Emulsifying Stability, Digestive Sustained Release, and Cellular Uptake of Alcohol-Soluble Artemisia argyi Flavonoids Were Improved by Glycosylation of Casein Micelles with Oat Glucan
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction and Identification of Total Flavonoids from AA
2.3. Fabrication of Glycosylation CN Micelles by OBG
2.4. AAFs Loaded by Glycosylation CN Micelles
2.5. The Binding Capacity of CN with Oat β-Glucan
2.5.1. Determination of Browning Index of Glycosylation Reaction
2.5.2. Determination of Grafting Degree
2.5.3. Fourier Transform Infrared (FTIR) Analysis
2.5.4. Analysis by X-Ray Diffraction (XRD)
2.5.5. Analysis by Transmission Electron Microscopy (TEM)
2.6. Characterization of AAFs Loaded by CN and CN-OBG Micelles
2.6.1. The Activity and Stability of Emulsification
2.6.2. Atomic Force Microscope (AFM)
2.6.3. Analysis by Confocal Laser Scanning Microscopy (CLSM)
2.7. Digestive Sustained Release and Cellular Uptake
2.7.1. Digestive Sustained Release
2.7.2. Cellular Uptake
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effects of Different Factors in UAE on Total Flavonoids
3.2. Construction of Glycosylation CN Micelles with Oat β-Glucan
3.2.1. FTIR Spectroscopy
3.2.2. XRD Spectra
3.2.3. TEM
3.3. Characterization of CN-OBG Micelles Loaded with Flavonoids
3.3.1. AFM and CLSM
3.3.2. Load Rate of AAFs
3.3.3. Emulsion Stability
3.4. Digestion Stability In Vitro
3.5. Cellular Uptake
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, X.W.; Wen, X.; He, J.W.; Zhao, H.; Li, S.M.; Wang, M.Y. Phytochemical components and biological activities of artemisia argyi. J. Funct. Foods 2019, 52, 648–662. [Google Scholar] [CrossRef]
- Jin, Y.S. Recent advances in natural antifungal flavonoids and their derivatives. Bioorgaic Med. Chem. Lett. 2019, 29, 126589. [Google Scholar] [CrossRef] [PubMed]
- Bhadange, Y.A.; Carpenter, J.; Saharan, V.K. A comprehensive review on advanced extraction techniques for retrieving bioactive components from natural sources. ACS Omega 2024, 9, 31274–31297. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, Q.; Wu, S.; Liu, Y.; Chen, J.; Li, T.; Su, D. Microcapsule preparation and properties of flavonoid extract from immature citrus reticulata ‘Chachiensis’ Peel. Foods 2024, 13, 3096. [Google Scholar] [CrossRef] [PubMed]
- Rehan, F.; Ahemad, N.; Gupta, M. Casein nanomicelle as an emerging biomaterial—A comprehensive review. Colloids Surf. B 2019, 179, 280–292. [Google Scholar] [CrossRef]
- Broyard, C.; Gaucheron, F. Modifications of structures and functions of caseins: A scientific and technological challenge. Dairy Sci. Technol. 2015, 95, 831–862. [Google Scholar] [CrossRef]
- Dalgleish, D.G.; Corredig, M. The structure of the Casein micelle of milk and its changes during processing. Annu. Rev. Food Sci. Technol. 2012, 3, 449–467. [Google Scholar] [CrossRef]
- Lelis, C.A.; Silva, B.D.; Torres Neto, L.; de Andrade, J.C.; Conte Junior, C.A. Micellar Casein as a nanocarrier for carvacrol: Binding mechanism, antioxidant activity, and antimicrobial activity against Escherichia coli. ACS Food Sci. Technol. 2023, 3, 2035–2044. [Google Scholar] [CrossRef]
- Somu, P.; Paul, S. Bio-conjugation of curcumin with self-assembled casein nanostructure via surface loading enhances its bioactivity: An efficient therapeutic system. Appl. Surf. Sci. 2018, 462, 316–329. [Google Scholar] [CrossRef]
- Dima, C.; Assadpour, E.; Dima, S.; Jafari, S.M. Bioactive-loaded nanocarriers for functional foods: From designing to bioavailability. Curr. Opin. Food Sci. 2020, 19, 954–994. [Google Scholar] [CrossRef]
- Demisli, S.; Theochari, I.; Christodoulou, P.; Zervou, M.; Xenakis, A.; Papadimitriou, V. Structure, activity and dynamics of extra virgin olive oil-in-water nanoemulsions loaded with vitamin D3 and calcium citrate. J. Mol. Liq. 2020, 306, 112908. [Google Scholar] [CrossRef]
- Rehan, F.; Karim, M.E.; Ahemad, N.; Qureshi, O.S.; Jelani, S.; Gan, S.H.; Chowdhury, E.H. Modified sodium caseinate-based nanomicelles for enhanced chemotherapeutics against breast cancer via improved cellular uptake and cytotoxicity. Drug Dev. Ind. Pharm. 2025, 2, 702–719. [Google Scholar] [CrossRef]
- Fan, Z.; Fehér, B.; Hettinga, K.; Voets, I.K.; Bijl, E. Effect of temperature, pH and calcium phosphate concentration on the properties of reassembled casein micelles. Food Hydrocoll. 2024, 149, 109592. [Google Scholar] [CrossRef]
- Li, M.; Wen, X.; Wang, K.; Liu, Z.; Ni, Y. Maillard induced glycation of β-casein for enhanced stability of the self-assembly micelles against acidic and calcium environment. Food Chem. 2022, 387, 132914. [Google Scholar] [CrossRef]
- Sun, X.; Wu, X.; Chen, X.; Guo, R.; Kou, Y.; Li, X.; Sheng, Y.; Wu, Y. Casein-maltodextrin Maillard conjugates encapsulation enhances the antioxidative potential of proanthocyanidins: An in vitro and in vivo evaluation. Food Chem. 2021, 346, 128952. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.D.; Tian, R.; Shi, X.H.; Hu, J.L.; Jiang, Z.M.; Hou, J.C. Characterisation and antioxidant activity of glycated casein hydrolysate with xylose: Impacts of zinc sulphate and cupric chloride. Int. Dairy J. 2021, 114, 104932. [Google Scholar] [CrossRef]
- Ho, Y.P.; Mi, J.O.; Yongkon, P.; Yoonsook, K. N ε-(carboxymethyl) lysine formation from the Maillard reaction of casein and different reducing sugars. Food Sci. Biotechnol. 2020, 29, 487–491. [Google Scholar]
- Zhang, H.; Liu, R.; Wang, J.L.; Cui, S.W.; Wang, A.Y.; Wang, B.; Zhang, N.; Yang, X.; Li, J.; Wang, H. Fabrication, characterization, and lipid-lowering effects of naringenin-zein-sodium caseinate-galactosylated chitosan nanoparticles. Int. J. Biol. Macromol. 2023, 230, 123150. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Wang, T.; Hu, Q.B.; Zhou, M.Y.; Xue, J.Y.; Luo, Y.C. Pectin coating improves physicochemical properties of caseinate/zein nanoparticles as oral delivery vehicles for curcumin. Food Hydrocoll. 2017, 70, 143–151. [Google Scholar] [CrossRef]
- Mohan, A.; McClements, D.J.; Udenigwe, C.C. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight. Food Chem. 2016, 213, 143–148. [Google Scholar] [CrossRef]
- Grundy, M.; Quint, J.; Rieder, A.; Ballance, S.; Dreiss, C.A.; Butterworth, P.J.; Ellis, P.R. Impact of hydrothermal and mechanical processing on dissolution kinetics and rheology of oat β-glucan. Carbohydr. Polym. 2017, 166, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Yin, H.; Shen, C.; Zhang, L.; Ren, D. Functional and structural properties of spirulina phycocyanin modified by ultra-high-pressure composite glycation. Food Chem. 2020, 306, 125615. [Google Scholar] [CrossRef] [PubMed]
- Rosburg, V.; Boylston, T.; White, P. Viability of bifidobacteria strains in yogurt with added oat beta-glucan and corn starch during cold storage. J. Food Sci. 2010, 75, C439–C444. [Google Scholar] [CrossRef] [PubMed]
- Gajendragadkar, C.N.; Gogate, P.R. Intensified recovery of valuable products from whey by use of ultrasound in processing steps: A review. Ultrason. Sonochem. 2016, 32, 102–118. [Google Scholar] [CrossRef] [PubMed]
- Vargas, S.A.; Delgado-Macuil, R.J.; Ruiz-Espinosa, H.; Rojas-López, M.; Amador-Espejo, G.G. High-intensity ultrasound pretreatment influence on whey protein isolates and its use on complex coacervation with kappa carrageenan: Evaluation of selected functional properties. Ultrason. Sonochem. 2021, 70, 105340. [Google Scholar] [CrossRef]
- Koirala, S.; Prathumpai, W.; Anal, A.K. Effect of ultrasonication pretreatment followed by enzymatic hydrolysis of caprine milk proteins and on antioxidant and angiotensin converting enzyme (ACE) inhibitory activity of peptides thus produced. Int. Dairy J. 2021, 118, 105026. [Google Scholar] [CrossRef]
- Yu, Y.; Yuan, M.; Zhou, L.; Liu, Y.; Chen, Y.; Wu, D.; Chen, Z.; Yuan, Q.; Han, Y.; Wang, J.; et al. Spice aldehydes improve emulsification stability of β-carotene by Schiff base reaction binding sodium caseinate as emulsion surface stabilizer. Food Chem. 2025, 475, 143305. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Nguyen, L.T.; Nguyen Le, T.H.; Ngoc Chau, T.N.; Thi Nguyen, Y.N.; Ha, T.D.; Tran Nguyen, P.T.; Chu, T.B.; Tran, C.H.; Le, M.T. Response surface methodology for aqueous two-phase system extraction: An unprecedented approach for the specific flavonoid-rich extraction of Houttuynia cordata Thunb. leaves towards acne treatment. Heliyon 2024, 10, e25245. [Google Scholar] [CrossRef]
- Watrelot, A.A.; Bouska, L. Optimization of the ultrasound-assisted extraction of polyphenols from Aronia and grapes. Food Chem. 2022, 386, 132703. [Google Scholar] [CrossRef]
- Zhou, H.; Feng, X.; Yan, Y.; Meng, X.; Wu, C.; Kang, Y.; Li, Y. Optimization of an ultrasonic-assisted aqueous two-phase extraction method for four flavonoids from Lysionotus pauciflorus. Prep. Biochem. Biotechnol. 2022, 52, 770–782. [Google Scholar] [CrossRef]
- Bosso, A.; Guaita, M.; Petrozziello, M. Influence of solvents on the composition of condensed tannins in grape pomace seed extracts. Food Chem. 2016, 207, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, G.; Zhao, M.; Ren, J.; Yang, B. Improvement of functional properties of peanut protein isolate by conjugation with dextran through Maillard reaction. Food Chem. 2012, 131, 901–906. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Li, S.; Ren, X.; Ma, H. Effects and mechanism of ultrasound pretreatment of protein on the Maillard reaction of protein-hydrolysate from grass carp (Ctenopharyngodon idella). Ultrason. Sonochem. 2020, 64, 104964. [Google Scholar] [CrossRef] [PubMed]
- Sarantis, S.D.; Eren, N.M.; Kowalcyk, B.; Jimenez–Flores, R.; Alvarez, V.B. Thermodynamic interactions of micellar casein and oat β-glucan in a model food system. Food Hydrocoll. 2021, 115, 106559. [Google Scholar] [CrossRef]
- Han, T.L.; Wang, M.Y.; Wang, Y.; Tang, L. Effects of high-pressure homogenization and ultrasonic treatment on the structure and characteristics of casein. LWT–Food Sci. Technol. 2020, 130, 109560. [Google Scholar] [CrossRef]
- Carrillo, L.L.M.; Juarez-Morales, M.G.; Garcia-Galicia, I.A.; Alarcon-Rojo, A.D.; Huerta-Jimenez, M. The effect of high-Intensity ultrasound on the physicochemical and microbiological properties of mexican panela cheese. Foods 2020, 9, 313. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, R.; Xu, X.; Zhou, G.; Liu, D. Structural modification by high-pressure homogenization for improved functional properties of freeze-dried myofibrillar proteins powder. Food Res. Int. 2017, 100 Pt 1, 193–200. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, L.; Xiang, R.; Wan, Y.; Pan, X.; Zheng, L.; Yin, Y.; Zheng, H.; Yi, Y. Polymeric micelles with photo-activated proton release behavior for enhanced tumor extracellular pH targeting and drug release. Eur. Polym. J. 2017, 96, 69–78. [Google Scholar] [CrossRef]
- Tian, M.; Fu, J.; Wang, Z.; Miao, C.; Lv, P.; He, D.; Li, Z.; Liu, T.; Li, M.; Luo, W. Enhanced activity and stability of Rhizomucor miehei lipase by mutating N-linked glycosylation site and its application in biodiesel production. Fuel 2021, 304, 12154. [Google Scholar] [CrossRef]
- Gu, F.L.; Kim, J.M.; Abbas, S.; Zhang, X.M.; Xia, S.Q.; Chen, Z.X. Structure and antioxidant activity of high molecular weight Maillard reaction products from casein-glucose. Food Chem. 2010, 120, 505–511. [Google Scholar] [CrossRef]
- Lin, J.; Cai, X.; Tang, M.; Wang, S. Preparation and evaluation of the chelating nanocomposite fabricated with Marine Algae Schizochytrium sp. protein hydrolysate and calcium. J. Agric. Food Chem. 2015, 63, 9704–9714. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Wu, H.; Du, M.; Tang, Y.; Liu, H.; Fu, Y.; Zhu, B. Food protein-derived calcium chelating peptides: A review. Trends Food Sci. Tech. 2016, 58, 140–148. [Google Scholar] [CrossRef]
- Zhou, L.; Yuan, M.; Han, Y.; Yu, Y.; Liu, Y.; Wu, D.; Chen, Y.; Sheng, B.; Chen, S.; Wang, J.; et al. Micellar casein was constructed to improve the encapsulation efficiency of algae oil docosahexaenoic acid by transglutaminase-coupled phosphoserine peptide chelating with Ca2+. Int. J. Biol. Macromol. 2025, 297, 139939. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, C.; Fu, X.; Huang, Q.; Zhang, B. Effect of pH and ionic strength on the emulsifying properties of two Octenylsuccinate starches in comparison with gum Arabic. Food Hydrocoll. 2018, 76, 96–102. [Google Scholar] [CrossRef]
- Liang, B.; Feng, S.; Li, Z.; Zhao, X.; Sun, C.; Ji, C.; Li, X. Enhancement of catechin loaded in BSA-pullulan nanoparticles on the oxidation stability of pickering emulsion: Effect of concentration. LWT–Food Sci. Technol. 2024, 208, 116728. [Google Scholar] [CrossRef]
- Marhamati, M.; Ranjbar, G.; Rezaie, M. Effects of emulsifiers on the physicochemical stability of Oil-in-water Nanoemulsions: A critical review. J. Mol. Liq. 2021, 340, 117218. [Google Scholar] [CrossRef]
- Maher, P.G.; Fenelon, M.A.; Zhou, Y.; Kamrul Haque, M.; Roos, Y.H. Optimization of β-casein stabilized nanoemulsions using experimental mixture design. J. Food Sci. 2011, 76, C1108–C1117. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Li, S.; Wang, N.; Zhao, S.; Chen, Y.; Chen, Y. Preparation of dextran-casein phosphopeptide conjugates, evaluation of its calcium binding capacity and digestion in vitro. Food Chem. 2021, 352, 129332. [Google Scholar] [CrossRef]
- Chen, S.; Han, Y.; Jian, L.; Liao, W.; Zhang, Y.; Gao, Y. Fabrication, characterization, physicochemical stability of zein-chitosan nanocomplex for co-encapsulating curcumin and resveratrol. Carbohydr. Polym. 2020, 236, 116090. [Google Scholar] [CrossRef]
- Dey, T.K.; Koley, H.; Ghosh, M.; Dey, S.; Dhar, P. Effects of nano-sizing on lipid bioaccessibility and ex vivo bioavailability from EPA-DHA rich oil in water nanoemulsion. Food Chem. 2019, 275, 135–142. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, D.; Peng, M.; Yang, M.; Yu, Y.; Yuan, M.; Liu, Y.; Zhu, B.; Xue, X.; Wang, J. Emulsifying Stability, Digestive Sustained Release, and Cellular Uptake of Alcohol-Soluble Artemisia argyi Flavonoids Were Improved by Glycosylation of Casein Micelles with Oat Glucan. Foods 2025, 14, 2435. https://doi.org/10.3390/foods14142435
Zhang Y, Wang D, Peng M, Yang M, Yu Y, Yuan M, Liu Y, Zhu B, Xue X, Wang J. Emulsifying Stability, Digestive Sustained Release, and Cellular Uptake of Alcohol-Soluble Artemisia argyi Flavonoids Were Improved by Glycosylation of Casein Micelles with Oat Glucan. Foods. 2025; 14(14):2435. https://doi.org/10.3390/foods14142435
Chicago/Turabian StyleZhang, Ye, Dongliang Wang, Mengling Peng, Min Yang, Ya Yu, Mengting Yuan, Yanan Liu, Bingyu Zhu, Xiuheng Xue, and Juhua Wang. 2025. "Emulsifying Stability, Digestive Sustained Release, and Cellular Uptake of Alcohol-Soluble Artemisia argyi Flavonoids Were Improved by Glycosylation of Casein Micelles with Oat Glucan" Foods 14, no. 14: 2435. https://doi.org/10.3390/foods14142435
APA StyleZhang, Y., Wang, D., Peng, M., Yang, M., Yu, Y., Yuan, M., Liu, Y., Zhu, B., Xue, X., & Wang, J. (2025). Emulsifying Stability, Digestive Sustained Release, and Cellular Uptake of Alcohol-Soluble Artemisia argyi Flavonoids Were Improved by Glycosylation of Casein Micelles with Oat Glucan. Foods, 14(14), 2435. https://doi.org/10.3390/foods14142435