Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (868)

Search Parameters:
Keywords = cyclic experimental test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7203 KiB  
Article
Experimental Lateral Behavior of Porcelain-Clad Cold-Formed Steel Shear Walls Under Cyclic-Gravity Loading
by Caeed Reza Sowlat-Tafti, Mohammad Reza Javaheri-Tafti and Hesam Varaee
Infrastructures 2025, 10(8), 202; https://doi.org/10.3390/infrastructures10080202 (registering DOI) - 2 Aug 2025
Abstract
Lightweight steel-framing (LSF) systems have become increasingly prominent in modern construction due to their structural efficiency, design flexibility, and sustainability. However, traditional facade materials such as stone are often cost-prohibitive, and brick veneers—despite their popularity—pose seismic performance concerns. This study introduces an innovative [...] Read more.
Lightweight steel-framing (LSF) systems have become increasingly prominent in modern construction due to their structural efficiency, design flexibility, and sustainability. However, traditional facade materials such as stone are often cost-prohibitive, and brick veneers—despite their popularity—pose seismic performance concerns. This study introduces an innovative porcelain sheathing system for cold-formed steel (CFS) shear walls. Porcelain has no veins thus it offers integrated and reliable strength unlike granite. Four full-scale CFS shear walls incorporating screwed porcelain sheathing (SPS) were tested under combined cyclic lateral and constant gravity loading. The experimental program investigated key seismic characteristics, including lateral stiffness and strength, deformation capacity, failure modes, and energy dissipation, to calculate the system response modification factor (R). The test results showed that configurations with horizontal sheathing, double mid-studs, and three blocking rows improved performance, achieving up to 21.1 kN lateral resistance and 2.5% drift capacity. The average R-factor was 4.2, which exceeds the current design code values (AISI S213: R = 3; AS/NZS 4600: R = 2), suggesting the enhanced seismic resilience of the SPS-CFS system. This study also proposes design improvements to reduce the risk of brittle failure and enhance inelastic behavior. In addition, the results inform discussions on permissible building heights and contribute to the advancement of CFS design codes for seismic regions. Full article
Show Figures

Figure 1

14 pages, 2052 KiB  
Article
Study on the Shear Strength and Durability of Ionic Soil Stabilizer-Modified Soft Soil in Acid Alkali Environments
by Zhifeng Ren, Shijie Lin, Siyu Liu, Bo Li, Jiankun Liu, Liang Chen, Lideng Fan, Ziling Xie and Lingjie Wu
Eng 2025, 6(8), 178; https://doi.org/10.3390/eng6080178 - 1 Aug 2025
Abstract
Soft soils, characterized by high compressibility, low shear strength, and high water sensitivity, pose serious challenges to geotechnical engineering in infrastructure projects. Traditional stabilization methods such as lime and cement face limitations, including environmental concerns and poor durability under chemical or cyclic loading. [...] Read more.
Soft soils, characterized by high compressibility, low shear strength, and high water sensitivity, pose serious challenges to geotechnical engineering in infrastructure projects. Traditional stabilization methods such as lime and cement face limitations, including environmental concerns and poor durability under chemical or cyclic loading. Ionic soil stabilizers (ISSs), which operate through electrochemical mechanisms, offer a promising alternative. However, their long-term performance—particularly under environmental stressors such as acid/alkali exposure and cyclic wetting–drying—remains insufficiently explored. This study evaluates the strength and durability of ISS-modified soil through a comprehensive experimental program, including direct shear tests, permeability tests, and cyclic wetting–drying experiments under neutral, acidic (pH = 4), and alkaline (pH = 10) environments. The results demonstrate that ISS treatment increases soil cohesion by up to 75.24% and internal friction angle by 9.50%, particularly under lower moisture conditions (24%). Permeability decreased by 88.4% following stabilization, resulting in only a 10–15% strength loss after water infiltration, compared to 40–50% in untreated soils. Under three cycles of wetting–drying, ISS-treated soils retained high shear strength, especially under acidic conditions, where degradation was minimal. In contrast, alkaline conditions caused a cohesion reduction of approximately 26.53%. These findings confirm the efficacy of ISSs in significantly improving both the mechanical performance and environmental durability of soft soils, offering a sustainable and effective solution for soil stabilization in chemically aggressive environments. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

13 pages, 5152 KiB  
Article
FEM-Based Design and Micromachining of a Ratchet Click Mechanism in Mechanical Watch Movements
by Alessandro Metelli, Giuseppe Soardi, Andrea Abeni and Aldo Attanasio
Micromachines 2025, 16(8), 875; https://doi.org/10.3390/mi16080875 - 29 Jul 2025
Viewed by 180
Abstract
The ratchet click mechanism in mechanical watch movements is a micro-component essential to prevent the unwinding of the caliber mainspring, providing secure energy storage during recharging. Despite its geometrical simplicity, the ratchet click undergoes to a complex distribution of stress, elevated strains, and [...] Read more.
The ratchet click mechanism in mechanical watch movements is a micro-component essential to prevent the unwinding of the caliber mainspring, providing secure energy storage during recharging. Despite its geometrical simplicity, the ratchet click undergoes to a complex distribution of stress, elevated strains, and cyclical mechanical deformations, affecting its long-term reliability. Despite being a crucial element in all mechanical watch movements, the non-return system appears to have been overlooked in scientific literature, with no studies available on its design, modeling, and micromachining. In this work, we introduce a novel Finite Element Method (FEM) -based design strategy for the ratchet click, systematically refining its geometry and dimensional parameters to minimize peak stress and improve durability. A mechanical simulation model was created to simulate the boundary conditions, contact interactions, and stress distributions on the part. If compared with the standard component, the optimized design exhibits a decrease in peak stress values. The mechanism was micro-machined, and it was experimentally tested to validate the numerical model outputs. The integrated digital–physical approach not only underscores the scientific contribution of coupling advanced simulation with experimental validation of complex micromechanisms but also provides a generalizable method for enhancing performance of micro-mechanical components while preserving their historical design heritage. Full article
Show Figures

Figure 1

21 pages, 2695 KiB  
Article
Thermographic Investigation of Elastocaloric Behavior in Ni-Ti Sheet Elements Under Cyclic Bending
by Saeed Danaee Barforooshi, Gianmarco Bizzarri, Girolamo Costanza, Stefano Paoloni, Ilaria Porroni and Maria Elisa Tata
Materials 2025, 18(15), 3546; https://doi.org/10.3390/ma18153546 - 29 Jul 2025
Viewed by 200
Abstract
Growing environmental concerns have driven increased interest in solid-state thermal technologies based on the elastocaloric properties of shape memory alloys (SMA). This work examines the elastocaloric effect (eCE) in Ni-Ti SMA sheets subjected to cyclic bending, providing quantitative thermal characterization of their behavior [...] Read more.
Growing environmental concerns have driven increased interest in solid-state thermal technologies based on the elastocaloric properties of shape memory alloys (SMA). This work examines the elastocaloric effect (eCE) in Ni-Ti SMA sheets subjected to cyclic bending, providing quantitative thermal characterization of their behavior under controlled loading conditions. The experimental investigation employed passive thermography to analyze the thermal response of Ni-Ti sheets under two deflection configurations at 1800 rpm loading. Testing revealed consistent adiabatic temperature variations (ΔTad) of 4.14 °C and 4.26 °C for the respective deflections during heating cycles, while cooling phases demonstrated efficient thermal homogenization with temperature gradients decreasing from 4.13 °C to 0.13 °C and 4.43 °C to 0.68 °C over 60 s. These findings provide systematic thermal documentation of elastocaloric behavior in bending-loaded Ni-Ti sheet elements and quantitative data on the relationship between mechanical loading parameters and thermal gradients, enhancing the experimental understanding of elastocaloric phenomena in this configuration. Full article
(This article belongs to the Special Issue Technology and Applications of Shape Memory Materials)
Show Figures

Figure 1

23 pages, 5594 KiB  
Article
Dynamic Properties of Steel-Wrapped RC Column–Beam Joints Connected by Embedded Horizontal Steel Plate: Experimental Study
by Jian Wu, Mingwei Ma, Changhao Wei, Jian Zhou, Yuxi Wang, Jianhui Wang and Weigao Ding
Buildings 2025, 15(15), 2657; https://doi.org/10.3390/buildings15152657 - 28 Jul 2025
Viewed by 230
Abstract
The performance of reinforced concrete (RC) frame structures will gradually decrease over time, posing a threat to the safety of buildings. Although the performance of some buildings may still meet the safety requirements, they cannot meet new usage requirements. Therefore, this paper proposes [...] Read more.
The performance of reinforced concrete (RC) frame structures will gradually decrease over time, posing a threat to the safety of buildings. Although the performance of some buildings may still meet the safety requirements, they cannot meet new usage requirements. Therefore, this paper proposes a new-type joint to promote the development of research on the reinforcement and renovation of RC frame structures in response to this situation. The RC beams and columns of the joints are connected by embedded horizontal steel plate (a single plate with dimension of 150 mm × 200 mm × 5 mm), and the beams and columns are individually wrapped in steel. Through conducting low cyclic loading tests, this paper analyzes the influence of carrying out wrapped steel treatment and the thickness of wrapped steel of the beam and connector on mechanical performance indicators such as hysteresis curve, skeleton curve, stiffness, ductility, and energy dissipation. The experimental results indicate that the reinforcement using steel plate can significantly improve the dynamic performance of the joint. The effect of changing the thickness of the connector on the dynamic performance of the specimen is not significant, while increasing the thickness of wrapped steel of beam can effectively improve the overall strength of joint. The research results of this paper will help promote the application of reinforcement and renovation technology for existing buildings, and improve the quality of human living. Full article
Show Figures

Figure 1

17 pages, 5711 KiB  
Article
Impact of High-Temperature Exposure on Reinforced Concrete Structures Supported by Steel Ring-Shaped Shear Connectors
by Atsushi Suzuki, Runze Yang and Yoshihiro Kimura
Buildings 2025, 15(15), 2626; https://doi.org/10.3390/buildings15152626 - 24 Jul 2025
Viewed by 262
Abstract
Ensuring the structural integrity of reinforced concrete (RC) components in nuclear facilities exposed to extreme conditions is essential for safe decommissioning. This study investigates the impact of high-temperature exposure on RC pedestal structures supported by steel ring-shaped shear connectors—critical elements for maintaining vertical [...] Read more.
Ensuring the structural integrity of reinforced concrete (RC) components in nuclear facilities exposed to extreme conditions is essential for safe decommissioning. This study investigates the impact of high-temperature exposure on RC pedestal structures supported by steel ring-shaped shear connectors—critical elements for maintaining vertical and lateral load paths in containment systems. Scaled-down cyclic loading tests were performed on pedestal specimens with and without prior thermal exposure, simulating post-accident conditions observed at a damaged nuclear power plant. Experimental results show that thermal degradation significantly reduces lateral stiffness, with failure mechanisms concentrating at the interface between the concrete and the embedded steel skirt. Complementary finite element analyses, incorporating temperature-dependent material degradation, highlight the crucial role of load redistribution to steel components when concrete strength is compromised. Parametric studies reveal that while geometric variations in the inner skirt have limited influence, thermal history is the dominant factor affecting vertical capacity. Notably, even with substantial section loss in the concrete, the steel inner skirt maintained considerable load-bearing capacity. This study establishes a validated analytical framework for assessing structural performance under extreme conditions, offering critical insights for risk evaluation and retrofit strategies in the context of nuclear facility decommissioning. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

29 pages, 5118 KiB  
Article
Effective Comparison of Thermo-Mechanical Characteristics of Self-Compacting Concretes Through Machine Learning-Based Predictions
by Armando La Scala and Leonarda Carnimeo
Fire 2025, 8(8), 289; https://doi.org/10.3390/fire8080289 - 23 Jul 2025
Viewed by 323
Abstract
This present study proposes different machine learning-based predictors for the assessment of the residual compressive strength of Self-Compacting Concrete (SCC) subjected to high temperatures. The investigation is based on several literature algorithmic approaches based on Artificial Neural Networks with distinct training algorithms (Bayesian [...] Read more.
This present study proposes different machine learning-based predictors for the assessment of the residual compressive strength of Self-Compacting Concrete (SCC) subjected to high temperatures. The investigation is based on several literature algorithmic approaches based on Artificial Neural Networks with distinct training algorithms (Bayesian Regularization, Levenberg–Marquardt, Scaled Conjugate Gradient, and Resilient Backpropagation), Support Vector Regression, and Random Forest methods. A training database of 150 experimental data points is derived from a careful literature review, incorporating temperature (20–800 °C), geometric ratio (height/diameter), and corresponding compressive strength values. A statistical analysis revealed complex non-linear relationships between variables, with strong negative correlation between temperature and strength and heteroscedastic data distribution, justifying the selection of advanced machine learning techniques. Feature engineering improved model performance through the incorporation of quadratic terms, interaction variables, and cyclic transformations. The Resilient Backpropagation algorithm demonstrated superior performance with the lowest prediction errors, followed by Bayesian Regularization. Support Vector Regression achieved competitive accuracy despite its simpler architecture. Experimental validation using specimens tested up to 800 °C showed a good reliability of the developed systems, with prediction errors ranging from 0.33% to 23.35% across different temperature ranges. Full article
Show Figures

Figure 1

17 pages, 8074 KiB  
Article
Cyclic Behavior Enhancement of Existing RC Bridge Columns with UHPC Jackets: Experimental and Parametric Study on Jacket Thickness
by Songtao Gu and Rui Zhang
Buildings 2025, 15(15), 2609; https://doi.org/10.3390/buildings15152609 - 23 Jul 2025
Viewed by 176
Abstract
Ultra-high-performance concrete (UHPC) jackets present a promising solution for enhancing the seismic resilience of seismically deficient reinforced concrete (RC) bridge columns. This study investigates jacket thickness optimization through integrated experimental and numerical analyses. Quasi-static cyclic tests on a control column and a specimen [...] Read more.
Ultra-high-performance concrete (UHPC) jackets present a promising solution for enhancing the seismic resilience of seismically deficient reinforced concrete (RC) bridge columns. This study investigates jacket thickness optimization through integrated experimental and numerical analyses. Quasi-static cyclic tests on a control column and a specimen retrofitted with a 30-mm UHPC jacket over the plastic hinge region demonstrated significant performance improvements: delayed damage initiation, controlled cracking, a 24.6% increase in lateral load capacity, 139.5% higher energy dissipation at 3% drift, and mitigated post-peak strength degradation. A validated OpenSees numerical model accurately replicated this behavior and enabled parametric studies of 15-mm, 30-mm, and 45-mm jackets. Results identified the 30-mm thickness as optimal, balancing substantial gains in lateral strength (~12% higher than other thicknesses), ductility, and energy dissipation while avoiding premature failure modes—insufficient confinement in the 15-mm jacket and strain incompatibility-induced brittle failure in the 45-mm jacket. These findings provide quantitative design guidance, establishing 30 mm as the recommended thickness for efficient seismic retrofitting of existing RC bridge columns. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 7661 KiB  
Article
Bioinspired Kirigami Structure for Efficient Anchoring of Soft Robots via Optimization Analysis
by Muhammad Niaz Khan, Ye Huo, Zhufeng Shao, Ming Yao and Umair Javaid
Appl. Sci. 2025, 15(14), 7897; https://doi.org/10.3390/app15147897 - 15 Jul 2025
Viewed by 253
Abstract
Kirigami-inspired geometries offer a lightweight, bioinspired strategy for friction enhancement and anchoring in soft robotics. This study presents a bioinspired kirigami structure designed to enhance the anchoring performance of soft robotic systems through systematic geometric and actuation parameter optimization. Drawing inspiration from the [...] Read more.
Kirigami-inspired geometries offer a lightweight, bioinspired strategy for friction enhancement and anchoring in soft robotics. This study presents a bioinspired kirigami structure designed to enhance the anchoring performance of soft robotic systems through systematic geometric and actuation parameter optimization. Drawing inspiration from the anisotropic friction mechanisms observed in reptilian scales, we integrated linear, triangular, trapezoidal, and hybrid kirigami cuts onto flexible plastic sheets. A compact 12 V linear actuator enabled cyclic actuation via a custom firmware loop, generating controlled buckling and directional friction for effective locomotion. Through experimental trials, we quantified anchoring efficiency using crawling distance and stride metrics across multiple cut densities and actuation conditions. Among the tested configurations, the triangular kirigami with a 4 × 20 unit density on 100 µm PET exhibited the most effective performance, achieving a stride efficiency of approximately 63% and an average crawling speed of ~47 cm/min under optimized autonomous operation. A theoretical framework combining buckling mechanics and directional friction validated the observed trends. This study establishes a compact, tunable anchoring mechanism for soft robotics, offering strong potential for autonomous exploration in constrained environments. Full article
(This article belongs to the Special Issue Advances in Robotics and Autonomous Systems)
Show Figures

Figure 1

17 pages, 2497 KiB  
Article
Ratcheting of Steel Samples Undergoing Asymmetric Loading Cycles at Elevated Operating Temperatures: Analytical and Numerical Assessments
by M. Karimi and A. Varvani-Farahani
Appl. Sci. 2025, 15(14), 7864; https://doi.org/10.3390/app15147864 - 14 Jul 2025
Viewed by 259
Abstract
The present study intends to assess the ratcheting response of SA508 and SA333 steel alloys subjected to asymmetric loading cycles at various operating temperatures of 298, 573, and 623K through a hardening framework developed by Ahmadzadeh–Varvani (A-V) and the finite element analysis structured [...] Read more.
The present study intends to assess the ratcheting response of SA508 and SA333 steel alloys subjected to asymmetric loading cycles at various operating temperatures of 298, 573, and 623K through a hardening framework developed by Ahmadzadeh–Varvani (A-V) and the finite element analysis structured by the Chaboche hardening model (CH) in the ANSYS software program. The dynamic recovery terms in the A-V and CH hardening framework consisted of temperature-dependent parameters and functions to address the dynamic strain aging (DSA) phenomenon at high temperatures of 573 and 623 K. The DSA phenomenon reported at elevated temperatures was attributed to the interactions of solute atoms and dislocations with a certain temperature, resulting in higher material strength and lower ratcheting deformation. The coefficients of these frameworks were analytically determined through stress–strain hysteresis loops obtained from the strain-controlled cyclic tests. The FE analysis was applied to numerically evaluate backstress evolution through use of the CH model. Two popular nonlinear brick and tetrahedron element types were examined to study the convergence of the elemental system with various numbers of elements. This ensured the independence of the simulated results from the number of elements and their convergence. The simulated ratcheting responses for brick and tetrahedron solid elements were compared to those predicted analytically by the A-V hardening rule and experimentally measured values. The predicted and simulated ratcheting data were found to be in good agreement with the measured data. The predicted and simulated ratcheting results generated using the A-V and FEA approaches showed R2 values of 0.96 and 0.85, respectively, when compared with the experimental data. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

49 pages, 11671 KiB  
Review
Fatigue Failure Criteria of Asphalt Binders and Asphalt Mixtures: A Comprehensive Review
by Shizhan Xu, Zhigang Zhao, Honglei Wang, Chenguang Wan, Xiaofeng Wang, Zhenjun Wang and Xuanrui Zhang
Materials 2025, 18(14), 3267; https://doi.org/10.3390/ma18143267 - 10 Jul 2025
Viewed by 335
Abstract
This study presents a systematic review of fatigue analysis methodologies and failure criteria for asphalt binders and mixtures employed in various cyclic fatigue testing configurations. The investigation focuses on two principal predictive approaches: phenomenological models and mechanistic frameworks, which are commonly utilized to [...] Read more.
This study presents a systematic review of fatigue analysis methodologies and failure criteria for asphalt binders and mixtures employed in various cyclic fatigue testing configurations. The investigation focuses on two principal predictive approaches: phenomenological models and mechanistic frameworks, which are commonly utilized to forecast asphalt pavement fatigue life based on experimental data from different fatigue tests. A critical evaluation is conducted on the diverse failure criteria integrated within these analytical approaches, with particular emphasis on their respective merits and limitations. The current research findings reveal a notable absence of consensus regarding the precise definition of the fatigue failure criteria for asphalt materials. Furthermore, critical parameters including accuracy assessment, reliability verification, and sensitivity analysis of these failure criteria are identified as requiring enhanced research attention. This review recommends specific fatigue failure criteria classified according to fatigue testing methods and material types. This comprehensive analysis of fatigue failure mechanisms in asphalt composites aims to inform strategic refinements for future research trajectories and enhance durability-oriented pavement design practices. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

24 pages, 13675 KiB  
Article
Microscopic Investigation of the Effect of Different Wormhole Configurations on CO2-Based Cyclic Solvent Injection in Post-CHOPS Reservoirs
by Sepideh Palizdan, Farshid Torabi and Afsar Jaffar Ali
Processes 2025, 13(7), 2194; https://doi.org/10.3390/pr13072194 - 9 Jul 2025
Viewed by 222
Abstract
Cyclic Solvent Injection (CSI), one of the most promising solvent-based enhanced oil recovery (EOR) methods, has attracted the oil industry’s interest due to its energy efficiency, produced oil quality, and environmental suitability. Previous studies revealed that foamy oil flow is considered as one [...] Read more.
Cyclic Solvent Injection (CSI), one of the most promising solvent-based enhanced oil recovery (EOR) methods, has attracted the oil industry’s interest due to its energy efficiency, produced oil quality, and environmental suitability. Previous studies revealed that foamy oil flow is considered as one of the main mechanisms of the CSI process. However, due to the presence of complex high-permeable channels known as wormholes in Post-Cold Heavy Oil Production with Sands (Post-CHOPS) reservoirs, understanding the effect of each operational parameter on the performance of the CSI process in these reservoirs requires a pore-scale investigation of different wormhole configurations. Therefore, in this project, a comprehensive microfluidic experimental investigation into the effect of symmetrical and asymmetrical wormholes during the CSI process has been conducted. A total of 11 tests were designed, considering four different microfluidic systems with various wormhole configurations. Various operational parameters, including solvent type, pressure depletion rate, and the number of cycles, were considered to assess their effects on foamy oil behavior in post-CHOPS reservoirs in the presence of wormholes. The finding revealed that the wormhole configuration plays a crucial role in controlling the oil production behavior. While the presence of the wormhole in a symmetrical design could positively improve oil production, it would restrict oil production in an asymmetrical design. To address this challenge, we used the solvent mixture containing 30% propane that outperformed CO2, overcame the impact of the asymmetrical wormhole, and increased the total recovery factor by 14% under a 12 kPa/min pressure depletion rate compared to utilizing pure CO2. Moreover, the results showed that applying a lower pressure depletion rate at 4 kPa/min could recover a slightly higher amount of oil, approximately 2%, during the first cycle compared to tests conducted under higher pressure depletion rates. However, in later cycles, a higher pressure depletion rate at 12 kPa/min significantly improved foamy oil flow quality and, subsequently, heavy oil recovery. The interesting finding, as observed, is the gap difference between the total recovery factor at the end of the cycle and the recovery factor after the first cycle, which increases noticeably with higher pressure depletion rate, increasing from 9.5% under 4 kPa/min to 16% under 12 kPa/min. Full article
(This article belongs to the Special Issue Flow Mechanisms and Enhanced Oil Recovery)
Show Figures

Figure 1

21 pages, 4581 KiB  
Article
Deformation Response and Load Transfer Mechanism of Collar Monopile Foundations in Saturated Cohesive Soils
by Zhuang Liu, Lunliang Duan, Yankun Zhang, Linhong Shen and Pei Yuan
Buildings 2025, 15(14), 2392; https://doi.org/10.3390/buildings15142392 - 8 Jul 2025
Viewed by 274
Abstract
Collar monopile foundation is a new type of offshore wind power foundation. This paper explores the horizontal bearing performance of collar monopile foundation in saturated cohesive soil through a combination of physical experiments and numerical simulations. After analyzing the deformation characteristics of the [...] Read more.
Collar monopile foundation is a new type of offshore wind power foundation. This paper explores the horizontal bearing performance of collar monopile foundation in saturated cohesive soil through a combination of physical experiments and numerical simulations. After analyzing the deformation characteristics of the pile–soil system under horizontal load through static load tests, horizontal cyclic loading tests were conducted at different cycles to study the cumulative deformation law of the collar monopile. Based on a stiffness degradation model for soft clay, a USDFLD subroutine was developed in Fortran and embedded in ABAQUS. Coupled with the Mohr–Coulomb criterion, it was used to simulate the deformation behavior of the collar monopile under horizontal cyclic loading. The numerical model employed the same geometric dimensions and boundary conditions as the physical test, and the simulated cumulative pile–head displacement under 4000 load cycles showed good agreement with the experimental results, thereby verifying the rationality and reliability of the proposed simulation method. Through numerical simulation, the distribution characteristics of bending moment and the shear force of collar monopile foundation were studied, and the influence of pile shaft and collar on the horizontal bearing capacity of collar monopile foundation at different loading stages was analyzed. The results show that as the horizontal load increases, cracks gradually appear at the bottom of the collar and in the surrounding soil. The soil disturbance caused by the sliding and rotation of the collar will gradually increase, leading to plastic failure of the surrounding soil and reducing the bearing capacity. The excess pore water pressure in shallow soil increases rapidly in the early cycle and then gradually decreases with the formation of drainage channels. Deep soil may experience negative pore pressure, indicating the presence of a suction effect. This paper can provide theoretical support for the design optimization and performance evaluation of collar monopile foundations in offshore wind power engineering applications. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 6221 KiB  
Article
Structural Health Prediction Method for Pipelines Subjected to Seismic Liquefaction-Induced Displacement via FEM and AutoML
by Ning Shi, Tianwei Kong, Wancheng Ding, Xianbin Zheng, Hong Zhang and Xiaoben Liu
Processes 2025, 13(7), 2163; https://doi.org/10.3390/pr13072163 - 7 Jul 2025
Viewed by 360
Abstract
This study investigates the mechanical behavior and safety performance of buried natural gas pipelines crossing seismically active fault zones and liquefaction-prone areas, with particular application to the China–Russia East-Route Natural Gas Pipeline. The research combines experimental testing, numerical simulation, and machine learning to [...] Read more.
This study investigates the mechanical behavior and safety performance of buried natural gas pipelines crossing seismically active fault zones and liquefaction-prone areas, with particular application to the China–Russia East-Route Natural Gas Pipeline. The research combines experimental testing, numerical simulation, and machine learning to develop an advanced framework for pipeline safety assessment under seismic loading conditions. A series of large-scale pipe–soil interaction experiments were conducted under seismic-frequency cyclic loading, leading to the development of a modified soil spring model that accurately captures the nonlinear soil-resistance characteristics during seismic events. Unlike prior studies focusing on static or specific seismic conditions, this work uniquely integrates real cyclic loading test data to develop a frequency-dependent soil spring model, significantly enhancing the physical basis for dynamic soil–pipeline interaction simulation. Finite element analyses were systematically performed to evaluate pipeline response under liquefaction-induced ground displacement, considering key influencing factors including liquefaction zone length, seismic wave frequency content, operational pressure, and pipe wall thickness. An innovative machine learning-based predictive model was developed by integrating LightGBM, XGBoost, and CatBoost algorithms, achieving remarkable prediction accuracy for pipeline strain (R2 > 0.999, MAPE < 1%). This high accuracy represents a significant improvement over conventional analytical methods and enables rapid safety assessment. The findings provide robust theoretical support for pipeline routing and seismic design in high-risk zones, enhancing the safety and reliability of energy infrastructure. Full article
(This article belongs to the Special Issue Design, Inspection and Repair of Oil and Gas Pipelines)
Show Figures

Figure 1

24 pages, 5443 KiB  
Article
Impact of Early-Age Curing and Environmental Conditions on Shrinkage and Microcracking in Concrete
by Magdalena Bacharz, Kamil Bacharz and Wiesław Trąmpczyński
Materials 2025, 18(13), 3185; https://doi.org/10.3390/ma18133185 - 5 Jul 2025
Viewed by 378
Abstract
This study analyzed the effects of curing and maturation on the formation of shrinkage strain and destructive processes in concrete. Experimental tests were performed on commonly used concrete, class C30/37, with basalt aggregate and blast furnace cement tested: at constant temperature after water [...] Read more.
This study analyzed the effects of curing and maturation on the formation of shrinkage strain and destructive processes in concrete. Experimental tests were performed on commonly used concrete, class C30/37, with basalt aggregate and blast furnace cement tested: at constant temperature after water curing, at constant temperature without water curing, and under cyclically changing temperature without prior curing. Shrinkage strain was measured for 46 days with an extensometer on 150 × 150 × 600 mm specimens, and the acoustic emission (AE) method was used to monitor microcracks and processes in concrete in real time. The results were compared with the model according to EN 1992-1-1:2023. It was found that this model correctly estimates shrinkage strain for wet-curing concrete, but there are discrepancies for air-dried concrete, regardless of temperature and moisture conditions (constant/variable). Correlation coefficients between shrinkage strain increments and process increments in early-age concrete are proposed. Correlations between shrinkage strain and destructive processes occurring in concrete were confirmed. It was found that by using correlation coefficients, it is possible to estimate internal damage in relation to shrinkage strain. The results indicate the need to develop guidelines for estimating shrinkage strain in non-model environmental conditions and demonstrate the usefulness of the nondestructive AE method in diagnosing early damage, especially in concrete structures exposed to adverse service conditions. Full article
(This article belongs to the Collection Concrete and Building Materials)
Show Figures

Figure 1

Back to TopTop