Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,372)

Search Parameters:
Keywords = damage and failure mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5545 KiB  
Article
Finite Element Analysis of the Mechanical Performance of an Innovative Beam-Column Joint Incorporating V-Shaped Steel as a Replaceable Energy-Dissipating Component
by Lin Zhang, Yiru Hou and Yi Wang
Buildings 2025, 15(14), 2513; https://doi.org/10.3390/buildings15142513 - 17 Jul 2025
Abstract
Ductile structures have demonstrated the ability to withstand increased seismic intensity levels. Additionally, these structures can be restored to their operational state promptly following the replacement of damaged components post-earthquake. This capability has been a subject of considerable interest and focus in recent [...] Read more.
Ductile structures have demonstrated the ability to withstand increased seismic intensity levels. Additionally, these structures can be restored to their operational state promptly following the replacement of damaged components post-earthquake. This capability has been a subject of considerable interest and focus in recent years. The study presented in this paper introduces an innovative beam-column connection that incorporates V-shaped steel as the replaceable energy-dissipating component. It delineates the structural configuration and design principles of this joint. Furthermore, the paper conducts a detailed analysis of the joint’s failure mode, stress distribution, and strain patterns using ABAQUS 2022 finite element software, thereby elucidating the failure mechanisms, load transfer pathways, and energy dissipation characteristics of the joint. In addition, the study investigates the impact of critical design parameters, including the strength, thickness, and weakening dimensions of the dog-bone energy-dissipating section, as well as the strength and thickness of the V-shaped plate, on the seismic behavior of the beam-column joint. The outcomes demonstrate that the incorporation of V-shaped steel with a configurable replaceable energy-dissipating component into the traditional dog-bone replaceable joint significantly improves the out-of-plane stability. Concurrently, the V-shaped steel undergoes a process of gradual flattening under load, which allows for a larger degree of deformation. In conclusion, the innovative joint design exhibits superior ductility and load-bearing capacity when contrasted with the conventional replaceable dog-bone energy-dissipating section joint. The joint’s equivalent viscous damping coefficient, ranging between 0.252 and 0.331, demonstrates its robust energy dissipation properties. The parametric analysis results indicate that the LY160 and Q235 steel grades are recommended for the dog-bone connector and V-shaped steel connector, respectively. The optimal thickness ranges are 6–10 mm for the dog-bone connector and 2–4 mm for the V-shaped steel connector, while the weakened dimension should preferably be selected within 15–20 mm. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

12 pages, 231 KiB  
Systematic Review
Cybersecurity Issues in Electrical Protection Relays: A Systematic Review
by Giovanni Battista Gaggero, Paola Girdinio and Mario Marchese
Energies 2025, 18(14), 3796; https://doi.org/10.3390/en18143796 - 17 Jul 2025
Abstract
The increasing digitalization of power systems has revolutionized the functionality and efficiency of electrical protection relays. These digital relays enhance fault detection, monitoring, and response mechanisms, ensuring the reliability and stability of power networks. However, their connectivity and reliance on communication protocols introduce [...] Read more.
The increasing digitalization of power systems has revolutionized the functionality and efficiency of electrical protection relays. These digital relays enhance fault detection, monitoring, and response mechanisms, ensuring the reliability and stability of power networks. However, their connectivity and reliance on communication protocols introduce significant cybersecurity risks, making them potential targets for malicious attacks. Cyber threats against digital protection relays can lead to severe consequences, including cascading failures, equipment damage, and compromised grid security. This paper presents a comprehensive review of cybersecurity challenges in digital electrical protection relays, focusing on four key areas: (1) a taxonomy of cyber attack models targeting protection relays, (2) the associated risks and their potential impact on power systems, (3) existing mitigation strategies to enhance relay security, and (4) future research directions to strengthen resilience against cyber threats. Full article
Show Figures

Figure 1

17 pages, 7633 KiB  
Article
Mechanical Behavior Characteristics of Sandstone and Constitutive Models of Energy Damage Under Different Strain Rates
by Wuyan Xu and Cun Zhang
Appl. Sci. 2025, 15(14), 7954; https://doi.org/10.3390/app15147954 - 17 Jul 2025
Abstract
To explore the influence of mine roof on the damage and failure of sandstone surrounding rock under different pressure rates, mechanical experiments with different strain rates were carried out on sandstone rock samples. The strength, deformation, failure, energy and damage characteristics of rock [...] Read more.
To explore the influence of mine roof on the damage and failure of sandstone surrounding rock under different pressure rates, mechanical experiments with different strain rates were carried out on sandstone rock samples. The strength, deformation, failure, energy and damage characteristics of rock samples with different strain rates were also discussed. The research results show that with the increases in the strain rate, peak stress, and elastic modulus show a monotonically increasing trend, while the peak strain decreases in the reverse direction. At a low strain rate, the proportion of the mass fraction of complete rock blocks in the rock sample is relatively high, and the shape integrity is good, while rock samples with a high strain rate retain more small-sized fragmented rock blocks. This indicates that under high-rate loading, the bifurcation phenomenon of secondary cracks is obvious. The rock samples undergo a failure form dominated by small-sized fragments, with severe damage to the rock samples and significant fractal characteristics of the fragments. At the initial stage of loading, the primary fractures close, and the rock samples mainly dissipate energy in the forms of frictional slip and mineral fragmentation. In the middle stage of loading, the residual fractures are compacted, and the dissipative strain energy keeps increasing continuously. In the later stage of loading, secondary cracks accelerate their expansion, and elastic strain energy is released sharply, eventually leading to brittle failure of the rock sample. Under a low strain rate, secondary cracks slowly expand along the clay–quartz interface and cause intergranular failure of the rock sample. However, a high strain rate inhibits the stress relaxation of the clay, forces the energy to transfer to the quartz crystal, promotes the penetration of secondary cracks through the quartz crystal, and triggers transgranular failure. A constitutive model based on energy damage was further constructed, which can accurately characterize the nonlinear hardening characteristics and strength-deformation laws of rock samples with different strain rates. The evolution process of its energy damage can be divided into the unchanged stage, the slow growth stage, and the accelerated growth stage. The characteristics of this stage reveal the sudden change mechanism from the dissipation of elastic strain energy of rock samples to the unstable propagation of secondary cracks, clarify the cumulative influence of strain rate on damage, and provide a theoretical basis for the dynamic assessment of surrounding rock damage and disaster early warning when the mine roof comes under pressure. Full article
Show Figures

Figure 1

19 pages, 1827 KiB  
Article
Discrete Element Modeling of Concrete Under Dynamic Tensile Loading
by Ahmad Omar and Laurent Daudeville
Materials 2025, 18(14), 3347; https://doi.org/10.3390/ma18143347 - 17 Jul 2025
Abstract
Concrete is a fundamental material in structural engineering, widely used in critical infrastructure such as bridges, nuclear power plants, and dams. These structures may be subjected to extreme dynamic loads resulting from natural disasters, industrial accidents, or missile impacts. Therefore, a comprehensive understanding [...] Read more.
Concrete is a fundamental material in structural engineering, widely used in critical infrastructure such as bridges, nuclear power plants, and dams. These structures may be subjected to extreme dynamic loads resulting from natural disasters, industrial accidents, or missile impacts. Therefore, a comprehensive understanding of concrete behavior under high strain rates is essential for safe and resilient design. Experimental investigations, particularly spalling tests, have highlighted the strain-rate sensitivity of concrete in dynamic tensile loading conditions. This study presents a macroscopic 3D discrete element model specifically developed to simulate the dynamic response of concrete subjected to extreme loading. Unlike conventional continuum-based models, the proposed discrete element framework is particularly suited to capturing damage and fracture mechanisms in cohesive materials. A key innovation lies in incorporating a physically grounded strain-rate dependency directly into the local cohesive laws that govern inter-element interactions. The originality of this work is further underlined by the validation of the discrete element model under dynamic tensile loading through the simulation of spalling tests on normalstrength concrete at strain rates representative of severe impact scenarios (30–115 s−1). After calibrating the model under quasi-static loading, the simulations accurately reproduce key experimental outcomes, including rear-face velocity profiles and failure characteristics. Combined with prior validations under high confining pressure, this study reinforces the capability of the discrete element method for modeling concrete subjected to extreme dynamic loading, offering a robust tool for predictive structural assessment and design. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 5885 KiB  
Article
Investigation of Buckling and Failure in Thin-Walled Columns Fabricated from PLA and PETG Using FDM 3D Printing
by Denys Baranovskyi, Pawel Wysmulski, Patryk Rozylo, Hubert Debski, Maryna Bulakh, Marcin Kopyść and Sergey Myamlin
Materials 2025, 18(14), 3346; https://doi.org/10.3390/ma18143346 - 17 Jul 2025
Abstract
This paper presents the results of an experimental study on the buckling and failure behavior of thin-walled square columns made from PLA and PETG polymers using FDM 3D printing technology. Thin-walled square columns made from thermoplastic materials, intended for use in lightweight load-bearing [...] Read more.
This paper presents the results of an experimental study on the buckling and failure behavior of thin-walled square columns made from PLA and PETG polymers using FDM 3D printing technology. Thin-walled square columns made from thermoplastic materials, intended for use in lightweight load-bearing applications such as structural supports in transportation, construction, and mechanical assemblies, were tested under axial compression from the onset of buckling to complete failure. The novelty of this work lies in the application of an interdisciplinary experimental approach to the analysis of the behavior of thin-walled columns made of PLA and PETG materials during FDM 3D printing under compression until complete failure, as well as the use of acoustic and optical diagnostic methods for a comprehensive assessment of damage. The experimental results are as follows: Buckling load (N): PLA—1175 ± 32, PETG1—1910 ± 34, PETG2—1315 ± 27. Ultimate load (N): PLA—2770, PETG1—4077, PETG2—2847. Maximum strain: PLA—11.35%, PETG1—11.77%, PETG2—10.99%. Among the tested materials, PETG1 exhibited the highest resistance and energy absorption capacity upon failure, making it a favorable choice for manufacturing 3D-printed load-bearing columns. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

27 pages, 1136 KiB  
Review
Metabolic Disturbances Involved in Cardiovascular Diseases: The Role of Mitochondrial Dysfunction, Altered Bioenergetics and Oxidative Stress
by Donatella Pietrangelo, Caroline Lopa, Margherita Litterio, Maria Cotugno, Speranza Rubattu and Angela Lombardi
Int. J. Mol. Sci. 2025, 26(14), 6791; https://doi.org/10.3390/ijms26146791 - 15 Jul 2025
Viewed by 122
Abstract
The study of metabolic abnormalities regarding mitochondrial respiration and energy production has significantly advanced our understanding of cell biology and molecular mechanisms underlying cardiovascular diseases (CVDs). Mitochondria provide 90% of the energy required for maintaining normal cardiac function and are central to heart [...] Read more.
The study of metabolic abnormalities regarding mitochondrial respiration and energy production has significantly advanced our understanding of cell biology and molecular mechanisms underlying cardiovascular diseases (CVDs). Mitochondria provide 90% of the energy required for maintaining normal cardiac function and are central to heart bioenergetics. During the initial phase of heart failure, mitochondrial number and function progressively decline, causing a decrease in oxidative metabolism and increased glucose uptake and glycolysis, leading to ATP depletion and bioenergetic starvation, finally contributing to overt heart failure. Compromised mitochondrial bioenergetics is associated with vascular damage in hypertension, vascular remodeling in pulmonary hypertension and acute cardiovascular events. Thus, mitochondrial dysfunction, leading to impaired ATP production, excessive ROS generation, the opening of mitochondrial permeability transition pores and the activation of apoptotic and necrotic pathways, is revealed as a typical feature of common CVDs. Molecules able to positively modulate cellular metabolism by improving mitochondrial bioenergetics and energy metabolism and inhibiting oxidative stress production are expected to exert beneficial protective effects in the heart and vasculature. This review discusses recent advances in cardiovascular research through the study of cellular bioenergetics in both chronic and acute CVDs. Emerging therapeutic strategies, specifically targeting metabolic modulators, mitochondrial function and quality control, are discussed. Full article
(This article belongs to the Special Issue Molecular Research in Cardiovascular Disease, 3rd Edition)
Show Figures

Figure 1

23 pages, 8675 KiB  
Article
Research on the Deterioration Mechanism of PPF Mortar-Masonry Stone Structures Under Freeze–Thaw Conditions
by Jie Dong, Hongfeng Zhang, Zhenhuan Jiao, Zhao Yang, Shaohui Chu, Jinfei Chai, Song Zhang, Lunkai Gong and Hongyu Cui
Buildings 2025, 15(14), 2468; https://doi.org/10.3390/buildings15142468 - 14 Jul 2025
Viewed by 117
Abstract
Significant progress has been made in the low-temperature toughness and crack resistance of polypropylene fiber-reinforced composites. However, there is still a gap in the research on damage evolution under freeze–thaw cycles and complex stress ratios. To solve the problem of durability degradation of [...] Read more.
Significant progress has been made in the low-temperature toughness and crack resistance of polypropylene fiber-reinforced composites. However, there is still a gap in the research on damage evolution under freeze–thaw cycles and complex stress ratios. To solve the problem of durability degradation of traditional rubble masonry in cold regions, this paper focuses on the study of polypropylene fiber-mortar-masonry blocks with different fiber contents. Using acoustic emission and digital image technology, the paper conducts a series of tests on the scaled-down polypropylene fiber-mortar-masonry structure, including uniaxial compressive tests, three-point bending tests, freeze–thaw cycle tests, and tests with different stress ratios. Based on the Kupfer criterion, a biaxial failure criterion for polypropylene fiber mortar-masonry stone (PPF-MMS) was established under different freeze–thaw cycles. A freeze–thaw damage evolution model was also developed under different stress ratios. The failure mechanism of PPF-MMS structures was analyzed using normalized average deviation (NAD), RA-AF, and other parameters. The results show that when the dosage of PPF is 0.9–1.1 kg/m3, it is the optimal content. The vertical stress shows a trend of increasing first and then decreasing with the increase in the stress ratio, and when α = 0.5, the degree of strength increase reaches the maximum. However, the freeze–thaw cycle has an adverse effect on the internal structure of the specimens. Under the same number of freeze–thaw cycles, the strength of the specimens without fiber addition decreases more rapidly than that with fiber addition. The NAD evolution rate exhibits significant fluctuations during the middle loading period and near the damage failure, which can be considered precursors to specimen cracking and failure. RA-AF results showed that the specimens mainly exhibited tensile failure, but the occurrence of tensile failure gradually decreased as the stress ratio increased. Full article
Show Figures

Figure 1

23 pages, 6300 KiB  
Article
Deciphering the Time-Dependent Deformation and Failure Mechanism of the Large Underground Powerhouse in Baihetan Hydropower Station
by Wenjie Zu, Jian Tao and Jun Wang
Processes 2025, 13(7), 2244; https://doi.org/10.3390/pr13072244 - 14 Jul 2025
Viewed by 162
Abstract
During the excavation of the underground cavern at the Baihetan hydropower station, significant time-dependent deformation of the surrounding rock was observed, posing a serious challenge to the long-term stability control of the caverns. In this study, numerical models of the layered excavation for [...] Read more.
During the excavation of the underground cavern at the Baihetan hydropower station, significant time-dependent deformation of the surrounding rock was observed, posing a serious challenge to the long-term stability control of the caverns. In this study, numerical models of the layered excavation for typical monitoring sections in the main and auxiliary powerhouses on both banks of the Baihetan hydropower station were established using a viscoplastic damage model. The time-dependent deformation responses of the surrounding rock during the entire underground cavern excavation process were successfully simulated, and the deformation and failure mechanisms of the surrounding rock during layered excavation were analyzed in combination with field monitoring data. The results demonstrate that the maximum stress trajectories at the right-bank powerhouse under higher stress conditions exceeded those at the left-bank powerhouse by 6 MPa after the powerhouse excavation. A larger stress difference caused stress trajectories to move closer to the rock strength surface, therefore making creep failure more likely to occur in the right bank. Targeted reinforcement in high-disturbance zones of the right-bank powerhouse reduced the damage progression rate at borehole openings from 0.295 per month to 0.0015 per month, effectively suppressing abrupt deformations caused by cumulative damage. These findings provide a basis for optimizing the excavation design of deep underground caverns. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

15 pages, 2730 KiB  
Article
The Influence of Insertion Torque on Stress Distribution in Peri-Implant Bones Around Ultra-Short Implants: An FEA Study
by Mario Ceddia, Lorenzo Montesani, Luca Comuzzi, Alessandro Cipollina, Douglas A. Deporter, Natalia Di Pietro and Bartolomeo Trentadue
J. Funct. Biomater. 2025, 16(7), 260; https://doi.org/10.3390/jfb16070260 - 14 Jul 2025
Viewed by 361
Abstract
Using ultra-short dental implants is a promising alternative to extensive bone grafting procedures for patients with atrophic posterior mandibles and vertical bone loss. However, the amount of insertion torque (IT) applied during implant placement significantly influences stress distribution in the peri-implant bone, which [...] Read more.
Using ultra-short dental implants is a promising alternative to extensive bone grafting procedures for patients with atrophic posterior mandibles and vertical bone loss. However, the amount of insertion torque (IT) applied during implant placement significantly influences stress distribution in the peri-implant bone, which affects implant stability and long-term success. Materials and Methods: This study used finite element analysis (FEA) to examine how different insertion torques (35 N·cm and 75 N·cm) affect stress distribution in cortical and trabecular bone types D2 and D4 surrounding ultra-short implants. Von Mises equivalent stress values were compared with ultimate bone strength thresholds to evaluate the potential for microdamage during insertion. Results: The findings demonstrate that increasing IT from 35 N·cm to 75 N·cm led to a significant increase in peri-implant bone stress. Specifically, cortical bone stress in D4 bone increased from approximately 79 MPa to 142 MPa with higher IT, exceeding physiological limits and elevating the risk of microfractures and bone necrosis. In contrast, lower IT values kept stress within safe limits, ensuring optimal primary stability without damaging the bone. These results underscore the need to strike a balance between achieving sufficient implant stability and avoiding mechanical trauma to the surrounding bone. Conclusions: Accurate control of insertion torque during the placement of ultra-short dental implants is crucial to minimize bone damage and promote optimal osseointegration. Excessive torque, especially in low-density bone, can compromise implant success by inducing excessive stress, thereby increasing the risk of early failure. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

28 pages, 17257 KiB  
Article
A Crystal Plasticity Phase-Field Study on the Effects of Grain Boundary Degradation on the Fatigue Behavior of a Nickel-Based Superalloy
by Pengfei Liu, Zhanghua Chen, Xiao Zhao, Jianxin Dong and He Jiang
Materials 2025, 18(14), 3309; https://doi.org/10.3390/ma18143309 - 14 Jul 2025
Viewed by 184
Abstract
Grain boundary weakening in high-temperature environments significantly influences the fatigue crack growth mechanisms of nickel-based superalloys, introducing challenges in accurately predicting fatigue life. In this study, a dislocation-density-based crystal plasticity phase-field (CP–PF) model is developed to simulate the fatigue crack growth behavior of [...] Read more.
Grain boundary weakening in high-temperature environments significantly influences the fatigue crack growth mechanisms of nickel-based superalloys, introducing challenges in accurately predicting fatigue life. In this study, a dislocation-density-based crystal plasticity phase-field (CP–PF) model is developed to simulate the fatigue crack growth behavior of the GH4169 alloy under both room and elevated temperatures. Grain boundaries are explicitly modeled, enabling the competition between transgranular and intergranular cracking to be accurately captured. The grain boundary separation energy and surface energy, calculated via molecular dynamics simulations, are employed as failure criteria for grain boundary and intragranular material points, respectively. The simulation results reveal that under oxygen-free conditions, fatigue crack propagation at both room and high temperatures is governed by sustained shear slip, with crack advancement hindered by grains exhibiting low Schmid factors. When grain boundary oxidation is introduced, increasing oxidation levels progressively degrade grain boundary strength and reduce overall fatigue resistance. Specifically, at room temperature, oxidation shortens the duration of crack arrest near grain boundaries. At elevated service temperatures, intensified grain boundary degradation facilitates a transition in crack growth mode from transgranular to intergranular, thereby accelerating crack propagation and exacerbating fatigue damage. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

24 pages, 7211 KiB  
Article
Hysteresis Model for Flexure-Shear Critical Circular Reinforced Concrete Columns Considering Cyclic Degradation
by Zhibin Feng, Jiying Wang, Hua Huang, Weiqi Liang, Yingjie Zhou, Qin Zhang and Jinxin Gong
Buildings 2025, 15(14), 2445; https://doi.org/10.3390/buildings15142445 - 11 Jul 2025
Viewed by 157
Abstract
Accurate seismic performance assessment of flexure-shear critical reinforced concrete (RC) columns necessitates precise hysteresis modeling that captures their distinct cyclic characteristics—particularly pronounced strength degradation, stiffness deterioration, and pinching effects. However, existing hysteresis models for such circular RC columns fail to comprehensively characterize these [...] Read more.
Accurate seismic performance assessment of flexure-shear critical reinforced concrete (RC) columns necessitates precise hysteresis modeling that captures their distinct cyclic characteristics—particularly pronounced strength degradation, stiffness deterioration, and pinching effects. However, existing hysteresis models for such circular RC columns fail to comprehensively characterize these coupled cyclic degradation mechanisms under repeated loading. This study develops a novel hysteresis model explicitly incorporating three key mechanisms: (1) directionally asymmetric strength degradation weighted by hysteretic energy, (2) cycle-dependent pinching governed by damage accumulation paths, and (3) amplitude-driven stiffness degradation decoupled from cycle count, calibrated and validated using 14 column tests from the Pacific Earthquake Engineering Research Center (PEER) structural performance database. Key findings reveal that significant strength degradation primarily manifests during initial loading cycles but subsequently stabilizes. Unloading stiffness degradation demonstrates negligible dependency on cycle number. Pinching effects progressively intensify with cyclic advancement. The model provides a physically rigorous framework for simulating seismic deterioration, significantly improving flexure-shear failure prediction accuracy, while parametric analysis confirms its potential adaptability beyond tested scenarios. However, applicability remains confined to specific parameter ranges with reliability decreasing near boundaries due to sparse data. Deliberate database expansion for edge cases is essential for broader generalization. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

24 pages, 4420 KiB  
Article
Herbal Extract-Induced DNA Damage, Apoptosis, and Antioxidant Effects of C. elegans: A Comparative Study of Mentha longifolia, Scrophularia orientalis, and Echium biebersteinii
by Anna Hu, Qinghao Meng, Robert P. Borris and Hyun-Min Kim
Pharmaceuticals 2025, 18(7), 1030; https://doi.org/10.3390/ph18071030 - 11 Jul 2025
Viewed by 316
Abstract
Background: Herbal medicine represents a rich yet complex source of bioactive compounds, offering both therapeutic potential and toxicological risks. Methods: In this study, we systematically evaluated the biological effects of three traditional herbal extracts—Mentha longifolia, Scrophularia orientalis, and Echium biebersteinii [...] Read more.
Background: Herbal medicine represents a rich yet complex source of bioactive compounds, offering both therapeutic potential and toxicological risks. Methods: In this study, we systematically evaluated the biological effects of three traditional herbal extracts—Mentha longifolia, Scrophularia orientalis, and Echium biebersteinii—using Caenorhabditis elegans as an in vivo model. Results: All three extracts significantly reduced worm survival, induced larval arrest, and triggered a high incidence of males (HIM) phenotypes, indicative of mitotic failure and meiotic chromosome missegregation. Detailed analysis of germline architecture revealed extract-specific abnormalities, including nuclear disorganization, ectopic crescent-shaped nuclei, altered meiotic progression, and reduced bivalent formation. These defects were accompanied by activation of the DNA damage response, as evidenced by upregulation of checkpoint genes (atm-1, atl-1), increased pCHK-1 foci, and elevated germline apoptosis. LC-MS profiling identified 21 major compounds across the extracts, with four compounds—thymol, carvyl acetate, luteolin-7-O-rutinoside, and menthyl acetate—shared by all three herbs. Among them, thymol and carvyl acetate significantly upregulated DNA damage checkpoint genes and promoted apoptosis, whereas thymol and luteolin-7-O-rutinoside contributed to antioxidant activity. Notably, S. orientalis and E. biebersteinii shared 11 of 14 major constituents (79%), correlating with their similar phenotypic outcomes, while M. longifolia exhibited a more distinct chemical profile, possessing seven unique compounds. Conclusions: These findings highlight the complex biological effects of traditional herbal extracts, demonstrating that both beneficial and harmful outcomes can arise from specific phytochemicals within a mixture. By deconstructing these extracts into their active components, such as thymol, carvyl acetate, and luteolin-7-O-rutinoside, we gain critical insight into the mechanisms driving reproductive toxicity and antioxidant activity. This approach underscores the importance of component-level analysis for accurately assessing the therapeutic value and safety profile of medicinal plants, particularly those used in foods and dietary supplements. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

23 pages, 10465 KiB  
Article
Dynamically Triggered Damage Around Rock Tunnels: An Experimental and Theoretical Investigation
by Wanlu Wang, Ming Tao, Wenjun Ding and Rui Zhao
Appl. Sci. 2025, 15(14), 7716; https://doi.org/10.3390/app15147716 - 9 Jul 2025
Viewed by 195
Abstract
Dynamic impact experiments based on high-speed photography and digital image correlation (DIC) techniques were carried out on sandstone specimens containing arched holes to investigate the effect of the incident angle. In addition, the complex function method based on conformal mapping was used to [...] Read more.
Dynamic impact experiments based on high-speed photography and digital image correlation (DIC) techniques were carried out on sandstone specimens containing arched holes to investigate the effect of the incident angle. In addition, the complex function method based on conformal mapping was used to theoretically calculate the transient dynamic stress distributions around the arched holes. The test results indicated that the strength and modulus of elasticity of the specimens under dynamic impact decreased and then increased with the increase of the inclination angle of the holes from 0 to 90° at intervals of 15°, reaching a minimum value at 60°, due to the large stress concentration at this angle leading to the shear failure of the specimen. During the experiment, rock debris ejections, spalling, and heaving were observed around the holes, and the rock debris ejections served as an indicator to identify the early fracture. The damage mechanism around the holes was revealed theoretically, i.e., the considerable compressive stress concentration in the perpendicular incidence direction around the arched hole and the tensile stress concentration on the incidence side led to the initiation of the damage around the cavity, and the theoretical results were in satisfactory agreement with the experimental results. In addition, the effect of the initial stress on the dynamic response of the arched tunnel was discussed. Full article
(This article belongs to the Special Issue Advances in Failure Mechanism and Numerical Methods for Geomaterials)
Show Figures

Figure 1

18 pages, 2925 KiB  
Article
Study on the Effect of Pile Spacing on the Bearing Performance of Low-Capping Concrete Expanded-Plate Group Pile Foundations Under Composite Stress
by Yongmei Qian, Yawen Yu, Miao Ma, Yu Mu, Zhongwei Ma and Tingting Zhou
Buildings 2025, 15(14), 2412; https://doi.org/10.3390/buildings15142412 - 9 Jul 2025
Viewed by 163
Abstract
The spacing between piles plays a crucial role in determining the load-bearing capacity of CEP group pile foundations equipped with a bearing platform. In this research, five sets of six-pile models with different pile spacings were created using ANSYS finite element analysis. To [...] Read more.
The spacing between piles plays a crucial role in determining the load-bearing capacity of CEP group pile foundations equipped with a bearing platform. In this research, five sets of six-pile models with different pile spacings were created using ANSYS finite element analysis. To understand how damage impacts the system, this study examined displacement patterns and stress distribution within both the piles and the adjacent soil. Additionally, the force interaction between the piles and soil was explored to uncover the underlying failure mechanisms. The results shed light on how varying pile spacing affects the overall bearing capacity of the foundations. Based on our thorough analysis, we pinpoint the most effective pile spacing configuration. The findings reveal that, generally speaking, increasing the distance between piles tends to boost the load-bearing capacity of the entire group foundation. However, this relationship is not linear; once the spacing surpasses four times the cantilever’s diameter, further widening does not yield noticeable gains in performance. In real-world scenarios, it is advisable to keep the spacing between 3.5 to 4 times the cantilever diameter for optimal results. Moreover, the stability of the bearing platform and the plate plays a vital role in resisting sideways forces. Ensuring that the shear strength of the surrounding soil aligns with established standards is essential for maintaining the overall durability and safety of the group pile system. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 4718 KiB  
Article
Shear Performance of New-to-Old Concrete Under Different Interface Treatments
by Shoukun Shi, Da Wang, Zhiyun Li, Yan Jiang, Jinchao Yue and Yibin Huang
Coatings 2025, 15(7), 805; https://doi.org/10.3390/coatings15070805 - 9 Jul 2025
Viewed by 293
Abstract
In shield tunneling, ensuring bonding performance at new-to-old concrete interfaces between segments and linings is crucial for composite lining stability. While extensive research exists on the mechanical bonding behavior of such interfaces, comparative studies on two prevalent treatment methods—scabbling and grooving—remain limited. This [...] Read more.
In shield tunneling, ensuring bonding performance at new-to-old concrete interfaces between segments and linings is crucial for composite lining stability. While extensive research exists on the mechanical bonding behavior of such interfaces, comparative studies on two prevalent treatment methods—scabbling and grooving—remain limited. This study systematically evaluates these techniques’ effects on interfacial bonding via direct shear tests, benchmarking against smooth-interface specimens. Complementary cohesive zone modeling simulations further analyze stress distribution and damage evolution during shear failure. The results demonstrate that scabbled specimens exhibit 10.5%~18.2% higher shear strength than grooved counterparts under increasing normal stress, with both treatments significantly enhancing load–transfer synergy through mechanical interlocking. Furthermore, the energy-based bilinear cohesive model accurately predicts full-interface behavior, providing practical guidance for interface treatment selection in tunneling engineering. Full article
Show Figures

Figure 1

Back to TopTop