Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (307)

Search Parameters:
Keywords = day-ahead electricity markets

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3355 KiB  
Article
EU Energy Markets and Renewable Energy Sources—Are We Waiting for a Crisis?
by Tomasz Sieńko and Jerzy Szczepanik
Energies 2025, 18(15), 4201; https://doi.org/10.3390/en18154201 - 7 Aug 2025
Abstract
Interactions between the increased penetration of the power system by renewable energy sources (RESs) and the energy pricing mechanism in the EU (day-ahead market) can lead to many unexpected and paradoxical consequences. This article analyses the case of the long-term maintenance of prices [...] Read more.
Interactions between the increased penetration of the power system by renewable energy sources (RESs) and the energy pricing mechanism in the EU (day-ahead market) can lead to many unexpected and paradoxical consequences. This article analyses the case of the long-term maintenance of prices around zero on the day-ahead market in south-western Europe at a certain time of a day. This is an important case since, at the same time, this area generates electricity from a similar source mix as it is in the target for the EU. Zero or very low energy prices are becoming increasingly common across the EU. This can pose a problem for the stability of the electricity supply, as it translates into a lower power of used disposable power sources, which can be used as a reserve when the majority of the energy supply comes from renewable energy sources. Furthermore, this work refutes the most frequently proposed solution to the problem of excessively low prices based on energy storage systems. This work attempts to analyze the long-term low-price situation in Spain and extrapolate the expected consequences based on it; however, it is difficult to find all the factors that occur in the power system and influence the price market and vice versa. The issue is multidimensional and complex, and the analyzed situation revealed a number of trends. Therefore, a multifaceted problem remains. A constant electricity supply must be ensured at a reasonable price, thus avoiding the exposure of individual consumers to energy shortages or significant price increases, while, at the same time, the EU must reduce dependence on fossil fuels, and its legislation must push for reduced CO2 emissions. On the other hand, the EU must provide some type of market mechanism to support the achievement of these goals because the current pricing mechanism based on the day-ahead market does not seem to be effective. This article aims to spark a discussion about this problem; it does not provide any simple solutions to it. Full article
(This article belongs to the Special Issue Economic Analysis and Policies in the Energy Sector—2nd Edition)
Show Figures

Figure 1

30 pages, 3996 KiB  
Article
Incentive-Compatible Mechanism Design for Medium- and Long-Term/Spot Market Coordination in High-Penetration Renewable Energy Systems
by Sicong Wang, Weiqing Wang, Sizhe Yan and Qiuying Li
Processes 2025, 13(8), 2478; https://doi.org/10.3390/pr13082478 - 6 Aug 2025
Abstract
In line with the goals of “peak carbon emissions and carbon neutrality”, this study aims to develop a market-coordinated operation mechanism to promote renewable energy adoption and consumption, addressing the challenges of integrating medium- and long-term trading with spot markets in power systems [...] Read more.
In line with the goals of “peak carbon emissions and carbon neutrality”, this study aims to develop a market-coordinated operation mechanism to promote renewable energy adoption and consumption, addressing the challenges of integrating medium- and long-term trading with spot markets in power systems with high renewable energy penetration. A three-stage joint operation framework is proposed. First, a medium- and long-term trading game model is established, considering multiple energy types to optimize the benefits of market participants. Second, machine learning algorithms are employed to predict renewable energy output, and a contract decomposition mechanism is developed to ensure a smooth transition from medium- and long-term contracts to real-time market operations. Finally, a day-ahead market-clearing strategy and an incentive-compatible settlement mechanism, incorporating the constraints from contract decomposition, are proposed to link the two markets effectively. Simulation results demonstrate that the proposed mechanism effectively enhances resource allocation and stabilizes market operations, leading to significant revenue improvements across various generation units and increased renewable energy utilization. Specifically, thermal power units achieve a 19.12% increase in revenue, while wind and photovoltaic units show more substantial gains of 38.76% and 47.52%, respectively. Concurrently, the mechanism drives a 10.61% increase in renewable energy absorption capacity and yields a 13.47% improvement in Tradable Green Certificate (TGC) utilization efficiency, confirming its overall effectiveness. This research shows that coordinated optimization between medium- and long-term/spot markets, combined with a well-designed settlement mechanism, significantly strengthens the market competitiveness of renewable energy, providing theoretical support for the market-based operation of the new power system. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

22 pages, 1788 KiB  
Article
Multi-Market Coupling Mechanism of Offshore Wind Power with Energy Storage Participating in Electricity, Carbon, and Green Certificates
by Wenchuan Meng, Zaimin Yang, Jingyi Yu, Xin Lin, Ming Yu and Yankun Zhu
Energies 2025, 18(15), 4086; https://doi.org/10.3390/en18154086 - 1 Aug 2025
Viewed by 285
Abstract
With the support of the dual-carbon strategy and related policies, China’s offshore wind power has experienced rapid development. However, constrained by the inherent intermittency and volatility of wind power, large-scale expansion poses significant challenges to grid integration and exacerbates government fiscal burdens. To [...] Read more.
With the support of the dual-carbon strategy and related policies, China’s offshore wind power has experienced rapid development. However, constrained by the inherent intermittency and volatility of wind power, large-scale expansion poses significant challenges to grid integration and exacerbates government fiscal burdens. To address these critical issues, this paper proposes a multi-market coupling trading model integrating energy storage-equipped offshore wind power into electricity–carbon–green certificate markets for large-scale grid networks. Firstly, a day-ahead electricity market optimization model that incorporates energy storage is established to maximize power revenue by coordinating offshore wind power generation, thermal power dispatch, and energy storage charging/discharging strategies. Subsequently, carbon market and green certificate market optimization models are developed to quantify Chinese Certified Emission Reduction (CCER) volume, carbon quotas, carbon emissions, market revenues, green certificate quantities, pricing mechanisms, and associated economic benefits. To validate the model’s effectiveness, a gradient ascent-optimized game-theoretic model and a double auction mechanism are introduced as benchmark comparisons. The simulation results demonstrate that the proposed model increases market revenues by 17.13% and 36.18%, respectively, compared to the two benchmark models. It not only improves wind power penetration and comprehensive profitability but also effectively alleviates government subsidy pressures through coordinated carbon–green certificate trading mechanisms. Full article
Show Figures

Figure 1

40 pages, 4775 KiB  
Article
Optimal Sizing of Battery Energy Storage System for Implicit Flexibility in Multi-Energy Microgrids
by Andrea Scrocca, Maurizio Delfanti and Filippo Bovera
Appl. Sci. 2025, 15(15), 8529; https://doi.org/10.3390/app15158529 - 31 Jul 2025
Viewed by 185
Abstract
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular [...] Read more.
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular focus on accurately modeling the structure of electricity and natural gas bills. The objective is to assess the added economic value of integrating a battery energy storage system (BESS) under the assumption it is employed to provide implicit flexibility—namely, bill management, energy arbitrage, and peak shaving. Results show that under assumed market conditions, tariff schemes, and BESS costs, none of the analyzed BESS configurations achieve a positive net present value. However, a 2 MW/4 MWh BESS yields a 3.8% reduction in annual operating costs compared to the base case without storage, driven by increased self-consumption (+2.8%), reduced thermal energy waste (–6.4%), and a substantial decrease in power-based electricity charges (–77.9%). The performed sensitivity analyses indicate that even with a significantly higher day-ahead market price spread, the BESS is not sufficiently incentivized to perform pure energy arbitrage and that the effectiveness of a time-of-use power-based tariff depends not only on the level of price differentiation but also on the BESS size. Overall, this study provides insights into the role of BESS in MEMGs and highlights the need for electricity bill designs that better reward the provision of implicit flexibility by storage systems. Full article
(This article belongs to the Special Issue Innovative Approaches to Optimize Future Multi-Energy Systems)
Show Figures

Figure 1

20 pages, 3940 KiB  
Article
24 Hours Ahead Forecasting of the Power Consumption in an Industrial Pig Farm Using Deep Learning
by Boris Evstatiev, Nikolay Valov, Katerina Gabrovska-Evstatieva, Irena Valova, Tsvetelina Kaneva and Nicolay Mihailov
Energies 2025, 18(15), 4055; https://doi.org/10.3390/en18154055 - 31 Jul 2025
Viewed by 267
Abstract
Forecasting the energy consumption of different consumers became an important procedure with the creation of the European Electricity Market. This study presents a methodology for 24-hour ahead prediction of the energy consumption, which is suitable for application in animal husbandry facilities, such as [...] Read more.
Forecasting the energy consumption of different consumers became an important procedure with the creation of the European Electricity Market. This study presents a methodology for 24-hour ahead prediction of the energy consumption, which is suitable for application in animal husbandry facilities, such as pig farms. To achieve this, 24 individual models are trained using artificial neural networks that forecast the energy production 1 to 24 h ahead. The selected features include power consumption over the last 72 h, time-based data, average, minimum, and maximum daily temperatures, relative humidities, and wind speeds. The models’ Normalized mean absolute error (NMAE), Normalized root mean square error (NRMSE), and Mean absolute percentage error (MAPE) vary between 16.59% and 19.00%, 22.19% and 24.73%, and 9.49% and 11.49%, respectively. Furthermore, the case studies showed that in most situations, the forecasting error does not exceed 10% with several cases up to 25%. The proposed methodology can be useful for energy managers of animal farm facilities, and help them provide a better prognosis of their energy consumption for the Energy Market. The proposed methodology could be improved by selecting additional features, such as the variation of the controlled meteorological parameters over the last couple of days and the schedule of technological processes. Full article
(This article belongs to the Special Issue Application of AI in Energy Savings and CO2 Reduction)
Show Figures

Figure 1

32 pages, 3289 KiB  
Article
Optimal Spot Market Participation of PV + BESS: Impact of BESS Sizing in Utility-Scale and Distributed Configurations
by Andrea Scrocca, Roberto Pisani, Diego Andreotti, Giuliano Rancilio, Maurizio Delfanti and Filippo Bovera
Energies 2025, 18(14), 3791; https://doi.org/10.3390/en18143791 - 17 Jul 2025
Viewed by 353
Abstract
Recent European regulations promote distributed energy resources as alternatives to centralized generation. This study compares utility-scale and distributed photovoltaic (PV) systems coupled with Battery Energy-Storage Systems (BESSs) in the Italian electricity market, analyzing different battery sizes. A multistage stochastic mixed-integer linear programming model, [...] Read more.
Recent European regulations promote distributed energy resources as alternatives to centralized generation. This study compares utility-scale and distributed photovoltaic (PV) systems coupled with Battery Energy-Storage Systems (BESSs) in the Italian electricity market, analyzing different battery sizes. A multistage stochastic mixed-integer linear programming model, using Monte Carlo PV production scenarios, optimizes day-ahead and intra-day market offers while incorporating PV forecast updates. In real time, battery flexibility reduces imbalances. Here we show that, to ensure dispatchability—defined as keeping annual imbalances below 5% of PV output—a 1 MW PV system requires 220 kWh of storage for utility-scale and 50 kWh for distributed systems, increasing the levelized cost of electricity by +13.1% and +1.94%, respectively. Net present value is negative for BESSs performing imbalance netting only. Therefore, a multiple service strategy, including imbalance netting and energy arbitrage, is introduced. Performing arbitrage while keeping dispatchability reaches an economic optimum with a 1.7 MWh BESS for utility-scale systems and 1.1 MWh BESS for distributed systems. These results show lower PV firming costs than previous studies, and highlight that under a multiple-service strategy, better economic outcomes are obtained with larger storage capacities. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

19 pages, 6799 KiB  
Article
Analysis of Energy Recovery Out of the Water Supply and Distribution Network of the Brussels Capital Region
by François Nuc and Patrick Hendrick
Energies 2025, 18(14), 3777; https://doi.org/10.3390/en18143777 - 16 Jul 2025
Viewed by 252
Abstract
Water Supply and Distribution Networks (WSDNs) offer underexplored potential for energy recovery. While many studies confirm their technical feasibility, few assess the long-term operational compatibility and economic viability of such solutions. This study evaluates the energy recovery potential of the Brussels Capital Region’s [...] Read more.
Water Supply and Distribution Networks (WSDNs) offer underexplored potential for energy recovery. While many studies confirm their technical feasibility, few assess the long-term operational compatibility and economic viability of such solutions. This study evaluates the energy recovery potential of the Brussels Capital Region’s WSDN using four years (2019–2022) of operational data. Rather than focusing on available technologies, the analysis examines whether the real behavior of the network supports sustainable energy extraction. The approach includes network topology identification, theoretical power modeling, and detailed flow and pressure analysis. The Brussels system, composed of a Water Supply Network (WSN) and a Water Distribution Network (WDN), reveals strong disparities: the WSN offers localized opportunities for energy recovery, while the WDN presents significant operational constraints that limit economic viability. Our findings suggest that day-ahead electricity markets provide more suitable valorization pathways than flexibility markets. Most importantly, the study highlights the necessity of long-term behavioral analysis to avoid misleading conclusions based on short-term data and to support informed investment decisions in the urban water–energy nexus. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

27 pages, 6102 KiB  
Article
The Impact of Wind Speed on Electricity Prices in the Polish Day-Ahead Market Since 2016, and Its Applicability to Machine-Learning-Powered Price Prediction
by Rafał Sowiński and Aleksandra Komorowska
Energies 2025, 18(14), 3749; https://doi.org/10.3390/en18143749 - 15 Jul 2025
Viewed by 271
Abstract
The rising share of wind generation in power systems, driven by the need to decarbonise the energy sector, is changing the relationship between wind speed and electricity prices. In the case of Poland, this relationship has not been thoroughly investigated, particularly in the [...] Read more.
The rising share of wind generation in power systems, driven by the need to decarbonise the energy sector, is changing the relationship between wind speed and electricity prices. In the case of Poland, this relationship has not been thoroughly investigated, particularly in the aftermath of the restrictive legal changes introduced in 2016, which halted numerous onshore wind investments. Studying this relationship remains necessary to understand the broader market effects of wind speed on electricity prices, especially considering evolving policies and growing interest in renewable energy integration. In this context, this paper analyses wind speed, wind generation, and other relevant datasets in relation to electricity prices using multiple statistical methods, including correlation analysis, regression modelling, and artificial neural networks. The results show that wind speed is a significant factor in setting electricity prices (with a correlation coefficient reaching up to −0.7). The findings indicate that not only is it important to include wind speed as an electricity price indicator, but it is also worth investing in wind generation, since higher wind output can be translated into lower electricity prices. This study contributes to a better understanding of how natural variability in renewable resources translates into electricity market outcomes under policy-constrained conditions. Its innovative aspect lies in combining statistical and machine learning techniques to quantify the influence of wind speed on electricity prices, using updated data from a period of regulatory stagnation. Full article
Show Figures

Figure 1

17 pages, 3466 KiB  
Article
Levelized Cost of Storage (LCOS) of Battery Energy Storage Systems (BESS) Deployed for Photovoltaic Curtailment Mitigation
by Luca Migliari, Daniele Cocco and Mario Petrollese
Energies 2025, 18(14), 3602; https://doi.org/10.3390/en18143602 - 8 Jul 2025
Cited by 1 | Viewed by 524
Abstract
Despite the growing application of storage for curtailment mitigation, its cost-effectiveness remains uncertain. This study evaluates the Levelized Cost of Storage, which also represents an implicit threshold revenue, for Lithium-ion Battery Energy Storage Systems deployed for photovoltaic curtailment mitigation. Specifically, the LCOS is [...] Read more.
Despite the growing application of storage for curtailment mitigation, its cost-effectiveness remains uncertain. This study evaluates the Levelized Cost of Storage, which also represents an implicit threshold revenue, for Lithium-ion Battery Energy Storage Systems deployed for photovoltaic curtailment mitigation. Specifically, the LCOS is assessed—using a mathematical simulation model—for various curtailment scenarios defined by maximum levels (10–40%), hourly profiles (upper limit and proportional), and growth rates (2, 5, and 10 years) at three storage system capacities (0.33, 0.50, 0.67 h) and two European locations (Cagliari and Berlin). The results indicate that the LCOS of batteries deployed for curtailment mitigation is, on average, comparable to that of systems used for bulk energy storage applications (155–320 EUR/MWh) in Cagliari (180–410 EUR/MWh). In contrast, in Berlin, the lower and more variable photovoltaic generation results in significantly higher LCOS values (200–750 EUR/MWh). For both locations, the lowest LCOS values (180 EUR/MWh for Cagliari and 200 EUR/MWh for Berlin), obtained for very high curtailment levels (40%), are significantly above average electricity prices (108 EUR/MWh for Cagliari and 78 EUR/MWh for Berlin), suggesting that BESSs for curtailment mitigation are competitive in the day-ahead market only if their electricity is sold at a significantly higher price. This is particularly true for lower curtailment levels. Indeed, for a curtailment level of 10% reached in 5 years, the LCOS for a 0.5 h BESS capacity is approximately 255 EUR/MWh in Cagliari and 460 EUR/MWh in Berlin. The study further highlights that the curtailment scenario significantly affects the Levelized Cost of Storage, with the upper limit hourly profile being more conservative. Full article
(This article belongs to the Special Issue Advanced Solar Technologies and Thermal Energy Storage)
Show Figures

Figure 1

31 pages, 731 KiB  
Article
A Comparative Analysis of Price Forecasting Methods for Maximizing Battery Storage Profits
by Alessandro Fiori Maccioni, Simone Sbaraglia, Rahim Mahmoudvand and Stefano Zedda
Energies 2025, 18(13), 3309; https://doi.org/10.3390/en18133309 - 24 Jun 2025
Viewed by 481
Abstract
Battery energy storage systems (BESS) rely on accurate electricity price forecasts to maximize arbitrage profits in day-ahead markets. We examined whether specific forecasting models, ranging from statistical benchmarks to machine learning methods, consistently deliver superior financial outcomes for storage operators. Using real market [...] Read more.
Battery energy storage systems (BESS) rely on accurate electricity price forecasts to maximize arbitrage profits in day-ahead markets. We examined whether specific forecasting models, ranging from statistical benchmarks to machine learning methods, consistently deliver superior financial outcomes for storage operators. Using real market data from the Italian day-ahead electricity market over 2020–2024, we compared univariate singular spectrum analysis (SSA), ARIMA, SARIMA, random forests, and a 30-day simple moving average under a unified trading framework. All models were evaluated based on their ability to generate arbitrage profits. Univariate SSA clearly outperformed all alternatives, achieving on average 98% of the theoretical maximum profit while maintaining the lowest forecast error. Among the other models, simpler approaches performed surprisingly well: they achieved comparable, if not superior, profit performance to more complex, hour-specific, or computationally intensive configurations. These results were robust to plausible variations in battery parameters and retraining schedules, suggesting that univariate SSA offers a uniquely effective forecasting solution for battery arbitrage and that simplicity can often be more effective than complexity in operational revenue terms. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

22 pages, 2330 KiB  
Article
A Local-Temporal Convolutional Transformer for Day-Ahead Electricity Wholesale Price Forecasting
by Bowen Zhang, Hongda Tian, Adam Berry and A. Craig Roussac
Sustainability 2025, 17(12), 5533; https://doi.org/10.3390/su17125533 - 16 Jun 2025
Viewed by 689
Abstract
Accurate electricity wholesale price (EWP) forecasting is crucial for advancing sustainability in the energy sector, as it supports more efficient utilization and integration of renewable energy by informing when and how it should be consumed, dispatched, curtailed, or stored. However, high fluctuations in [...] Read more.
Accurate electricity wholesale price (EWP) forecasting is crucial for advancing sustainability in the energy sector, as it supports more efficient utilization and integration of renewable energy by informing when and how it should be consumed, dispatched, curtailed, or stored. However, high fluctuations in EWP, often resulting from demand–supply imbalances typically caused by sudden surges in electricity usage and the intermittency of renewable energy generation, and unforeseen external events, pose a challenge for accurate forecasting. Incorporating local temporal information (LTI) in time series, such as hourly price changes, is essential for accurate EWP forecasting, as it helps detect rapid market shifts. However, existing methods remain limited in capturing LTI, either relying on point-wise input sequences or, for fixed-length, non-overlapping segmentation methods, failing to effectively model dependencies within and across segments. This paper proposes the Local-Temporal Convolutional Transformer (LT-Conformer) model for day-ahead EWP forecasting, which addresses the challenge of capturing fine-grained LTI using Local-Temporal 1D Convolution and incorporates two attention modules to capture global temporal dependencies (e.g., daily price trends) and cross-feature dependencies (e.g., solar output influencing price). An initial evaluation in the Australian market demonstrates that LT-Conformer outperforms existing state-of-the-art methods and exhibits adaptability in forecasting EWP under volatile market conditions. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

40 pages, 485 KiB  
Review
A Review of Electricity Price Forecasting Models in the Day-Ahead, Intra-Day, and Balancing Markets
by Ciaran O’Connor, Mohamed Bahloul, Steven Prestwich and Andrea Visentin
Energies 2025, 18(12), 3097; https://doi.org/10.3390/en18123097 - 12 Jun 2025
Viewed by 2229
Abstract
Electricity price forecasting plays a fundamental role in ensuring efficient market operation and informed decision making. With the growing integration of renewable energy, prices have become more volatile and difficult to predict, increasing the necessity of accurate forecasting in bidding, scheduling, and risk [...] Read more.
Electricity price forecasting plays a fundamental role in ensuring efficient market operation and informed decision making. With the growing integration of renewable energy, prices have become more volatile and difficult to predict, increasing the necessity of accurate forecasting in bidding, scheduling, and risk management. This paper provides a comprehensive review of point forecasting models for electricity markets, covering classical statistical approaches both with and without exogenous inputs, and modern machine learning and deep learning techniques, including ensemble methods and hybrid architectures. Unlike standard reviews focused solely on the day-ahead market, we assess model performance across day-ahead, intra-day, and balancing markets, with each posing unique challenges due to differences in time resolution, data availability, and market structure. Through this market-specific lens, the paper merges insights from a broad set of studies; identifies persistent challenges, such as data quality, model interpretability, and generalisability; and outlines promising directions for future research. Our findings highlight the strong performance of hybrid and ensemble models in the day-ahead market, the dominance of recurrent neural networks in the intra-day market, and the relative effectiveness of simpler statistical models such as LEAR in the balancing market, where volatility and data sparsity remain critical challenges. Full article
Show Figures

Figure 1

18 pages, 773 KiB  
Article
Multi-Level Simulation Framework for Degradation-Aware Operation of a Large-Scale Battery Energy Storage Systems
by Leon Tadayon and Georg Frey
Energies 2025, 18(11), 2708; https://doi.org/10.3390/en18112708 - 23 May 2025
Viewed by 646
Abstract
The increasing integration of renewable energy sources necessitates efficient energy storage solutions, with large-scale battery energy storage systems (BESS) playing a key role in grid stabilization and time-shifting of energy. This study presents a multi-level simulation framework for optimizing BESS operation across multiple [...] Read more.
The increasing integration of renewable energy sources necessitates efficient energy storage solutions, with large-scale battery energy storage systems (BESS) playing a key role in grid stabilization and time-shifting of energy. This study presents a multi-level simulation framework for optimizing BESS operation across multiple markets while incorporating degradation-aware dispatch strategies. The framework integrates a day-ahead (DA) dispatch level, an intraday (ID) dispatch level, and a high-resolution simulation level to accurately model the impact of operational strategies on state of charge and battery degradation. A case study of BESS operation in the German electricity market is conducted, where frequency containment reserve provision is combined with DA and ID trading. The simulated revenue is validated by a battery revenue index. The study also compares full equivalent cycle (FEC)-based and state-of-health-based degradation models and discusses their application to cost estimation in dispatch optimization. The results emphasize the advantage of using FEC-based degradation costs for dispatch decision-making. Future research will include price forecasting and expanded market participation strategies to further improve and stabilize the profitability of BESS in multi-market environments. Full article
(This article belongs to the Special Issue Advances in Battery Energy Storage Systems)
Show Figures

Figure 1

29 pages, 2289 KiB  
Article
Two-Stage Optimization Strategy for Market-Oriented Lease of Shared Energy Storage in Wind Farm Clusters
by Junlei Liu, Jiekang Wu and Zhen Lei
Energies 2025, 18(11), 2697; https://doi.org/10.3390/en18112697 - 22 May 2025
Viewed by 426
Abstract
Diversified application scenarios and business models are effective ways to improve the utilization and economic benefits of energy storage systems. In response to the current problems of single application scenarios, high idle rates, and imperfect price formation mechanisms faced by energy storage on [...] Read more.
Diversified application scenarios and business models are effective ways to improve the utilization and economic benefits of energy storage systems. In response to the current problems of single application scenarios, high idle rates, and imperfect price formation mechanisms faced by energy storage on the power generation side, a robust two-stage optimization operation strategy for shared energy storage is proposed, taking into account leasing demand and multiple uncertainties, from the perspective of the sharing concept. A multi-scenario application framework for shared energy storage is established to provide leasing services for wind farm clusters, as well as auxiliary services for participating in the electric energy markets and frequency regulation markets, and the participation sequence is streamlined. Based on the operating and opportunity costs of shared energy storage, a pricing mechanism for leasing services is designed to explore the driving forces of wind farm clusters participating in leasing services from the perspective of cost assessment. Considering the uncertainty of wind power output and market electric prices, as well as the market operational characteristics, an optimized operation model for shared energy storage in the day-ahead and real-time stages is constructed. In the day-ahead stage, a Stackelberg game model is introduced to depict the energy sharing between wind farm clusters and shared energy storage, forming leasing prices, leasing capacities, and energy storage pre-scheduling plans at different time periods. In the real-time stage, the real-time prediction results of wind power output and electric prices are integrated with scheduling decisions, and an improved robust optimization model is used to dynamically regulate the pre-scheduling plan for leasing capacity and shared energy storage. Based on actual data from the electricity market in Guangdong Province, effectiveness verification is conducted, and the results showed that diversified application scenarios improve the utilization rate of shared energy storage in the power generation side by 52.87%, increasing economic benefits by CNY 188,700. The proposed optimized operation strategy has high engineering application value. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

29 pages, 5334 KiB  
Article
Optimal Multi-Area Demand–Thermal Coordination Dispatch
by Yu-Shan Cheng, Yi-Yan Chen, Cheng-Ta Tsai and Chun-Lung Chen
Energies 2025, 18(11), 2690; https://doi.org/10.3390/en18112690 - 22 May 2025
Viewed by 427
Abstract
With the soaring demand for electric power and the limited spinning reserve in the power system in Taiwan, the comprehensive management of both thermal power generation and load demand turns out to be a key to achieving the robustness and sustainability of the [...] Read more.
With the soaring demand for electric power and the limited spinning reserve in the power system in Taiwan, the comprehensive management of both thermal power generation and load demand turns out to be a key to achieving the robustness and sustainability of the power system. This paper aims to design a demand bidding (DB) mechanism to collaborate between customers and suppliers on demand response (DR) to prevent the risks of energy shortage and realize energy conservation. The concurrent integration of the energy, transmission, and reserve capacity markets necessitates a new formulation for determining schedules and marginal prices, which is expected to enhance economic efficiency and reduce transaction costs. To dispatch energy and reserve markets concurrently, a hybrid approach of combining dynamic queuing dispatch (DQD) with direct search method (DSM) is developed to solve the extended economic dispatch (ED) problem. The effectiveness of the proposed approach is validated through three case studies of varying system scales. The impacts of tie-line congestion and area spinning reserve are fully reflected in the area marginal price, thereby facilitating the determination of optimal load reduction and spinning reserve allocation for demand-side management units. The results demonstrated that the multi-area bidding platform proposed in this paper can be used to address issues of congestion between areas, thus improving the economic efficiency and reliability of the day-ahead market system operation. Consequently, this research can serve as a valuable reference for the design of the demand bidding mechanism. Full article
Show Figures

Figure 1

Back to TopTop