Tailoring Dialdehyde Bacterial Cellulose Synthesis for Versatile Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Cellulose (BC)
2.2. Chemicals
2.3. Synthesis of Dialdehyde Bacterial Cellulose (DBC)
2.4. Experimental Design
2.5. Fabrication of Gelatin–DBC (GDB) Sponge
2.6. Characterization of DBC and GDB Sponge
2.6.1. Fourier Transform-Infrared Spectrometer (FT-IR)
2.6.2. Scanning Electron Microscopy (SEM)
2.6.3. Determination of Degree of Oxidation (DO)
2.6.4. Degree of Crosslinking
2.6.5. Swelling and Weight Loss
2.6.6. Porosity
2.6.7. Mechanical Test
2.7. Statistical Analysis
3. Results and Discussion
3.1. Experimental Design and Data Analysis
3.2. Characterization of DBC
3.2.1. FT-IR Analysis
3.2.2. Morphologies of BC and DBCs
3.3. Characterization of GDB Sponge
3.3.1. Degree of Crosslinking of GDB Sponge
3.3.2. Weight Loss of GDB Sponge
3.3.3. Swelling of GDB Sponge
3.3.4. Morphology of GDB Sponge
3.3.5. Mechanical Strength of GDB Sponge
3.4. Future Applications for DBC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Navya, P.V.; Gayathri, V.; Samanta, D.; Sampath, S. Bacterial cellulose: A promising biopolymer with interesting properties and applications. Int. J. Biol. Macromol. 2022, 220, 435–461. [Google Scholar] [CrossRef]
- Cazon, P.; Velazquez, G.; Vazquez, M. Characterization of mechanical and barrier properties of bacterial cellulose, glycerol and polyvinyl alcohol (PVOH) composite films with eco-friendly UV-protective properties. Food Hydrocoll. 2020, 99, 105323. [Google Scholar] [CrossRef]
- Park, D.; Kim, J.W.; Shin, K.; Kim, J.W. Bacterial cellulose nanofibrils-reinforced composite hydrogels for mechanical compression-responsive on-demand drug release. Carbohydr. Polym. 2021, 272, 118459. [Google Scholar] [CrossRef]
- Styaningrum, P.; Indrianingsih, A.W.; Suryani, R.; Suratno; Bahmid, N.A.; Rahman, M.F.; Noviana, E. Synthesis, characterization, and evaluation of antibacterial properties of silver/carboxymethyl cellulose/bacterial cellulose/Clitoria ternatea extract aerogel composites. Food Bioprod. Process. 2024, 148, 527–537. [Google Scholar] [CrossRef]
- Saleh, A.K.; Ray, J.B.; El-Sayed, M.H.; Alalawy, A.I.; Omer, N.; Abdelaziz, M.A.; Abouzeid, R. Functionalization of bacterial cellulose: Exploring diverse applications and biomedical innovations: A review. Int. J. Biol. Macromol. 2024, 264, 130454. [Google Scholar] [CrossRef] [PubMed]
- Naomi, R.; Idrus, R.B.H.; Fauzi, M.B. Plant- vs. bacterial-derived cellulose for wound healing: A review. Int. J. Environ. Res. Public Health 2020, 27, 6830. [Google Scholar] [CrossRef]
- Busuioc, C.; Isopencu, G.O.; Deleanu, I.-M. Bacterial cellulose-polyvinyl alcohol based complex composites for controlled drug release. Appl. Sci. 2023, 13, 1015. [Google Scholar] [CrossRef]
- Unal, S.; Arslan, S.; Yilmaz, B.K.; Oktar, F.N.; Sengil, A.Z.; Gunduz, O. Production and characterization of bacterial cellulose scaffold and its modification with hyaluronic acid and gelatin for glioblastoma cell culture. Cellulose 2021, 28, 117–132. [Google Scholar] [CrossRef]
- Li, J.; Wan, Y.; Li, L.; Liang, H.; Wang, J. Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater. Sci. Eng. C 2009, 29, 1635–1642. [Google Scholar] [CrossRef]
- Fan, Q.G.; Lewis, D.M.; Tapley, K.N. Characterization of cellulose aldehyde using Fourier transform infrared spectroscopy. J. Appl. Polym. Sci. 2001, 82, 1195–1202. [Google Scholar] [CrossRef]
- Peiravi-Rivash, O.; Mashreghi, M.; Baigenzhenov, O.; Hosseini-Bandegharaei, A. Producing bacterial nano-cellulose and keratin from wastes to synthesize keratin/cellulose nanobiocomposite for removal of dyes and heavy metal ions from waters and wastewaters. Colloid. Surfaces A Physicochem. Eng. Asp. 2023, 656, 130355. [Google Scholar] [CrossRef]
- Xie, Y.; Qiao, K.; Yue, L.; Tang, T.; Zheng, Y.; Zhu, S.; Yang, H.; Fang, Z. A self-crosslinking, double-functional group modified bacterial cellulose gel used for antibacterial and healing of infected wound. Bioact. Mater. 2022, 17, 248–260. [Google Scholar] [CrossRef]
- Favi, P.M.; Ospina, S.P.; Kachole, M.; Gao, M.; Atehortua, L.; Webster, T.J. Preparation and characterization of biodegradable nano hydroxyapatite–bacterial cellulose composites with well-defined honeycomb pore arrays for bone tissue engineering applications. Cellulose 2016, 23, 1263–1282. [Google Scholar] [CrossRef]
- Gao, P.; Cha, R.; Luo, H.; Xu, Y.; Zhang, P.; Han, L.; Wang, X.; Zhang, Z.; Jiang, X. Development of antimicrobial oxidized cellulose film for active food packaging. Carbohydr. Polym. 2022, 278, 118922. [Google Scholar] [CrossRef] [PubMed]
- Thongsrikhem, N.; Taokaew, S.; Sriariyanun, M.; Kirdponpattara, S. Antibacterial activity in gelatin-bacterial cellulose composite film by thermally crosslinking with cinnamaldehyde towards food packaging application. Food Packag. Shelf Life 2022, 31, 100766. [Google Scholar] [CrossRef]
- Kim, U.J.; Wada, M.; Kuga, S. Solubilization of dialdehyde cellulose by hot water. Carbohydr. Polym. 2004, 56, 7–10. [Google Scholar] [CrossRef]
- Kirdponpattara, S.; Philasaphong, M.; Kongruang, S. Gelatin-bacterial cellulose composite sponges thermally cross-linked with glucose for tissue engineering applications. Carbohydr. Polym. 2017, 177, 361–368. [Google Scholar] [CrossRef]
- Nagpal, M.; Kaur, M.; Shama, D.; Baldi, A.; Chandra, R.; Madan, J. Optimization of sulfation of okra fruit gum for improved rheological and pharmacological properties. Int. J. Biol. Macromol. 2019, 122, 1–9. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Shao, S.; Chang, X.; Li, M. Periodate oxidation of carboxymethyl cellulose under controlled conditions. ChemistrySelect 2020, 5, 6765–6773. [Google Scholar] [CrossRef]
- Tachai, K.; Deenu, A.; Kamthai, S. Short synthesis time and characterization of dialdehyde carboxymethyl cellulose (DCMC) from high bagasse carboxymethyl cellulose (CMCB) concentration. J. Nat. Fibers 2024, 21, 2371911. [Google Scholar] [CrossRef]
- Keshka, S.M.; Ramadana, A.M.; Bondocka, S. Physicochemical characterization of novel Schiff bases derived from developed bacterial cellulose 2, 3-dialdehyde. Carbohydr. Polym. 2015, 127, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Wegrzynowska-Drzymalska, K.; Mlynarczyk, D.T.; Chelminiak-Dudkiewicz, D.; Kaczmarek, H.; Goslinski, T.; Ziegler-Borowska, M. Chitosan-gelatin films cross-linked with dialdehyde cellulose nanocrystals as potential materials for wound dressings. Int. J. Mol. Sci. 2022, 23, 9700. [Google Scholar] [CrossRef]
- Potivara, K.; Phisalaphong, P. Development and characterization of bacterial cellulose reinforced with natural rubber. Materials 2019, 12, 2323. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ge, H.; Xu, M.; Cao, J.; Dai, Y. Physicochemical properties, antioxidant and antibacterial activities of dialdehyde microcrystalline cellulose. Cellulose 2017, 24, 2287–2298. [Google Scholar] [CrossRef]
- Petros, S.; Tesfaye, T.; Ayele, M. A review on gelatin based hydrogels for medical textile applications. J. Eng. 2020, 1, 8866582. [Google Scholar] [CrossRef]
- Kasi, P.B.; Serafin, A.; O’Brien, L.; Moghbel, N.; Novikov, L.N.; Kelk, P.; Collins, M.N. Electroconductive gelatin/hyaluronic acid/hydroxyapatite scaffolds for enhanced cell proliferation and osteogenic differentiation in bone tissue engineering. Biomater. Adv. 2025, 173, 214286. [Google Scholar] [CrossRef] [PubMed]
- Abed, T.; Aly, S.H.; Salim, S.A.; Haikal, R.R.; Shams-Eldin, R.; EL-Moslamy, S.H.; Abdelazim, E.B.; Helmy, M.S.; Ali, A.A.; Eissa, N.G.; et al. Optimizing hydrogel performance composed of Japanese pagoda tree extract loaded-gelatin-sodium alginate-polyethylene oxide for biomedical applications: Influence incorporated calcium-based metal organic frameworks and zinc oxide NPs. Int. J. Biol. Macromol. 2025, 310, 143526. [Google Scholar] [CrossRef]
- Chauhan, M.; Roopmani, P.; Rajendran, J.; Narayan, K.P.; Giri, J. Injectable, in-situ forming, tunable, biocompatible gelatin hydrogels for biomedical applications. Int. J. Biol. Macromol. 2025, 285, 138200. [Google Scholar] [CrossRef]
- Miklosic, G.; Bektas, E.I.; Hangartner, A.; Pavan, M.; Garofolin, G.; Galesso, D.; Beninatto, R.; D’Este, M. Radical-free photopolymerizable composite of hyaluronic acid and gelatin for tissue engineering. Acta Biomater. 2025, 197, 121–134. [Google Scholar] [CrossRef]
- Sonwane, S.; Bonde, S.; Bonde, C.; Chandarana, C. Advances in gelatin-based scaffolds for tissue engineering applications: A review. J. Drug Deliv. Sci. Technol. 2025, 107, 106789. [Google Scholar] [CrossRef]
- Magar, H.S.; Fahim, A.M.; Hashem, M.S. Accurate, affordable, and easy electrochemical detection of ascorbic acid in fresh fruit juices and pharmaceutical samples using an electroactive gelatin sulfonamide. RCS Adv. 2024, 14, 39820–39832. [Google Scholar] [CrossRef]
- Hassan, M.; Kanwal, T.; Siddiqui, A.J.; Ali, A.; Hussain, D.; Musharraf, S.G. Authentication of porcine, bovine, and fish gelatins based on quantitative profile of amino acid and chemometric analysis. Food Control 2025, 168, 110909. [Google Scholar] [CrossRef]
- Prata, A.S.; Zanin, M.H.A.; Re, M.I.; Grosso, C.R.F. Release properties of chemical and enzymatic crosslinked gelatin-gum Arabic microparticles containing a fluorescent probe plus vetiver essential oil. Colloids Surf. B Biointerfaces 2008, 67, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, Q.; Ren, B.; Muskhelishvili, L.; Davis, K.; Wynne, R.; Rua, D.; Cao, X. Subacute pulmonary toxicity of glutaraldehyde aerosols in a human in vitro airway tissue model. Int. J. Mol. Sci. 2022, 23, 12118. [Google Scholar] [CrossRef]
- Bernardini, L.; Barbosa, E.; Charao, M.F.; Brucker, N. Formaldehyde toxicity reports from in vitro and in vivo studies: A review and updated data. Drug Chem. Toxicol. 2022, 45, 972–984. [Google Scholar] [CrossRef] [PubMed]
- Zi, Y.; Shi, C.; Kan, G.; Peng, J.; Gong, H.; Wang, X.; Zhong, J. Two types of pH-responsive genipin-crosslinked gelatin conjugates with high surface hydrophobicity for emulsion stabilization. Food Hydrocoll. 2024, 150, 109718. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, J.; Qin, S.; Pei, Y.; Zheng, X.; Tang, K. High mechanical strength gelatin composite hydrogels reinforced by cellulose nanofibrils with unique beads-on-a-string morphology. Int. J. Biol. Macromol. 2020, 164, 1776–1784. [Google Scholar] [CrossRef]
- Hivechi, A.; Bahrami, S.H.; Siegel, R.A. Investigation of morphological, mechanical and biological properties of cellulose nanocrystal reinforced electrospun gelatin nanofibers. Int. J. Biol. Macromol. 2019, 124, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Razack, S.A.; Lee, Y.; Shin, H.; Duraiarasan, S.; Chun, B.-S.; Kang, H.W. Cellulose nanofibrils reinforced chitosan-gelatin based hydrogel loaded with nanoemulsion of oregano essential oil for diabetic wound healing assisted by low level laser therapy. Int. J. Biol. Macromol. 2023, 226, 220–239. [Google Scholar] [CrossRef]
- Qiao, D.; Huang, Y.; Hou, X.; Ye, F.; Wu, K.; Jiang, F.; Zhao, G.; Zhang, B.; Xie, F. Enhancing thermal stability and mechanical resilience in gelatin/starch composites through polyvinyl alcohol integration. Carbohydr. Polym. 2024, 344, 122528. [Google Scholar] [CrossRef]
- Khin, M.N.; Easdani, M.; Aziz, T.; Shami, A.; Alharbi, N.K.; Al-Asmari, F.; Lin, L. Schiff’s base crosslinked gelatin-dialdehyde cellulose film with gallic acid for improved water resistance and antimicrobial properties. Food Hydrocoll. 2025, 166, 111331. [Google Scholar] [CrossRef]
- Tohamy, H.A.S. Microwaved schiff base dialdehyde cellulose-chitosan hydrogels for sustained drug release with DFT calculations. BMC Chem. 2025, 19, 114. [Google Scholar] [CrossRef]
- Jiang, Y.; Miao, J.; Jiang, Q.; Zhang, Y.; Mo, L.; Gao, W.; Qin, Z. Dialdehyde carboxylated cellulose green crosslinked soybean protein isolate based on Schiff base reaction to improve the emulsification performance and stability of emulsion. React. Funct. Polym. 2025, 212, 106244. [Google Scholar] [CrossRef]
- Kwak, H.W.; Lee, H.; Park, S.; Lee, M.E.; Jin, H.-J. Chemical and physical reinforcement of hydrophilic gelatin film with di-aldehyde nanocellulose. Int. J. Biol. Macromol. 2020, 146, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhou, J.; Yang, Z.; Liu, D.; Xv, X.; Zhao, G.; Shi, H.; Zhang, Q. Dialdehyde cellulose nanocrystal/gelatin hydrogel optimized for 3D printing applications. J. Mater. Sci. 2018, 53, 11883–11900. [Google Scholar] [CrossRef]
- Cui, T.; Sun, Y.; Wu, Y.; Wang, J.; Ding, Y.; Cheng, J.; Guo, M. Mechanical, microstructural, and rheological characterization of gelatin-dialdehyde starch hydrogels constructed by dual dynamic crosslinking. LWT-Food Sci. Technol. 2022, 161, 113374. [Google Scholar] [CrossRef]
- Yilmaz, P.; Demirhan, E.; Ozbek, B. Eco-friendly fabrication of bioactive chitosan-hydroxyapatite sponge-like scaffolds functionalized with Ficus carica Linn leaf extract for enhanced antioxidant and antimicrobial properties. Food Biosci. 2025, 69, 106901. [Google Scholar] [CrossRef]
- Huang, F.; Yang, D.; Bai, G.; Su, D.; Zhu, Z.; Long, Y. Rapid, organic-solvent-free freeze-thaw fabrication of pure chitosan sponges for scalable potential wound dressing application. Carbohydr. Polym. Technol. Appl. 2025, 10, 100809. [Google Scholar] [CrossRef]
- Gouda, M.; Taleb, M.F.A. Sustainable cocoa biowaste-based carboxymethyl cellulose/chitosan sponges for wastewater treatment applications. Int. J. Biol. Macromol. 2025, 309, 142927. [Google Scholar] [CrossRef]
- Lin, J.; Pan, D.; Sun, Y.; Ou, C.; Wang, Y.; Cao, J. The modification of gelatin films: Based on various cross-linking mechanism of glutaraldehyde at acidic and alkaline conditions. Food Sci. Nutr. 2019, 7, 4140–4146. [Google Scholar] [CrossRef]
- Heidarian, P.; Kouzani, A.Z. A self-healing nanocomposite double network bacterial nanocellulose/gelatin hydrogel for three dimensional printing. Carbohydr. Polym. 2023, 313, 120879. [Google Scholar] [CrossRef] [PubMed]
- Drobnik, J.; Pietrucha, K.; Kudzin, M.; Mader, K.; Szymanski, J.; Szczepanowska, A. Comparison of various types of collagenous scaffolds applied for embryonic nerve cell culture. Biologicals 2017, 46, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Li, F.; Han, Z.; Qu, X.; Li, J.; Zhou, Z.; Chen, S.; Wang, H.; Lv, X. Bacterial cellulose-based hydrogel with regulated rehydration and enhanced antibacterial activity for wound healing. Int. J. Biol. Macromol. 2024, 267, 131291. [Google Scholar] [CrossRef] [PubMed]
- He, X.; He, Z.; Li, Y.; Yu, H.; Zhang, L.; Ge, H.; Man, S.; Dai, Y. Modeling of the bacterial inactivation kinetics of dialdehyde cellulose in aqueous suspension. Int. J. Biol. Macromol. 2018, 116, 920–926. [Google Scholar] [CrossRef]
- Lacin, N.T. Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing. Int. J. Biol. Macromol. 2014, 67, 22–27. [Google Scholar] [CrossRef]
Run | Conditions | DO | ||||
---|---|---|---|---|---|---|
Mole Ratio of BC and NaIO4 | Temperature | Time | Predicted | Actual | Residual | |
1 | 1:1 (−1) | 40 (−1) | 4 (−1) | 15.6 | 18.3 | 2.7 |
2 | 1:1 (−1) | 40 (−1) | 12 (+1) | 37.7 | 36.3 | −1.4 |
3 | 1:1 (−1) | 50 (0) | 8 (0) | 42.1 | 40 | −2.1 |
4 | 1:1 (−1) | 60 (+1) | 4 (−1) | 34.7 | 36.4 | 1.7 |
5 | 1:1 (−1) | 60 (+1) | 12 (+1) | 55.8 | 55 | −0.8 |
6 | 1:1.5 (0) | 40 (−1) | 8 (0) | 39.3 | 39.1 | −0.2 |
7 | 1:1.5 (0) | 50 (0) | 4 (−1) | 41.5 | 35.2 | −6.3 |
8 | 1:1.5 (0) | 50 (0) | 8 (0) | 57.6 | 57.7 | 0.1 |
9 | 1:1.5 (0) | 50 (0) | 8 (0) | 57.6 | 57.6 | 0 |
10 | 1:1.5 (0) | 50 (0) | 8 (0) | 57.6 | 56.7 | −0.9 |
11 | 1:1.5 (0) | 50 (0) | 8 (0) | 57.6 | 57.2 | −0.4 |
12 | 1:1.5 (0) | 50 (0) | 8 (0) | 57.6 | 57.8 | 0.2 |
13 | 1:1.5 (0) | 50 (0) | 12 (+1) | 71.2 | 78 | 7.6 |
14 | 1:1.5 (0) | 60 (+1) | 8 (0) | 66.1 | 66.8 | −0.7 |
15 | 1:2 (+1) | 40 (−1) | 4 (−1) | 28.5 | 29.2 | 0.7 |
16 | 1:2 (+1) | 40 (−1) | 12 (+1) | 66.9 | 65.2 | −1.7 |
17 | 1:2 (+1) | 50 (0) | 8 (0) | 71.3 | 73.9 | 2.6 |
18 | 1:2 (+1) | 60 (+1) | 4 (−1) | 64 | 65.3 | 1.3 |
19 | 1:2 (+1) | 60 (+1) | 12 (+1) | 101.4 | 98.6 | −2.8 |
Source | Model | Lack of Fit Data | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sum of Squares | 6598.22 | 2137.44 | 1795.60 | 2211.17 | 133.66 | 133.66 | 0.5512 | 2.12 | 65.11 | 4.14 | 122.60 | |||
df | 9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 5 | |||
Mean Square | 733.14 | 2137.44 | 1795.60 | 2211.17 | 133.66 | 133.66 | 0.5512 | 2.12 | 65.11 | 4.14 | 24.52 | |||
f-value | 53.46 | 155.87 | 130.94 | 161.24 | 9.75 | 9.75 | 0.04 | 0.15 | 4.75 | 0.30 | 119.61 | |||
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0110 | 0.0198 | 0.8120 | 0.7434 | 0.1045 | 0.4477 | 0.0002 | |||
R2 | 0.9816 | Adeq precision | 31.9295 | |||||||||||
R2adj | 0.9633 | C.V. (%) | 6.87 | |||||||||||
R2pred | 0.8537 |
Symbol | Predicted Conditions | DO (%) | % Error | |||
---|---|---|---|---|---|---|
Mole Ratio of BC and NaIO4 (Time) | Temperature (°C) | Time (h) | Required | Actual | ||
DBC20 | 1:1.29 | 40 | 4 | 20 | 20.8 ± 0.1 | 4.0 |
DBC40 | 1:1.45 | 50 | 4 | 40 | 42.1 ± 0.2 | 5.3 |
DBC60 | 1:1.82 | 60 | 4 | 60 | 62.4 ± 0.5 | 4.0 |
DBC80 | 1:1.86 | 60 | 8 | 80 | 82.8 ± 0.9 | 3.5 |
DBC100 | 1:1.97 | 60 | 12 | 100 | 98.0 ± 0.6 | 2.0 |
Sponge | Thickness (mm) | Porosity (%) | Degree of Crosslinking (%) | Weight Loss After 7 Days (%) | Swelling After 1 Day (Time) | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|---|---|---|---|---|
GL | 4.0 ± 0.4 | 23.9 ± 3.1 | 0.0 ± 0.0 | 52.3 ± 5.4 | 15.3 ± 2.9 | 5.9 ± 1.0 | 29.1 ± 5.6 |
GDB20 | 0.2 ± 0.0 | 3.5 ± 3.1 | 12.6 ± 2.8 | 33.0 ± 2.5 | 11.8 ± 0.6 | 2.8 ± 1.6 | 51.7 ± 8.8 |
GDB40 | 1.7 ± 0.3 | 32.3 ± 9.8 | 19.9 ± 2.7 | 15.0 ± 0.8 | 7.5 ± 0.8 | 4.6 ± 4.3 | 49.3 ± 5.0 |
GDB60 | 3.2 ± 0.6 | 41.3 ± 5.6 | 35.6 ± 2.3 | 11.4 ± 0.6 | 5.9 ± 1.3 | 4.9 ± 1.2 | 50.1 ± 6.8 |
GDB80 | 2.3 ± 0.4 | 28.3 ± 9.5 | 45.6 ± 1.6 | 10.6 ± 0.8 | 4.7 ± 0.2 | 6.8 ± 4.4 | 50.4 ± 8.6 |
GDB100 | 2.8 ± 0.2 | 47.7 ± 2.3 | 49.6 ± 1.6 | 9.6 ± 0.7 | 4.7 ± 0.2 | 9.0 ± 3.6 | 55.0 ± 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadsanit, K.; Sriariyanun, M.; Phisalaphong, M.; Kirdponpattara, S. Tailoring Dialdehyde Bacterial Cellulose Synthesis for Versatile Applications. Polymers 2025, 17, 1836. https://doi.org/10.3390/polym17131836
Kadsanit K, Sriariyanun M, Phisalaphong M, Kirdponpattara S. Tailoring Dialdehyde Bacterial Cellulose Synthesis for Versatile Applications. Polymers. 2025; 17(13):1836. https://doi.org/10.3390/polym17131836
Chicago/Turabian StyleKadsanit, Krittanan, Malinee Sriariyanun, Muenduen Phisalaphong, and Suchata Kirdponpattara. 2025. "Tailoring Dialdehyde Bacterial Cellulose Synthesis for Versatile Applications" Polymers 17, no. 13: 1836. https://doi.org/10.3390/polym17131836
APA StyleKadsanit, K., Sriariyanun, M., Phisalaphong, M., & Kirdponpattara, S. (2025). Tailoring Dialdehyde Bacterial Cellulose Synthesis for Versatile Applications. Polymers, 17(13), 1836. https://doi.org/10.3390/polym17131836