Impact of Crosslinking Agent on Sorption Properties of Molecularly Imprinted Polymers in Relation to Silver
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. MIPs Synthesis
2.3. Physico-Chemical Analysis
3. Results and Discussion
3.1. FTIR Analysis
3.2. Reaction Mechanism
3.3. SEM Analysis
3.4. Sorption Experiments
3.5. Analysis of Sorption Kinetics
3.5.1. Radushkevich Kinetic Model
- The cavity structure and surface area: MIP(DEGDMA) may have a more accessible cavity network or a higher surface area, facilitating faster diffusion and adsorption.
- The chemical affinity: MIP(DEGDMA) may have stronger interactions (e.g., electrostatic, van der Waals, or chemical bonding) with the adsorbate.
- The particle size: Smaller particles (if applicable) could lead to faster kinetics due to shorter diffusion paths.
3.5.2. Elovich Kinetic Model
- Higher porosity/microporosity: Faster diffusion of adsorbate into pores.
- More active surface sites: Functional groups (e.g., -OH, -COOH) accelerate initial binding.
- Smaller particle size: Larger surface area-to-volume ratio.
- The same adsorption mechanism (e.g., chemisorption via ion exchange or complexation).
- Comparable surface heterogeneity (energy distribution of binding sites).
3.6. Desorption Experiments
4. Conclusions
- (1)
- The molecularly imprinted structures with silver salt as the template were synthesized with the ratio of template:monomer:monomer:cross-linker = 1:2:2:8. The obtained imprinted structures have a dark brown color due to the presence of the monomer 4-VP. MIP(DVB) has a dense structure, whereas MIP(DEGDMA) has a looser structure.
- (2)
- The structure of the MIPs is dense and heterogeneous, with molecular imprint cavities formed due to unstable bonding between the template and the monomer, likely influenced by the ionized state of silver. The average cavity sizes were 0.81 ± 0.20 μm for MIP(DEGDMA) and 0.68 ± 0.23 μm for MIP(DVB), with the difference attributed to the flexibility of DEGDMA’s long-chain structure compared to DVB’s rigid aromatic ring.
- (3)
- A mechanism of chemical reaction for obtaining a molecularly imprinted system with a silver template was suggested, which includes the formation of a pre-polymerization complex, the polymerization of monomers, and cross-linker around a template molecule. In the formation of a pre-polymerization complex, it is supposed that donor–acceptor bonds are formed between the pyridine group of the monomer 4-vinylpyridine and template ions, and hydrogen bonds are formed between the monomer methacrylic acid and template molecules.
- (4)
- MIP(DEGDMA) saturates faster during silver sorption in comparison with MIP(DVB), but the latter sorbs a higher concentration of silver. The average sorption degree is approximately 72% and the average sorption capacity is 3.6 g/g, which is considered to be quite a productive result for MIPs.
- (5)
- The sorption process was described using kinetic models (Radushkevich and Elovich). Both kinetic models showed identical results that correlated with the results of the sorption experiments: MIP(DEGDMA) saturates faster during silver sorption in comparison with MIP(DVB), but the latter sorbs a higher concentration of silver.
- (6)
- The desorption degree reaches nearly 80% after 24 h, indicating that the MIPs possess high desorption efficiency and may be effectively used as sorbents for silver recovery.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MIP | Molecularly imprinted polymer |
MAA | Methacrylic acid |
4-VP | 4-vinylpyridine |
DEGDMA | Diethylene glycol dimethacrylate |
DVB | Divinylbenzene |
AIBN | Azobisisobutyronitrile |
HEC | Hydroxyethyl cellulose |
FTIR | Fourier transform infrared spectroscopy |
SEM | Scanning electron microscopy |
References
- Tan, K.B.; Sun, D.H.; Huang, J.L.; Odoom-Wubah, T.; Li, Q.B. State of arts on the bio-synthesis of noble metal nanoparticles and their biological application. Chin. J. Chem. Eng. 2021, 30, 272–290. [Google Scholar] [CrossRef]
- Shou, W.; Yang, S.T.; Wang, Y.L.; Guo, L.H. Preparation of Noble Metal Nanoparticles and Hydrogel Composite Materials and Their Application in Analytical Chemistry. Chin. J. Analyt. Chem. 2021, 49, 676–685. [Google Scholar] [CrossRef]
- Zeng, X.; Zhao, Y.; Hu, X.; Stucky, G.D.; Moskovits, M. Rational Component and Structure Design of Noble-Metal Composites for Optical and Catalytic Applications. Small Struct. 2021, 2, 2000138. [Google Scholar] [CrossRef]
- Liu, X.Q.; Iocozzia, J.; Wang, Y.; Cui, X.; Chen, Y.H.; Zhao, S.Q.; Li, Z.; Lin, Z.Q. Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ. Sci. 2017, 10, 402–434. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, W.; Gao, J. Trash or treasure? Sustainable noble metal recovery. Green Chem. 2024, 26, 5684–5707. [Google Scholar] [CrossRef]
- Magoda, K.; Mekuto, L. Biohydrometallurgical Recovery of Metals from Waste Electronic Equipment: Current Status and Proposed Process. Recycling 2022, 7, 67. [Google Scholar] [CrossRef]
- Xing, W.D.; Sohn, S.H.; Lee, M.S. A Review on the Recovery of Noble Metals from Anode Slimes. Mineral Proc. Extr. Met. Rev. 2019, 41, 130–143. [Google Scholar] [CrossRef]
- Dinh, T.; Dobo, Z.; Kovacs, H. Phytomining of noble metals—A review. Chemosphere 2022, 286, 131805. [Google Scholar] [CrossRef]
- Padamata, S.K.; Yasinskiy, A.S.; Polyakov, P.V.; Pavlov, E.A.; Varyuhin, D.Y. Recovery of Noble Metals from Spent Catalysts: A Review. Met. Mater. Trans. B Proc. 2020, 51, 2413–2435. [Google Scholar] [CrossRef]
- Islam, A.; Ahmed, T.; Awual, M.R.; Rahman, A.; Sultana, M.; Abd Aziz, A.; Monir, M.U.; Teo, S.H.; Hasan, M. Advances in sustainable approaches to recover metals from e-waste—A review. J. Clean. Prod. 2020, 244, 118815. [Google Scholar] [CrossRef]
- Kaczorowska, M.A. The Use of Polymer Inclusion Membranes for the Removal of Metal Ions from Aqueous Solutions—The Latest Achievements and Potential Industrial Applications: A Review. Membranes 2022, 12, 1135. [Google Scholar] [CrossRef] [PubMed]
- Keskin, B.; Zeytuncu, B.; Koyuncu, I. Efficient Separation and Recovery of Precious Metal Ions by Polymer Inclusion Membranes (PIMs): A Mini Review. Solv. Extr. Ion Exch. 2024, 42, 193–215. [Google Scholar] [CrossRef]
- Barek, J. Voltammetric and amperometric applications of silver amalgam electrodes for monitoring of reducible organic compounds. TrAC Trends Analyt. Chem. 2024, 170, 117416. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, L.Q. Development of silver oxide electrode in silver-zinc storage batteries. Rare Met. Mat. Eng. 2008, 37, 1124–1128. [Google Scholar]
- Devi, R.S.; Girigoswami, A.; Siddharth, M.; Girigoswami, K. Applications of Gold and Silver Nanoparticles in Theranostics. Appl. Biochem. Biotechnol. 2022, 194, 4187–4219. [Google Scholar] [CrossRef] [PubMed]
- Sim, W.; Barnard, R.T.; Blaskovich, M.A.T.; Ziora, Z.M. Antimicrobial Silver in Medicinal and Consumer Applications: A Patent Review of the Past Decade (2007–2017). Antibiotics 2018, 7, 93. [Google Scholar] [CrossRef]
- Maillard, J.Y.; Hartemann, P. Silver as an antimicrobial: Facts and gaps in knowledge. Crit. Rev. Microbiol. 2012, 39, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, D. Silver nanoparticles as labels for applications in bioassays. TrAC Trends Analyt. Chem. 2014, 61, 67–73. [Google Scholar] [CrossRef]
- Mathur, P.; Jha, S.; Ramteke, S.; Jain, N.K. Pharmaceutical aspects of silver nanoparticles. Artif. Cells Nanomed. Biotechnol. 2018, 46, 115–126. [Google Scholar] [CrossRef]
- Halbes-Letinois, U.; Weibel, J.M.; Pale, P. The organic chemistry of silver acetylides. Chem. Soc. Rev. 2007, 36, 759–769. [Google Scholar] [CrossRef]
- Zhao, Q.X.; Zhao, M.M.; Qiu, J.Q.; Lai, W.Y.; Pang, H.; Huang, W. One Dimensional Silver-based Nanomaterials: Preparations and Electrochemical Applications. Small 2017, 13, 1701091. [Google Scholar] [CrossRef]
- Grancaric, A.M.; Rybicki, E.; Tarbuk, A.; Pavlovic, G.; Botteri, L. Nanoparticles of silver in antimicrobial treatment of textiles. Tekstil 2011, 60, 629–639. [Google Scholar]
- Syed, S. Silver recovery aqueous techniques from diverse sources: Hydrometallurgy in recycling. Waste Manag. 2016, 50, 234–256. [Google Scholar] [CrossRef] [PubMed]
- Aghaei, E.; Alorro, R.D.; Encila, A.N.; Yoo, K. Magnetic Adsorbents for the Recovery of Precious Metals from Leach Solutions and Wastewater. Metals 2017, 7, 529. [Google Scholar] [CrossRef]
- Guo, J.Q.; Wu, Y.F.; Wang, Z.H.; Yu, J.M.; Li, J.R. Review: Adsorbents for the recovery of precious metals from wastewater. J. Mater. Sci. 2022, 57, 10886–10911. [Google Scholar] [CrossRef]
- Guibal, E.; Vincent, T.; Navarro, R. Metal ion biosorption on chitosan for the synthesis of advanced materials. J. Mater. Sci. 2014, 49, 5505–5518. [Google Scholar] [CrossRef]
- Guo, W.K.; Liu, J.L.; Tao, H.J.; Meng, J.; Yang, J.; Shuai, Q.; Asakura, Y.; Huang, L.J.; Yamauchi, Y. Covalent Organic Framework Nanoarchitectonics: Recent Advances for Precious Metal Recovery. Adv. Mater. 2024, 36, 2405399. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.C.; Cheng, C.L.; Han, Y.L.; Chen, B.Y.; Chang, J.S. Recovery of high-value metals from geothermal sites by biosorption and bioaccumulation. Biores. Technol. 2014, 160, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Foley, S.R.; Wilson, L.D. An Overview of Modified Chitosan Adsorbents for the Removal of Precious Metals Species from Aqueous Media. Molecules 2022, 27, 978. [Google Scholar] [CrossRef]
- Ying, T.L.; Gao, M.J.; Zhang, X.L. Highly selective technique-molecular imprinting. Chin. J. Analyt. Chem. 2001, 29, 99–102. [Google Scholar]
- Komiyama, M.; Takeuchi, T.; Mukawa, T.; Asanuma, H. Molecular Imprinting-from Fundamentals to Applications; Wiley: New York, NY, USA, 2003; 578p. [Google Scholar]
- Chen, L.X.; Wang, X.Y.; Lu, W.H.; Wu, X.Q.; Li, J.H. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef] [PubMed]
- Szatkowska, P.; Koba, M.; Koslinski, P.; Szablewski, M. Molecularly Imprinted Polymers’ Applications: A Short Review. Mini-Rev. Org. Chem. 2013, 10, 400–408. [Google Scholar] [CrossRef]
- Wu, H.R.; Lin, G.; Liu, C.C.; Chu, S.Y.; Mo, C.; Liu, X.B. Progress and challenges in molecularly imprinted polymers for adsorption of heavy metal ions from wastewater. Trends Environ. Analyt. Chem. 2022, 36, e00178. [Google Scholar] [CrossRef]
- Sarpong, K.A.; Xu, W.; Huang, W.; Yang, W. The Development of Molecularly Imprinted Polymers in the Clean-Up of Water Pollutants: A Review. Am. J. Analyt. Chem. 2019, 10, 202–226. [Google Scholar] [CrossRef]
- Dmitrienko, E.V.; Pyshnaya, I.A.; Martyanov, O.N.; Pyshny, D.V. Molecularly imprinted polymers for biomedical and biotechnological applications. Russ. Chem. Rev. 2016, 85, 513–536. [Google Scholar] [CrossRef]
- Saylan, Y.; Yilmaz, F.; Ozgur, E.; Derazshamshir, A.; Yavuz, H.; Denizli, A. Molecular Imprinting of Macromolecules for Sensor Applications. Sensors 2017, 17, 898. [Google Scholar] [CrossRef]
- Bhogal, S.; Kaur, K.; Malik, A.K.; Sonne, C.; Lee, S.S.; Kim, K.H. Core-shell structured molecularly imprinted materials for sensing applications. TrAC Trends Anal. Chem. 2020, 133, 16043. [Google Scholar] [CrossRef]
- Irem Kaya, S.; Cetinkaya, A.; Ozkan, S.A. Molecularly imprinted polymers as highly selective sorbents in sample preparation techniques and their applications in environmental water analysis. Trends Environ. Analyt. Chem. 2023, 37, e00193. [Google Scholar] [CrossRef]
- Cheong, W.J.; Yang, S.H.; Ali, F. Molecular imprinted polymers for separation science: A review of reviews. J. Sep. Sci. 2013, 36, 609–628. [Google Scholar] [CrossRef]
- Vijayan, P.P.; Chithra, P.G.; Krishna, S.V.A.; Ansar, E.B.; Parameswaranpillai, J. Development and Current Trends on Ion Exchange Materials. Sep. Purif. Rev. 2024, 53, 40–60. [Google Scholar] [CrossRef]
- Samonin, V.V.; Spiridonova, E.A.; Khokhlachev, S.P.; Podvyaznikov, M.L. Promising Directions for Production and Application of Inorganic Sorbent Materials. Russ. J. Inorg. Chem. 2024, 69, 392–397. [Google Scholar] [CrossRef]
- Melnikov, Y.; Kondaurov, R.; Agibayeva, L. Effect of Lanthanum Sorption on the Behavior of Rarely Crosslinked Acidic and Basic Polymer Hydrogels during Remote Interaction. Polymers 2023, 15, 1420. [Google Scholar] [CrossRef]
- Kondaurov, R.; Melnikov, Y.; Agibayeva, L. Application of Molecular Imprinting for Creation of Highly Selective Sorbents for Extraction and Separation of Rare-Earth Elements. Polymers 2023, 15, 846. [Google Scholar] [CrossRef]
- Agibayeva, L.; Melnikov, Y.; Berdaly, A.; Kondaurov, R. Development of Optimal Conditions for Synthesis of Molecularly Imprinted Polymers for Effective Terbium Sorption. Polymers 2025, 17, 1398. [Google Scholar] [CrossRef] [PubMed]
- Cormack, P.A.G.; Elorza, A.Z. Molecularly imprinted polymers: Synthesis and characterization. J. Chromatogr. B 2004, 804, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Kyzas, G.Z.; Bikiaris, D.N. Molecular Imprinting for High-Added Value Metals: An Overview of Recent Environmental Applications. Adv. Mater. Sci. Eng. 2014, 2014, 932637. [Google Scholar] [CrossRef]
- Şarkaya, K.; Bakhshpour, M.; Denizli, A. Ag+ ions imprinted cryogels for selective removal of silver ions from aqueous solutions. Sep. Sci. Technol. 2018, 54, 2993–3004. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Y.; Helleur, R. Selective adsorption of Ag+ by ion-imprinted O-carboxymethyl chitosan beads grafted with thiourea–glutaraldehyde. Chem. Eng. J. 2015, 264, 56–65. [Google Scholar] [CrossRef]
- Shawky, H.A. Synthesis of ion-imprinting chitosan/PVA crosslinked membrane for selective removal of Ag(I). J. Appl. Polym. Sci. 2009, 114, 2608–2615. [Google Scholar] [CrossRef]
- Behbahani, M.; Omidi, F.; Kakavandi, M.G.; Hesam, G. Selective and sensitive determination of silver ions at trace levels based on ultrasonic-assisted dispersive solid-phase extraction using ion-imprinted polymer nanoparticles. Appl. Organometal. Chem. 2017, 31, e3758. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Bikiaris, D.N. Characterization of binding properties of silver ion-imprinted polymers with equilibrium and kinetic models. J. Mol. Liq. 2015, 212, 133–141. [Google Scholar] [CrossRef]
- Kazemi, E.; Haji Shabani, A.M.; Dadfarnia, S. Synthesis and characterization of a nanomagnetic ion imprinted polymer for selective extraction of silver ions from aqueous samples. Microchim. Acta 2015, 182, 1025–1033. [Google Scholar] [CrossRef]
- Taghizadeh, M.; Shafizadeh, F. Fabrication of a novel hydrophilic ion-imprinted polymer based on silica-modified magnetic graphene oxide as a sensitive sorbent for the fast separation of silver ions from aqueous media. J. Disp. Sci. Technol. 2023, 46, 574–590. [Google Scholar] [CrossRef]
- Jalilian, R.; Taheri, A. Synthesis and application of a novel core-shell-shell magnetic ion imprinted polymer as a selective adsorbent of trace amounts of silver ions. e-Polymers 2018, 18, 123–134. [Google Scholar] [CrossRef]
- Hashemi-Moghaddam, H.; Yahyazadeh, F.; Vardini, M.T. Synthesis of a New Molecularly Imprinted Polymer for Sorption of the Silver Ions from Geological and Antiseptic Samples for Determination by Flame Atomic Absorption Spectrometry. J. AOAC Int. 2014, 97, 1434–1438. [Google Scholar] [CrossRef]
- Mirzaei, M.; Hafezi, M. Selective ion-imprinted polymers for preconcentration and determination of silver in water and hair by electrothermal atomic absorption spectrometry. J. Analyt. Chem. 2017, 72, 70–75. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Nasr-Esfahani, P. Chapter 2. Fundamental aspects of molecular imprinting. In Molecularly Imprinted Polymer Composites: Synthesis, Characterisation and Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 2–15. [Google Scholar] [CrossRef]
- Lisichkin, G.V.; Krutyakov, Y.A. Molecularly imprinted materials: Synthesis, properties, applications. Uspekhi Khimii. 2006, 75, 998–1017. [Google Scholar] [CrossRef]
- Ghiurea, M.; Donescu, D. Influence of crosslinker/porogen ratio upon imprinted polymer parameters. U.P.B. Sci. Bull. Ser. B 2011, 73, 163–172. [Google Scholar]
- Ensafi, A.A.; Kazemifard, N.; Dehkordi, Z.S. Chapter 3. Parameters that affect molecular imprinting polymers. In Molecularly Imprinted Polymer Composites: Synthesis, Characterisation and Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 21–48. [Google Scholar] [CrossRef]
- Jiang, Y.; Kim, D. Effect of solvent/monomer feed ratio on the structure and adsorption properties of Cu2+-imprinted microporous polymer particles. Chem. Eng. J. 2011, 166, 435–444. [Google Scholar] [CrossRef]
- Tarasevich, B.N. IR Spectra of the Main Classes of Organic Compounds; Reference Materials: Moscow, Russia, 2012; 55p. [Google Scholar]
Feature | MIPs | Conventional Sorbents (e.g., Activated Carbon, Resins) |
---|---|---|
Selectivity | Extremely high (mimics antibodies) | Low to moderate |
Stability | Resists harsh pH/temperature | Degrades under extreme conditions |
Reusability | 100+ cycles with minimal loss | Limited regeneration cycles |
Customization | Designed for any target | Limited functional groups |
Cost | Higher initial cost | Lower cost but less efficient |
Properties | MIP(DEGDMA) | MIP(DVB) |
---|---|---|
Color | Dark brown | Dark brown |
Density | Loose | Dense |
Odor | Strong smell of monomer | Gasoline-like smell |
Functional Group | Wavenumber, cm−1 for MIP(DEGDMA) | Wavenumber, cm−1 for MIP(DVB) |
---|---|---|
-OH (inter- and intramolecular -H bonds in polymers) | 3418.59 | 3420 |
-CH2-CO- | 2920.06; 1441.52 | - |
-COOH | 1629.57 | 1628.91 |
Aromatic ring | - | 1508.65; 1483.93 |
-C=O | 1285.25 | - |
-C-O-C- | 1176.37 | - |
Pyridine ring | 1069.89 | 1030.52 |
-OH in -COOH | 887.15 | 892.49 |
1,4-substitution in aromatic ring | - | 794.67 |
--(CH2)x- | 708.02 | 706.38 |
Parameter | MIP(DEGDMA) | MIP(DVB) |
---|---|---|
Sorption degree, % | 66.08 ± 0.26 | 78.35 ± 0.14 |
Sorption capacity, g/g | 3.31 ± 0.01 | 3.92 ± 0.01 |
Kinetic Model | Sorption Rate, min−1 | |
---|---|---|
MIP(DEGDMA) | MIP(DVB) | |
Radushkevich | 0.0179 | 0.0113 |
Elovich | 0.0172 | 0.0139 |
Parameter | MIP(DEGDMA) | MIP(DVB) |
---|---|---|
Desorption degree, % | 79.85 ± 0.09 | 78.52 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agibayeva, L.; Melnikov, Y.; Kubiyeva, D.; Kondaurov, R. Impact of Crosslinking Agent on Sorption Properties of Molecularly Imprinted Polymers in Relation to Silver. Polymers 2025, 17, 2055. https://doi.org/10.3390/polym17152055
Agibayeva L, Melnikov Y, Kubiyeva D, Kondaurov R. Impact of Crosslinking Agent on Sorption Properties of Molecularly Imprinted Polymers in Relation to Silver. Polymers. 2025; 17(15):2055. https://doi.org/10.3390/polym17152055
Chicago/Turabian StyleAgibayeva, Laura, Yevgeniy Melnikov, Dilnaz Kubiyeva, and Ruslan Kondaurov. 2025. "Impact of Crosslinking Agent on Sorption Properties of Molecularly Imprinted Polymers in Relation to Silver" Polymers 17, no. 15: 2055. https://doi.org/10.3390/polym17152055
APA StyleAgibayeva, L., Melnikov, Y., Kubiyeva, D., & Kondaurov, R. (2025). Impact of Crosslinking Agent on Sorption Properties of Molecularly Imprinted Polymers in Relation to Silver. Polymers, 17(15), 2055. https://doi.org/10.3390/polym17152055