Deformation Response and Load Transfer Mechanism of Collar Monopile Foundations in Saturated Cohesive Soils
Abstract
1. Introduction
2. Methodology
2.1. Experimental Apparatus
2.1.1. Model Pile
2.1.2. Model Soil
2.1.3. Model Tank and Instrumentation Layout
2.1.4. Loading Apparatus
2.2. Numerical Simulation
2.2.1. Soil Stiffness Attenuation Model Considering Cyclic Cumulative Pore Pressure
2.2.2. Boundary Conditions
2.2.3. Model Verification
3. Result
3.1. Analysis of Monotonic Loading Tests
3.2. Analysis of Cyclic-Loading Test Results
3.3. Analysis of Pore-Water Pressure Under Cyclic Loading
4. Discussion
4.1. Analysis of the Load-Transfer Mechanisms of Conventional Monopiles and Collar Monopiles
4.2. Analysis of the Lateral Bearing Capacity and Component Synergy of the Collar Monopile Foundation
5. Conclusions
- (1)
- As the horizontal monotonic load increases, cracks initiate around the collar and propagate outward, while pile–head displacement grows, indicating a progressively larger contribution of the collar to lateral resistance.
- (2)
- Under horizontal cyclic loading, the soil adjacent to the collar undergoes crack initiation, extension, local collapse, and trench formation and widening; the drainage path enlarges, and expelled pore water and fine particles re-infiltrate during the rest period.
- (3)
- Excess pore pressure is positive in the shallow zone and negative at greater depth, with the largest fluctuations near the surface; shallow sensors show a rise–fall trend, whereas deeper ones display a fall–rise trend.
- (4)
- In the early cycles, load amplitude governs stiffness loss; as the number of cycles increases, the amplitude effect diminishes and cycle count becomes the dominant factor controlling the stiffness evolution of the collar monopile–soil system.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hua, L.; Tian, Y.; Gui, Y.; Liu, W.; Wu, W. Semi-Analytical Study of Pile–Soil Interaction on a Permeable Pipe Pile Subjected to Rheological Consolidation of Clayey Soils. Int. J. Numer. Anal. Methods Geomech. 2025, 49, 1058–1074. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, Z.; Shen, W.; Feng, T.; Zhang, G. Mechanical property and thermal degradation mechanism of granite in thermal-mechanical coupled triaxial compression. Int. J. Rock Mech. Min. Sci. 2022, 160, 105270. [Google Scholar] [CrossRef]
- Su, Y.; Cui, Y.; Dupla, J.; Canou, J. Soil-water retention behaviour of fine/coarse soil mixture with varying coarse grain contents and fine soil dry densities. Can. Geotech. J. 2021, 59, 291–299. [Google Scholar] [CrossRef]
- Wang, K.; Ye, J.; Wang, X.; Qiu, Z. The Soil-Arching Effect in Pile-Supported Embankments: A Review. Buildings 2024, 14, 126. [Google Scholar] [CrossRef]
- Wang, K.; Chen, Z.; Wang, Z.; Chen, Q.; Ma, D. Critical Dynamic Stress and Cumulative Plastic Deformation of Calcareous Sand Filler Based on Shakedown Theory. J. Mar. Sci. Eng. 2023, 11, 195. [Google Scholar] [CrossRef]
- Yao, S.; Chen, Y.; Sun, C.; Zhao, N.; Wang, Z.; Zhang, D. Dynamic Response Mechanism of Thin-Walled Plate under Confined and Unconfined Blast Loads. J. Mar. Sci. Eng. 2024, 12, 224. [Google Scholar] [CrossRef]
- Yao, S.; Wang, Y.; Chen, F.; Zhao, N.; Zhang, D.; Lu, F. Equivalent method of stiffened plates for dynamic response and damage assessment under internal blast. Structures 2025, 76, 109046. [Google Scholar] [CrossRef]
- Meng, W.; Xin, L.; Jinshuai, S.; Weiwei, L.; Zhongzheng, F.; Shuai, W.; Wenguang, Y. A study on the reasonable width of narrow coal pillars in the section of hard primary roof hewing along the air excavation roadway. Energy Sci. Eng. 2024, 12, 2746–2765. [Google Scholar] [CrossRef]
- Wang, M.; Su, J.; Qin, H.; Shang, L.; Kang, J.; Liu, W.; Fang, Z. Research on Active Advanced Support Technology of Backfilling and Mining Face. Rock Mech. Rock Eng. 2024, 57, 7623–7642. [Google Scholar] [CrossRef]
- Long, X.; Li, H.; Iyela, P.M.; Kang, S. Predicting the bond stress–slip behavior of steel reinforcement in concrete under static and dynamic loadings by finite element, deep learning and analytical methods. Eng. Fail. Anal. 2024, 161, 108312. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, J.; Huang, Y.; Lin, B.; Liu, X. Experimental and numerical studies on flexural performance of composite beams under cyclic loading. Structures 2024, 70, 107728. [Google Scholar] [CrossRef]
- Chang, J.; Thewes, M.; Zhang, D.; Huang, H.; Lin, W. Deformational behaviors of existing three-line tunnels induced by under-crossing of three-line mechanized tunnels: A case study. Can. Geotech. J. 2025, 62, 1–21. [Google Scholar] [CrossRef]
- Ma, C.; Zheng, H.; Yang, N.; Sun, T.; Si, J.; Ren, D. Microstructural evolution and mechanical properties of snow under compression. Constr. Build. Mater. 2025, 472, 140883. [Google Scholar] [CrossRef]
- Zhao, J.; Tong, H.; Yuan, J.; Wang, Y.; Cui, J.; Shan, Y. Three-dimensional strength and deformation characteristics of calcareous sand under various stress paths. Bull. Eng. Geol. Environ. 2025, 84, 61. [Google Scholar] [CrossRef]
- Wei, J.; Xie, Z.; Zhang, W.; Luo, X.; Yang, Y.; Chen, B. Experimental study on circular steel tube-confined reinforced UHPC columns under axial loading. Eng. Struct. 2021, 230, 111599. [Google Scholar] [CrossRef]
- Huang, H.; Guo, M.; Zhang, W.; Huang, M. Seismic Behavior of Strengthened RC Columns under Combined Loadings. J. Bridge Eng. 2022, 27, 05022005. [Google Scholar] [CrossRef]
- Mokwa, R.L.; Duncan, J.M. Rotational restraint of pile caps during lateral loading. J. Geotech. Geoenviron. Eng. 2003, 129, 829–837. [Google Scholar] [CrossRef]
- Powrie, W.; Daly, M.P. Centrifuge modelling of embedded retaining walls with stabilising bases. Geotechnique 2007, 57, 485–497. [Google Scholar] [CrossRef]
- Xu, Y.; Xiangwu, Z.; Xuefei, W.; Hao, Y. Performance of monopile-friction wheel foundations under lateral loading for offshore wind turbines. Appl. Ocean Res. 2018, 78, 14–24. [Google Scholar]
- Bienen, B.; Dührkop, J.; Grabe, J.; Randolph, M.F.; White, D.J. Response of piles with wings to monotonic and cyclic lateral loading in sand. J. Geotech. Geoenviron. Eng. 2012, 138, 364–375. [Google Scholar] [CrossRef]
- Li, X.; Zeng, X.; Wang, X. Feasibility study of monopile-friction wheel-bucket hybrid foundation for offshore wind turbine. Ocean Eng. 2020, 204, 107276. [Google Scholar] [CrossRef]
- Yang, Z.; Zou, X.; Chen, S. A simplified approach to the monopile-friction wheel dynamic interaction in composite foundation. Ocean Eng. 2024, 294, 116780. [Google Scholar] [CrossRef]
- Zhang, F.; Dai, G.; Gong, W. Analysis solution of the lateral load response of offshore monopile foundations under asymmetric scour. Ocean Eng. 2021, 239, 109826. [Google Scholar] [CrossRef]
- Jiang, J.; Yu, Y.; Gong, J.; Fu, C. Analytical method for lateral capacity of pile foundations under vertical loads considering asymmetric scour hole in sand. Ocean Eng. 2024, 293, 116654. [Google Scholar] [CrossRef]
- Qin, H.; Hung, C.Y.; Wang, H.; Zhang, J. Response of laterally loaded finned piles in sand. Acta Geotech. 2024, 19, 1765–1786. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, D.; Zhang, F.; Qiu, Y. Ultimate lateral bearing capacity of tetrapod jacket foundation in clay. Comput. Geotech. 2018, 84, 164–173. [Google Scholar] [CrossRef]
- Wu, J.; Pu, L.; Zhai, C. A Review of Static and Dynamic p-y Curve Models for Pile Foundations. Buildings 2024, 14, 1507. [Google Scholar] [CrossRef]
- Yang, Z.; Zou, X.; Chen, S. Investigation of the dynamic behavior of a composite pile foundation for offshore wind turbines. Acta Geotech. 2024, 19, 6495–6515. [Google Scholar] [CrossRef]
- McClelland, B.; Focht, J. Soil modulus for laterally loaded piles. J. Soil Mech. Found. Div. 1956, 82, 1081. [Google Scholar] [CrossRef]
- Reese, L.C.; Cox, W.R.; Koop, F.D. Analysis of laterally loaded piles in sand. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 5–7 May 1974. OTC-2080-MS. [Google Scholar]
- Stone, K.; Newson, T.; Sandon, J. An investigation of the performance of a ‘hybrid’ monopile-footing foundation for offshore structures. In Proceedings of the Offshore Site Investigation and Geotechnics: Confronting New Challenges and Sharing Knowledge, London, UK, 11–13 September 2007. SUT-OSIG-07-391. [Google Scholar]
- Stone, K.J.L.; Newson, T.A.; El Marassi, M.; El Naggar, H.; Taylor, R.N.; Goodey, R.J. An investigation of the use of a bearing plate to enhance the lateral capacity of monopile foundations. In Frontiers in Offshore Geotechnics II.; CRC Press: Boca Raton, FL, USA, 2010; pp. 641–646. [Google Scholar]
- Arshi, H.S.; Stone, K.J.L.; Vaziri, M.; Newson, T.A.; El-Marassi, M.; Taylor, R.N.; Goodey, R.J. Modelling of monopile-footing foundation system for offshore structures. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, 2–5 September 2013. [Google Scholar]
- Arshi, H.S.; Stone, K.J.L. Lateral resistance of hybrid monopile-footing foundations in cohesionless soils for offshore wind turbines. In Proceedings of the Offshore Site Investigation and Geotechnics: Integrated Technologies—Present and Future, London, UK, 12–14 September 2012. SUT-OSIG-12-57. [Google Scholar]
- Stone, K.J.L.; Arshi, H.S.; Zdravkovic, L. Use of a bearing plate to enhance the lateral capacity of monopiles in sand. J. Geotech. Geoenviron. Eng. 2018, 144, 04018051. [Google Scholar] [CrossRef]
- Arshi, H.S.; Stone, K.J.L.; Gunzel, F.K. Cost Efficient Design of Monopile Foundations for Offshore Wind Turbines; ICE Virtual: London, UK, 2015. [Google Scholar]
- Lehane, B.; Powrie, W.; Doherty, J. Centrifuge model tests on piled footings in clay for offshore wind turbines. In Frontiers in Offshore Geotechnics II.; CRC Press: Boca Raton, FL, USA, 2010; pp. 623–628. [Google Scholar]
- Lehane, B.M.; Pedram, B.; Doherty, J.A.; Powrie, W. Improved performance of monopiles when combined with footings for tower foundations in sand. J. Geotech. Geoenviron. Eng. 2014, 140, 04014027. [Google Scholar] [CrossRef]
- Yang, X.; Zeng, X.; Wang, X.; Berrila, J.; Li, X. Performance and bearing behavior of monopile-friction wheel foundations under lateral-moment loading for offshore wind turbines. Ocean Eng. 2019, 184, 159–172. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, X.; Li, J.; Yang, X. Lateral bearing capacity of hybrid monopile-friction wheel foundation for offshore wind turbines by centrifuge modelling. Ocean Eng. 2018, 148, 182–192. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, X.; Li, X.; Li, J. Investigation on offshore wind turbine with an innovative hybrid monopile foundation: An experimental based study. Renew. Energy 2019, 132, 129–141. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Li, J. Load bearing mechanism and simplified design method of hybrid monopile foundation for offshore wind turbines. Appl. Ocean Res. 2022, 126, 103286. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, C.; Chen, Z.; Kong, G. Performance of horizontally loaded energy piles in saturated clay. Geothermics 2024, 119, 102944. [Google Scholar] [CrossRef]
- Lesny, K.; Wiemann, J. Finite-element-modelling of large diameter monopiles for offshore wind energy converters. In GeoCongress 2006: Geotechnical Engineering in the Information Technology Age; American Society of Civil Engineers: Reston, VA, USA, 2006; pp. 1–6. [Google Scholar]
- Choo, Y.W.; Kim, D.; Park, J.H.; Kwak, K.; Kim, J.H.; Kim, D.S. Lateral response of large-diameter monopiles for offshore wind turbines from centrifuge model tests. Geotech. Test. J. 2014, 37, 107–120. [Google Scholar] [CrossRef]
- Zhang, Y.; Andersen, K.H. Soil reaction curves for monopiles in clay. Mar. Struct. 2019, 65, 94–113. [Google Scholar] [CrossRef]
- Shao, X.; Jiang, C.; Cao, R.; Pang, L.; Chen, L. Analysis for laterally loaded pile behavior on offshore sand slope crest considering friction effect and variational base angle in FW. Ocean Eng. 2022, 266, 112978. [Google Scholar] [CrossRef]
- Achmus, M.; Kuo, Y.S.; Abdel-Rahman, K. Behavior of monopile foundations under cyclic lateral load. Comput. Geotech. 2009, 36, 725–735. [Google Scholar] [CrossRef]
- Shao, W.; Yang, D.; Shi, D.; Liu, Y. Degradation of lateral bearing capacity of piles in soft clay subjected to cyclic lateral loading. Mar. Georesour. Geotechnol. 2019, 37, 999–1006. [Google Scholar] [CrossRef]
- Vicent, S.; Kim, S.R. Effects of long-term cyclic horizontal loading on bucket foundations in saturated loose sand. Appl. Ocean Res. 2019, 91, 101910. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, J.; Wang, Z. Incremental elastoplastic FEM for simulating the deformation process of suction caissons subjected to cyclic loads in soft clays. Appl. Ocean Res. 2016, 59, 274–285. [Google Scholar] [CrossRef]
- Cheng, X.; Du, X.; Lu, D.; Ma, C.; Wang, P. A simple single bounding surface model for undrained cyclic behaviours of saturated clays and its numerical implementation. Soil Dyn. Earthq. Eng. 2020, 139, 106389. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, T.; Zhang, J.; Liu, Z.; Cheng, W. Finite element analysis of cyclic lateral responses for large diameter monopiles in clays under different loading patterns. Comput. Geotech. 2021, 134, 104104. [Google Scholar] [CrossRef]
- Wu, J. Scale Modelling and Numerical Analysis of Monopile in Marine Soft Clay Soil Under Lateral Cyclic Loads. Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2017. [Google Scholar]
- GB/T 50123-2019; Standard for Geotechnical Testing Method. China Architecture & Building Press: Beijing, China, 2019.
- Hu, A.; Fu, P.; Jiang, J.; Xie, K.; Li, L. Analysis of cumulative lateral displacement of monopile foundations for wind turbines in soft clay. J. Cent. South Univ. 2018, 49, 2257–2263. [Google Scholar]
- Wang, X.; Zeng, X.; Yang, X.; Li, J. Feasibility study of offshore wind turbines with hybrid monopile foundation based on centrifuge modeling. Appl. Energy 2018, 209, 127–139. [Google Scholar] [CrossRef]
- Liao, W.; Zhang, J.; Wu, J.; Yan, K. Response of flexible monopile in marine clay under cyclic lateral load. Ocean Eng. 2018, 147, 89–106. [Google Scholar] [CrossRef]
- Briaud, J.L.; Tucker, L.; Lytton, R.L.; Coyle, H.M. Behavior of Piles and Pile Groups in Cohesionless Soils; United States Department of Transportation—Federal Highway Administration: Washington, DC, USA, 1985.
Parameter | Value |
---|---|
Median particle diameter (/mm) | 0.0046 |
Relative density () | 2.57 |
Poisson’s ratio () | 0.47 |
Liquid limit () | 43.07% |
Plastic limit () | 24.70% |
plastic index () | 18.37% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Duan, L.; Zhang, Y.; Shen, L.; Yuan, P. Deformation Response and Load Transfer Mechanism of Collar Monopile Foundations in Saturated Cohesive Soils. Buildings 2025, 15, 2392. https://doi.org/10.3390/buildings15142392
Liu Z, Duan L, Zhang Y, Shen L, Yuan P. Deformation Response and Load Transfer Mechanism of Collar Monopile Foundations in Saturated Cohesive Soils. Buildings. 2025; 15(14):2392. https://doi.org/10.3390/buildings15142392
Chicago/Turabian StyleLiu, Zhuang, Lunliang Duan, Yankun Zhang, Linhong Shen, and Pei Yuan. 2025. "Deformation Response and Load Transfer Mechanism of Collar Monopile Foundations in Saturated Cohesive Soils" Buildings 15, no. 14: 2392. https://doi.org/10.3390/buildings15142392
APA StyleLiu, Z., Duan, L., Zhang, Y., Shen, L., & Yuan, P. (2025). Deformation Response and Load Transfer Mechanism of Collar Monopile Foundations in Saturated Cohesive Soils. Buildings, 15(14), 2392. https://doi.org/10.3390/buildings15142392