Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (638)

Search Parameters:
Keywords = damaged laminate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6962 KiB  
Article
Suppression of Delamination in CFRP Laminates with Ply Discontinuity Using Polyamide Mesh
by M. J. Mohammad Fikry, Keisuke Iizuka, Hayato Nakatani, Satoru Yoneyama, Vladimir Vinogradov, Jun Koyanagi and Shinji Ogihara
J. Compos. Sci. 2025, 9(8), 414; https://doi.org/10.3390/jcs9080414 - 4 Aug 2025
Viewed by 109
Abstract
Carbon fiber-reinforced plastics (CFRPs) offer excellent in-plane mechanical performance, but their relatively low interlaminar fracture toughness makes them vulnerable to delamination, particularly around intralaminar discontinuities such as resin-rich regions or fiber gaps. This study investigates the effectiveness of polyamide (PA) mesh inserts in [...] Read more.
Carbon fiber-reinforced plastics (CFRPs) offer excellent in-plane mechanical performance, but their relatively low interlaminar fracture toughness makes them vulnerable to delamination, particularly around intralaminar discontinuities such as resin-rich regions or fiber gaps. This study investigates the effectiveness of polyamide (PA) mesh inserts in improving interlaminar toughness and suppressing delamination in CFRP laminates with such features. Two PA mesh configurations were evaluated: a fully embedded continuous layer and a 20 mm cut mesh strip placed between continuous and discontinuous plies near critical regions. Fracture toughness tests showed that PA mesh insertion improved interlaminar toughness approximately 2.4-fold compared to neat CFRP, primarily due to a mechanical interlocking mechanism that disrupts crack propagation and enhances energy dissipation. Uniaxial tensile tests with digital image correlation revealed that while initial matrix cracking occurred at similar stress levels, the stress at which complete delamination occurred was approximately 60% higher in specimens with a 20 mm mesh and up to 92% higher in specimens with fully embedded mesh. The fully embedded mesh provided consistent delamination resistance across the laminate, while the 20 mm insert localized strain redistribution and preserved global mechanical performance. These findings demonstrate that PA mesh is an effective interleaving material for enhancing damage tolerance in CFRP laminates with internal discontinuities. Full article
Show Figures

Figure 1

22 pages, 2499 KiB  
Article
Low-Power Vibrothermography for Detecting Barely Visible Impact Damage in CFRP Laminates: A Comparative Imaging Study
by Zulham Hidayat, Muhammet Ebubekir Torbali, Nicolas P. Avdelidis and Henrique Fernandes
Appl. Sci. 2025, 15(15), 8514; https://doi.org/10.3390/app15158514 (registering DOI) - 31 Jul 2025
Viewed by 113
Abstract
This study explores the application of low-power vibrothermography (LVT) for detecting barely visible impact damage (BVID) in carbon fibre-reinforced polymer (CFRP) laminates. Composite specimens with varying impact energies (2.5–20 J) were excited using a single piezoelectric transducer with a nominal centre frequency of [...] Read more.
This study explores the application of low-power vibrothermography (LVT) for detecting barely visible impact damage (BVID) in carbon fibre-reinforced polymer (CFRP) laminates. Composite specimens with varying impact energies (2.5–20 J) were excited using a single piezoelectric transducer with a nominal centre frequency of 28 kHz, operated at a fixed excitation frequency of 28 kHz. Thermal data were captured using an infrared camera. To enhance defect visibility and suppress background noise, the raw thermal sequences were processed using principal component analysis (PCA) and robust principal component analysis (RPCA). In LVT, RPCA and PCA provided comparable signal-to-noise ratios (SNR), with no consistent advantage for either method across all cases. In contrast, for pulsed thermography (PT) data, RPCA consistently resulted in higher SNR values, except for one sample. The LVT results were further validated by comparison with PT and phased array ultrasonic testing (PAUT) data to confirm the location and shape of detected damage. These findings demonstrate that LVT, when combined with PCA or RPCA, offers a reliable method for identifying BVID and can support safer, more efficient structural health monitoring of composite materials. Full article
(This article belongs to the Special Issue Application of Acoustics as a Structural Health Monitoring Technology)
Show Figures

Figure 1

17 pages, 4324 KiB  
Article
Anomaly Detection on Laminated Composite Plate Using Self-Attention Autoencoder and Gaussian Mixture Model
by Olivier Munyaneza and Jung Woo Sohn
Mathematics 2025, 13(15), 2445; https://doi.org/10.3390/math13152445 - 29 Jul 2025
Viewed by 181
Abstract
Composite laminates are widely used in aerospace, automotive, construction, and luxury industries, owing to their superior mechanical properties and design flexibility. However, detecting manufacturing defects and in-service damage remains a vital challenge for structural safety. While traditional unsupervised machine learning methods have been [...] Read more.
Composite laminates are widely used in aerospace, automotive, construction, and luxury industries, owing to their superior mechanical properties and design flexibility. However, detecting manufacturing defects and in-service damage remains a vital challenge for structural safety. While traditional unsupervised machine learning methods have been used in structural health monitoring (SHM), their high false positive rates limit their reliability in real-world applications. This issue is mostly inherited from their limited ability to capture small temporal variations in Lamb wave signals and their dependence on shallow architectures that suffer with complex signal distributions, causing the misclassification of damaged signals as healthy data. To address this, we suggested an unsupervised anomaly detection framework that integrates a self-attention autoencoder with a Gaussian mixture model (SAE-GMM). The model is solely trained on healthy Lamb wave signals, including high-quality synthetic data generated via a generative adversarial network (GAN). Damages are detected through reconstruction errors and probabilistic clustering in the latent space. The self-attention mechanism enhances feature representation by capturing subtle temporal dependencies, while the GMM enables a solid separation among signals. Experimental results demonstrated that the proposed model (SAE-GMM) achieves high detection accuracy, a low false positive rate, and strong generalization under varying noise conditions, outperforming traditional and deep learning baselines. Full article
Show Figures

Figure 1

18 pages, 9314 KiB  
Article
Damage Mechanism and Modeling of CFRP Laminates Impacted by Single Waterjets: Effect of the Impact Direction
by Naidan Hou, Yulong Li and Ping Liu
Materials 2025, 18(15), 3495; https://doi.org/10.3390/ma18153495 - 25 Jul 2025
Viewed by 253
Abstract
In engineering practice, liquid droplet impingement typically occurs at an oblique angle relative to the target surface, yet the influence of impact orientation on damage outcomes remains contentious and exhibits target-material dependency. In this paper, a typical single-waterjet-generating technique is applied to liquid [...] Read more.
In engineering practice, liquid droplet impingement typically occurs at an oblique angle relative to the target surface, yet the influence of impact orientation on damage outcomes remains contentious and exhibits target-material dependency. In this paper, a typical single-waterjet-generating technique is applied to liquid impact tests on a unidirectional carbon fiber-reinforced polymer (CFRP) laminate, with special focus on the effects of the impingement angle and the fiber orientation. Finite-element simulation is employed to help reveal the failure mechanism of oblique impacts. The results show that, in most cases, the damage caused by a 15° oblique impact is slightly larger than that of a normal impact, while the increase amplitude varies with different impact speeds. Resin removal is more prone to occur when the projection of the waterjet velocity on the impact surface is perpendicular (marked as the fiber orientation PE) rather than parallel (marked as the fiber orientation PA) to the fiber direction of the top layer. A PE fiber orientation can lead to mass material peeling in comparison with PA, and the damage range is even much larger than for a normal impact. The underlying mechanism can be attributed to the increased lateral jet-particle velocity and resultant shear stress along the impact projection direction. The distinct damage modes observed on the CFRP laminate with the different fiber orientations PE and PA originate from the asymmetric tensile properties in the longitudinal/transverse directions of laminates coupled with dissimilar fiber–matrix interfacial characteristics. A theoretical model for the surface damage area under a single-jet impact was established through experimental data fitting based on a modified water-hammer pressure contact-radius formulation. The model quantitatively characterizes the influence of critical parameters, including the jet velocity, diameter, and impact angle, on the central area of the surface failure ring. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

35 pages, 10845 KiB  
Article
Study on Axial Compression Performance of CFRP-Aluminum Alloy Laminated Short Tubes
by Xiaoqun Luo, Yanheng Li, Li Wang and Xiaonong Guo
Materials 2025, 18(15), 3480; https://doi.org/10.3390/ma18153480 - 24 Jul 2025
Viewed by 246
Abstract
CFRP possesses the advantages of lightweight and high strength, but its cost is relatively high, and its ductility is insufficient; aluminum alloys have a relatively low cost and good ductility. This paper develops a CFRP-aluminum alloy laminated tube (CFRP-AL tube), which combines the [...] Read more.
CFRP possesses the advantages of lightweight and high strength, but its cost is relatively high, and its ductility is insufficient; aluminum alloys have a relatively low cost and good ductility. This paper develops a CFRP-aluminum alloy laminated tube (CFRP-AL tube), which combines the advantages of CFRP and aluminum alloy. Such composite components have broad application prospects in the field of spatial structures. The CFRP-AL tubes were studied by experimental, numerical, and theoretical research on their axial compression performance in this paper. Firstly, the standard tensile test was carried out on 6061-T6 aluminum alloy. Combining the test results and references, the Johnson–Cook hardening model parameters of aluminum alloy were determined. The tensile test of CFRP was conducted to determine its material parameters. Based on composite material mechanics and fracture mechanics, a composite progressive damage model for the CFRP-AL tube was established. Secondly, axial compression tests were carried out on 27 CFRP-AL tubes and 3 aluminum alloy tubes with a small slenderness ratio. The test results show that the typical failure mode of CFRP-AL tubes with small slenderness ratios is strength failure, and the ultimate bearing capacity rises by 11~31% compared to aluminum alloy tubes. Thirdly, a user material subroutine capable of simulating CFRP failure was developed. Based on the user material subroutine, the effect of the initial imperfection, the fiber layer angle, the fiber layer thickness, the slenderness ratio, the diameter-thickness ratio and the CFRP volume ratio were discussed. And the failure mechanism and response of the CFRP-AL tubes under the axial compression were obtained. Finally, based on the strength theory, the formula predicting the bearing capacity of the strength failure was established, and the results of the formula were in a good agreement with the experimental and numerical results. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

30 pages, 9107 KiB  
Article
Numerical Far-Field Investigation into Guided Waves Interaction at Weak Interfaces in Hybrid Composites
by Saurabh Gupta, Mahmood Haq, Konstantin Cvetkovic and Oleksii Karpenko
J. Compos. Sci. 2025, 9(8), 387; https://doi.org/10.3390/jcs9080387 - 22 Jul 2025
Viewed by 240
Abstract
Modern aerospace engineering places increasing emphasis on materials that combine low weight with high mechanical performance. Fiber metal laminates (FMLs), which merge metal layers with fiber-reinforced composites, meet this demand by delivering improved fatigue resistance, impact tolerance, and environmental durability, often surpassing the [...] Read more.
Modern aerospace engineering places increasing emphasis on materials that combine low weight with high mechanical performance. Fiber metal laminates (FMLs), which merge metal layers with fiber-reinforced composites, meet this demand by delivering improved fatigue resistance, impact tolerance, and environmental durability, often surpassing the performance of their constituents in demanding applications. Despite these advantages, inspecting such thin, layered structures remains a significant challenge, particularly when they are difficult or impossible to access. As with any new invention, they always come with challenges. This study examines the effectiveness of the fundamental anti-symmetric Lamb wave mode (A0) in detecting weak interfacial defects within Carall laminates, a type of hybrid fiber metal laminate (FML). Delamination detectability is analyzed in terms of strong wave dispersion observed downstream of the delaminated sublayer, within a region characterized by acoustic distortion. A three-dimensional finite element (FE) model is developed to simulate mode trapping and full-wavefield local displacement. The approach is validated by reproducing experimental results reported in prior studies, including the author’s own work. Results demonstrate that the A0 mode is sensitive to delamination; however, its lateral resolution depends on local position, ply orientation, and dispersion characteristics. Accurately resolving the depth and extent of delamination remains challenging due to the redistribution of peak amplitude in the frequency domain, likely caused by interference effects in the acoustically sensitive delaminated zone. Additionally, angular scattering analysis reveals a complex wave behavior, with most of the energy concentrated along the centerline, despite transmission losses at the metal-composite interfaces in the Carall laminate. The wave interaction with the leading and trailing edges of the delaminations is strongly influenced by the complex wave interference phenomenon and acoustic mismatched regions, leading to an increase in dispersion at the sublayers. Analytical dispersion calculations clarify how wave behavior influences the detectability and resolution of delaminations, though this resolution is constrained, being most effective for weak interfaces located closer to the surface. This study offers critical insights into how the fundamental anti-symmetric Lamb wave mode (A0) interacts with delaminations in highly attenuative, multilayered environments. It also highlights the challenges in resolving the spatial extent of damage in the long-wavelength limit. The findings support the practical application of A0 Lamb waves for structural health assessment of hybrid composites, enabling defect detection at inaccessible depths. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

17 pages, 2341 KiB  
Systematic Review
Influence of Process and Material Factors on the Quality of Machine Processing of Laminated Particleboard
by Łukasz Adamik, Radosław Auriga and Piotr Borysiuk
Materials 2025, 18(14), 3402; https://doi.org/10.3390/ma18143402 - 21 Jul 2025
Viewed by 327
Abstract
Next to solid wood, laminated particleboard is the most widely used wood-based material in the furniture industry. Ensuring the high quality of the laminate surface after machining is of critical importance for furniture manufacturers, particularly prior to the edge banding process, as this [...] Read more.
Next to solid wood, laminated particleboard is the most widely used wood-based material in the furniture industry. Ensuring the high quality of the laminate surface after machining is of critical importance for furniture manufacturers, particularly prior to the edge banding process, as this process significantly influences the final aesthetic and functional quality of panel elements. The objective of this review article is to gather and evaluate the current state of knowledge regarding the influence of machining process parameters and the physical and mechanical properties of laminated particleboard on machining quality. Particular emphasis is placed on the occurrence of laminate damage, commonly referred to as delamination, a prevalent defect in the furniture manufacturing sector. Both categories of influencing factors—process-related and material-related—are analyzed within the context of the three primary technological processes employed in the woodworking industry, namely drilling, cutting, and milling. The analysis revealed that a persistent research gap concerns the relationship between machining quality and material parameters, particularly in the case of milling—a process of critical importance in the furniture industry. Full article
Show Figures

Graphical abstract

23 pages, 4453 KiB  
Article
Nonlinear Elasticity and Damage Prediction in Automated Fiber Placement Composites via Nested Micromechanics
by Hadas Hochster, Gal Raanan, Eyal Tiosano, Yoav Harari, Golan Michaeli, Yonatan Rotbaum and Rami Haj-Ali
Materials 2025, 18(14), 3394; https://doi.org/10.3390/ma18143394 - 19 Jul 2025
Viewed by 333
Abstract
Automated fiber placement (AFP) composites exhibit complex mechanical behaviors due to manufacturing-induced mesostructural variations, including resin-rich regions and tow gaps that significantly influence both local stress distributions and global material responses. This study presents a hierarchically nested modeling framework based on the Parametric [...] Read more.
Automated fiber placement (AFP) composites exhibit complex mechanical behaviors due to manufacturing-induced mesostructural variations, including resin-rich regions and tow gaps that significantly influence both local stress distributions and global material responses. This study presents a hierarchically nested modeling framework based on the Parametric High-Fidelity Generalized Method of Cells (PHFGMC) to predict the effective elastic properties and nonlinear mechanical response of AFP composites. The PHFGMC model integrates micro- and meso-scale analyses using representative volume elements (RVEs) derived from micrographs of AFP composite laminates to capture these manufacturing-induced characteristics. Multiple RVE configurations with varied gap patterns are analyzed to quantify the influence of mesostructural features on global stress–strain response. Predictions for linear and nonlinear elastic behaviors are validated against experimental results from carbon fiber/epoxy AFP specimens, demonstrating good quantitative agreement with measured responses. A cohesive extension of the PHFGMC framework further captures damage initiation and crack propagation under transverse tensile loading, revealing failure mechanisms specifically associated with tow gaps and resin-rich areas. By systematically accounting for manufacturing-induced variability through detailed RVE modeling, the nested PHFGMC framework enables the accurate prediction of global mechanical performance and localized behavior, providing a robust computational tool for optimizing AFP composite design in aerospace and other high-performance applications. Full article
(This article belongs to the Special Issue Mechanical Behaviour of Advanced Metal and Composite Materials)
Show Figures

Figure 1

23 pages, 7773 KiB  
Article
Strengthening-Effect Assessment of Smart CFRP-Reinforced Steel Beams Based on Optical Fiber Sensing Technology
by Bao-Rui Peng, Fu-Kang Shen, Zi-Yi Luo, Chao Zhang, Yung William Sasy Chan, Hua-Ping Wang and Ping Xiang
Photonics 2025, 12(7), 735; https://doi.org/10.3390/photonics12070735 - 18 Jul 2025
Viewed by 300
Abstract
Carbon fiber-reinforced polymer (CFRP) laminates have been widely coated on aged and damaged structures for recovering or enhancing their structural performance. The health conditions of the coated composite structures have been given high attention, as they are critically important for assessing operational safety [...] Read more.
Carbon fiber-reinforced polymer (CFRP) laminates have been widely coated on aged and damaged structures for recovering or enhancing their structural performance. The health conditions of the coated composite structures have been given high attention, as they are critically important for assessing operational safety and residual service life. However, the current problem is the lack of an efficient, long-term, and stable monitoring technique to characterize the structural behavior of coated composite structures in the whole life cycle. For this reason, bare and packaged fiber Bragg grating (FBG) sensors have been specially developed and designed in sensing networks to monitor the structural performance of CFRP-coated composite beams under different loads. Some optical fibers have also been inserted in the CFRP laminates to configure the smart CFRP component. Detailed data interpretation has been conducted to declare the strengthening process and effect. Finite element simulation and simplified theoretical analysis have been conducted to validate the experimental testing results and the deformation profiles of steel beams before and after the CFRP coating has been carefully checked. Results indicate that the proposed FBG sensors and sensing layout can accurately reflect the structural performance of the composite beam structure, and the CFRP coating can share partial loads, which finally leads to the downward shift in the centroidal axis, with a value of about 10 mm. The externally bonded sensors generally show good stability and high sensitivity to the applied load and temperature-induced inner stress variation. The study provides a straightforward instruction for the establishment of a structural health monitoring system for CFRP-coated composite structures in the whole life cycle. Full article
Show Figures

Figure 1

19 pages, 40657 KiB  
Article
Development and Analysis of a Sustainable Interlayer Hybrid Unidirectional Laminate Reinforced with Glass and Flax Fibres
by York Schwieger, Usama Qayyum and Giovanni Pietro Terrasi
Polymers 2025, 17(14), 1953; https://doi.org/10.3390/polym17141953 - 16 Jul 2025
Viewed by 257
Abstract
In this study, a new fibre combination for an interlayer hybrid fibre-reinforced polymer laminate was investigated to achieve pseudo-ductile behaviour in tensile tests. The chosen high-strain fibre for this purpose was S-Glass, and the low-strain fibre was flax. These materials were chosen because [...] Read more.
In this study, a new fibre combination for an interlayer hybrid fibre-reinforced polymer laminate was investigated to achieve pseudo-ductile behaviour in tensile tests. The chosen high-strain fibre for this purpose was S-Glass, and the low-strain fibre was flax. These materials were chosen because of their relatively low environmental impact compared to carbon/carbon and carbon/glass hybrids. An analytical model was used to find an ideal combination of the two materials. With that model, the expected stress–strain relation could also be predicted analytically. The modelling was based on preliminary tensile tests of the two basic components investigated in this research: unidirectional laminates reinforced with either flax fibres or S-Glass fibres. Hybrid specimens were then designed, produced in a heat-assisted pressing process, and subjected to tensile tests. The strain measurement was performed using distributed fibre optic sensing. Ultimately, it was possible to obtain repeatable pseudo-ductile stress–strain behaviour with the chosen hybrid when the specimens were subjected to quasi-static uniaxial tension in the direction of the fibres. The intended damage-mode, consisting of a controlled delamination at the flax-fibre/glass-fibre interface after the flax fibres failed, followed by a load transfer to the glass fibre layers, was successfully achieved. The pseudo-ductile strain averaged 0.52% with a standard deviation of 0.09%, and the average load reserve after delamination was 145.5 MPa with a standard deviation of 48.5 MPa. The integrated fibre optic sensors allowed us to monitor and verify the damage process with increasing strain and load. Finally, the analytical model was compared to the measurements and was partially modified by neglecting the Weibull strength distribution of the high-strain material. Full article
Show Figures

Figure 1

18 pages, 3197 KiB  
Article
The Progressive Damage Modeling of Composite–Steel Lapped Joints
by Alaa El-Sisi, Ahmed Elbelbisi, Ahmed Elkilani and Hani Salim
J. Compos. Sci. 2025, 9(7), 350; https://doi.org/10.3390/jcs9070350 - 7 Jul 2025
Viewed by 606
Abstract
In advanced structural applications—aerospace and automotive—fiber-laminated composite (FRP) materials are increasingly used for their superior strength-to-weight ratios, making the reliability of their mechanical joints a critical concern. Mechanically fastened joints play a major role in ensuring the structural stability of FRP Composite structures; [...] Read more.
In advanced structural applications—aerospace and automotive—fiber-laminated composite (FRP) materials are increasingly used for their superior strength-to-weight ratios, making the reliability of their mechanical joints a critical concern. Mechanically fastened joints play a major role in ensuring the structural stability of FRP Composite structures; however, accurately predicting their failure behavior remains a major challenge due to the anisotropic and heterogeneous nature of composite materials. This paper presents a progressive damage modeling approach to investigate the failure modes and joint strength of mechanically fastened carbon fiber-laminated (CFRP) composite joints. A 3D constitutive model based on continuum damage mechanics was developed and implemented within a three-dimensional finite element framework. The joint model comprises a composite plate, a steel plate, a steel washer, and steel bolts, capturing realistic assembly behavior. Both single- and double-lap joint configurations, featuring single and double bolts, were analyzed under tensile loading. The influence of clamping force on joint strength was also investigated. Model predictions were validated against existing experimental results, showing a good correlation. It was observed that double-lap joints exhibit nearly twice the strength of single-lap joints and can retain up to 85% of the strength of a plate with a hole. Furthermore, double-lap configurations support higher clamping forces, enhancing frictional resistance at the interface and load transfer efficiency. However, the clamping force must be optimized, as excessive values can induce premature damage in the composite before external loading. The stiffness of double-bolt double-lap (3DD) joints was found to be approximately three times that of single-bolt single-lap (3DS) joints, primarily due to reduced rotational flexibility. These findings provide useful insights into the design and optimization of composite bolted joints under tensile loading. Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume III)
Show Figures

Figure 1

23 pages, 9112 KiB  
Article
Quasi-Static Indentation and Compression Behaviors of Hybrid Woven Composite Laminates
by Hiranya Uthpali Herath, Deng’an Cai, Leshan Inusha, Paloma Luna Macias and Xinwei Wang
Coatings 2025, 15(7), 791; https://doi.org/10.3390/coatings15070791 - 4 Jul 2025
Viewed by 392
Abstract
The behaviors of hybrid and non-hybrid woven composite laminates with different stacking sequences under quasi-static indentation (QSI) and compression after indentation (CAI) were investigated in this paper. A comparative experimental and numerical study was conducted to find whether the hybridization exhibits better performance, [...] Read more.
The behaviors of hybrid and non-hybrid woven composite laminates with different stacking sequences under quasi-static indentation (QSI) and compression after indentation (CAI) were investigated in this paper. A comparative experimental and numerical study was conducted to find whether the hybridization exhibits better performance, and a focus was given to the mechanisms behind it. A C-scan ultrasonic imaging system and a digital microscope to assess the visibility of the damage and penetration resistance were employed for specimens after QSI. For CAI analysis, digital image correlation (DIC) was applied. Results show that glass–carbon hybrid woven laminates ([(±45)g/(0,90)c]4s) exhibit 4.31% greater load bearing efficiency, 4.45% higher residual compressive strength, and 6.35% less indentation-induced damage area than the carbon–glass ([(±45)c/(0,90)g]4s) hybrid woven laminates. These findings on different stacking sequences provide insights into surface layer behavior and interfacial failure in glass–carbon hybrid composites for designing surface-engineered laminates with improved resistance, energy absorption, and residual compressive strength. The results support the advancement of hybrid woven composite laminates and the development of durable, high-performance materials for structural applications. Full article
Show Figures

Figure 1

25 pages, 11796 KiB  
Article
Fiber Orientation Effects in CFRP Milling: Multiscale Characterization of Cutting Dynamics, Surface Integrity, and Damage Mechanisms
by Qi An, Jingjie Zhang, Guangchun Xiao, Chonghai Xu, Mingdong Yi, Zhaoqiang Chen, Hui Chen, Chengze Zheng and Guangchen Li
J. Compos. Sci. 2025, 9(7), 342; https://doi.org/10.3390/jcs9070342 - 2 Jul 2025
Viewed by 377
Abstract
During the machining of unidirectional carbon fiber-reinforced polymers (UD-CFRPs), their anisotropic characteristics and the complex cutting conditions often lead to defects such as delamination, burrs, and surface/subsurface damage. This study systematically investigates the effects of different fiber orientation angles (0°, 45°, 90°, and [...] Read more.
During the machining of unidirectional carbon fiber-reinforced polymers (UD-CFRPs), their anisotropic characteristics and the complex cutting conditions often lead to defects such as delamination, burrs, and surface/subsurface damage. This study systematically investigates the effects of different fiber orientation angles (0°, 45°, 90°, and 135°) on cutting force, chip formation, stress distribution, and damage characteristics using a coupled macro–micro finite element model. The model successfully captures key microscopic failure mechanisms, such as fiber breakage, resin cracking, and fiber–matrix interface debonding, by integrating the anisotropic mechanical properties and heterogeneous microstructure of UD-CFRPs, thereby more realistically replicating the actual machining process. The cutting speed is kept constant at 480 mm/s. Experimental validation using T700S/J-133 laminates (with a 70% fiber volume fraction) shows that, on a macro scale, the cutting force varies non-monotonically with the fiber orientation angle, following the order of 0° < 45° < 135° < 90°. The experimental values are 24.8 N/mm < 35.8 N/mm < 36.4 N/mm < 44.1 N/mm, and the simulation values are 22.9 N/mm < 33.2 N/mm < 32.7 N/mm < 42.6 N/mm. The maximum values occur at 90° (44.1 N/mm, 42.6 N/mm), while the minimum values occur at 0° (24.8 N/mm, 22.9 N/mm). The chip morphology significantly changes with fiber orientation: 0° produces strip-shaped chips, 45° forms block-shaped chips, 90° results in particle-shaped chips, and 135° produces fragmented chips. On a micro scale, the microscopic morphology of the chips and the surface damage characteristics also exhibit gradient variations consistent with the experimental results. The developed model demonstrates high accuracy in predicting damage mechanisms and material removal behavior, providing a theoretical basis for optimizing CFRP machining parameters. Full article
Show Figures

Figure 1

26 pages, 6142 KiB  
Article
Development of Structural Model of Fiber Metal Laminate Subjected to Low-Velocity Impact and Validation by Tests
by Burhan Cetinkaya, Erdem Yilmaz, İbrahim Özkol, İlhan Şen and Tamer Saracyakupoglu
J. Compos. Sci. 2025, 9(7), 322; https://doi.org/10.3390/jcs9070322 - 23 Jun 2025
Viewed by 565
Abstract
In today’s aviation industry, research and studies are carried out to manufacture and design lightweight, high-performance materials. One of the materials developed in line with this goal is glass laminate aluminum-reinforced epoxy (GLARE), which consists of thin aluminum sheets and S2-glass/epoxy layers. Because [...] Read more.
In today’s aviation industry, research and studies are carried out to manufacture and design lightweight, high-performance materials. One of the materials developed in line with this goal is glass laminate aluminum-reinforced epoxy (GLARE), which consists of thin aluminum sheets and S2-glass/epoxy layers. Because of its high impact resistance and excellent fatigue and damage tolerance properties, GLARE is used in different aircraft parts, such as the wing, fuselage, empennage skins, and cargo floors. In this study, a survey was carried out and a low-velocity impact model for GLARE materials was developed using the ABAQUS (2014) version V6.14 software and compared with the results of low-velocity impact tests performed according to the American Society for Testing and Materials (ASTM) D7136 standard. This article introduces a novel integrated approach that combines detailed numerical modeling with experimental validation of GLARE 4A FMLs under low-velocity impact. Leveraging ABAQUS, a robust FEM featuring explicit analysis, cohesive resin interfaces, and custom VUMAT subroutines was developed to accurately simulate energy absorption, dent depth, and delamination. The precise model’s predictions align well with test results performed according to ASTM D7136 standards, exhibiting less than a 0.1% deviation in the displacement (dent depth)–time response, along with deviations of 4.3% in impact energy–time and 5.2% in velocity–time trends at 5.5 ms. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

18 pages, 3624 KiB  
Article
Repeated Impact Damage Behavior and Damage Tolerance of Bio-Inspired Helical-Structured Glass Fiber Resin Matrix Composites
by Liang He, Zhaoyue Yao, Lanlan Jiang, Zaoyang Guo and Qihui Lyu
Polymers 2025, 17(13), 1720; https://doi.org/10.3390/polym17131720 - 20 Jun 2025
Viewed by 375
Abstract
This study proposes a bionic helical configuration design concept, focusing on glass-fiber-reinforced polymer matrix composites. Through a combination of experimental and numerical simulation methods, it systematically investigates the resistance to multiple impacts and damage tolerance. The research designs and fabricates two types of [...] Read more.
This study proposes a bionic helical configuration design concept, focusing on glass-fiber-reinforced polymer matrix composites. Through a combination of experimental and numerical simulation methods, it systematically investigates the resistance to multiple impacts and damage tolerance. The research designs and fabricates two types of bionic laminates: a cross-helical and a symmetric-helical structures. By conducting repeated impact experiments at 5 J of energy for 1, 5, 10, and 15 impact times and employing advanced characterization techniques, such as ultrasonic C-scan and X-ray CT, the study reveals the mechanisms of interlaminar damage propagation and failure characteristics. Based on experimental findings, a finite element model encompassing the entire impact process and post-impact compression behavior is established. Utilizing this model, three optimized novel bionic configurations are further developed, providing new insights and theoretical support for the structural design of high-performance impact-resistant polymer matrix composites. Full article
Show Figures

Figure 1

Back to TopTop