrogels through the incorporation of conductive fillers, like salts, can reduce the necessary actuating voltage. [...] Read more.
The creation of quick-reacting electrically conductive polymers for use as actuators driven by low electrical currents is now seen as an important issue. Enhancing the electrical conductivity of hydrogels through the incorporation of conductive fillers, like salts, can reduce the necessary actuating voltage. However, several important questions arise about how the type of salt chosen and its concentration will affect not only the activation efficiency of the actuators but also the structure of the hydrogels utilized. In this study, to enhance the electrical conductivity of the hydrogel and lower the necessary activation voltage of the hydrogel actuators, lithium chloride (LiCl) and sodium chloride (NaCl) were incorporated as conductive fillers into the polyvinyl alcohol (PVA) polymer matrix. To determine the deformation of actuators, as well as the activation and relaxation times and efficiencies during activation, linear actuators capable of being activated through extension/contraction (swelling/shrinking) cycles were developed and examined based on the LiCl/NaCl content, applied voltage, and frequency. The main finding is that the required actuating voltage was lowered by up to 20 V by adding an equal mass of salt in relation to the PVA mass content. With a load of around 20 kPa, it was observed that the extension deformation for PVA/NaCl-based actuators can achieve 75%, while in contraction deformation, can reach 17%. Additionally, for the PVA/LiCl-based actuators, the extension deformation can reach 87%, while during contraction deformation, it can reach 22%. The degree of swelling in the PVA/NaCl hydrogels was generally less than that in the PVA/LiCl hydrogels, which was associated with the finding that the actuators prepared from PVA/NaCl hydrogels delivered an output that was 10–15% lower than those made from PVA/LiCl hydrogels across different testing cycles. Furthermore, adding salt increases the degree of crosslinking, which can explain why increased crosslinking leads to reduced deformation when exposed to AC voltage. These actuators can find extensive use in soft robotics, artificial muscles, medical applications, and aerospace industries. Full article
Show Figures

Figure 1

17 pages, 2568 KiB  
Article
Effect of TGase Crosslinking on the Structure, Emulsification, and Gelling Properties of Soy Isolate Proteins
by Ziqi Peng, Kunlun Liu and Ning Liao
Foods 2025, 14(12), 2130; https://doi.org/10.3390/foods14122130 - 18 Jun 2025
Viewed by 422
Abstract
Soy isolate protein (SPI), as a high-quality plant protein source, is often processed into various soy products. In this study, the physicochemical properties of SPI treated with transglutaminase (TGase) were investigated in correlation with emulsification characteristics and rheological behavior. The polyacrylamide gel electrophoresis [...] Read more.
Soy isolate protein (SPI), as a high-quality plant protein source, is often processed into various soy products. In this study, the physicochemical properties of SPI treated with transglutaminase (TGase) were investigated in correlation with emulsification characteristics and rheological behavior. The polyacrylamide gel electrophoresis with sodium dodecyl sulfate (SDS-PAGE) and Fourier-transform infrared spectroscopy (FTIR) and endogenous fluorescence spectrum analysis results showed that TGase was able to promote the covalent binding of lysine and glutamine residues in SPI. The moderate pre-crosslinking treatment of TGase (5–7.5 U/g TGase pre-crosslinked for 2 h or 5 U/g TGase pre-crosslinked for 2–3 h) improved the emulsification and gel properties to varying degrees: the nanoparticle and emulsification performance increased by 24.35% and the storage modulus of the gel increased by 288%. Furthermore, the surface charge of SPI increased due to the crosslinking impact of TGase, indicating a considerable rise in the surface electrostatic potential. Simultaneously, the protein surface exhibited a substantial increase in hydrophobicity, while the level of free sulfhydryl groups reduced. These changes indicate that TGase enzymatic crosslinking could significantly improve the structural stability of nanoparticles by enhancing the generation efficiency of covalent bonds between protein molecules. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

Back to TopTop